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Abstract
Using the notion of integrating factors, Lawson developed a class

of numerical methods for solving stiff systems of ordinary differential
equations. However, the performance of these “Generalized Runge–
Kutta processes” was demonstrably poorer when compared to the etd
schemes of Certaine and Nørsett, recently rediscovered by Cox and
Matthews. The deficit is particularly pronounced when the schemes
are applied to parabolic problems. In this paper we compare a fourth
order Lawson scheme and a fourth order etd scheme due to Cox and
Matthews, using the nonlinear Schrödinger equation as the test prob-
lem. The primary testing parameters are degree of regularity of the
potential function and the initial condition, and numerical performance
is heavily dependent upon these values. The Lawson and etd schemes
exhibit significant performance differences in our tests, and we present
some analysis on this.

1 Introduction

Although not new, exponential integrators were not considered a practi-
cal means of resolving systems of ordinary differential equations until very
recently. Exponential integrators are especially designed to handle stiff sys-
tems, and accomplish this goal by constructing exact integral curves for the
linear part of the differential operator. Constructing the integral curves en-
tails the application of the matrix exponential and related functions.

The class of integrators henceforth termed exponential integrators first
appeared in Certaine [5] and Nørsett [16]. These schemes are both of ex-
ponential time differencing (etd) type. Then Lawson [14] constructed the
integrating factor type in 1967. Recent reports on exponential integrators
show that especially for parabolic semi-linear problems, the etd type of
exponential integrators outperform integrators of Lawson type [13, 15, 17].
However, few results are available with respect to the performance on non-
parabolic problems like the Schrödinger equation.

In this paper we test a fourth order Lawson integrating factor scheme
against a fourth order etd scheme, etd4rk in [6]. Most other similar ex-
ponential integrator schemes perform very similarly to the etd4rk-scheme.
Exponential integrators are introduced in Section 2 and some analysis and
numerical results are presented in Sections 4 and 5.

The equation we will use for numerical tests in this paper is the nonlinear
Schrödinger equation in one space dimension

iψt = −∇2ψ + (V (x) + λ|ψ|2)ψ
ψ(−π, t) = ψ(π, t), for all t ≥ 0
ψ(x, 0) = ψ0(x), x ∈ [−π, π].

(1)

This Schrödinger equation arises in several different areas of physics of
which we mention multiscale perturbation theory, gravity waves in water, and
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propagation of intense optical pulses in fibres. The nonlinearity constant λ
controls the ratio of dispersive effects to nonlinear effects, and may give a
focusing version of the equation. The equation may be both parabolic and
hyperbolic, it has some smoothing effects, but time-reversibility prevents it
from generating an analytic semigroup, which is fundamental for the stiff
order analysis in Section 3. An introduction to the mathematical theory of
the nonlinear Schrödinger equation is given in [4].

We would like to point out that we do not try to directly preserve any
invariants of the equations in question, as opposed to many other special-
ized schemes for the Schrödinger equation. In this work, we test the given
schemes on a limited time scale, and focus on reporting the observed order.
The Schrödinger equation possesses several conservation laws, notably con-
servation of density, energy and momentum. For long-time integration where
stability and preservation of invariants is an important factor, multisymplec-
tic schemes may be a viable choice [3, 10]. The benefits of preservation of
invariants must be weighted against the additional cost necessary for multi-
symplectic schemes.

For our Schrödinger equation (1) we will employ a discrete Fourier trans-
form with NF modes. Upon semi-discretizing the physical problem in space,
we obtain a system of ordinary differential equations given by

ẏ = Ly +N(y) (2)

in which y ∈ Cn is the Fourier transform of ψ, L ∈ Cn×n, and N : Cn → Cn.
For the Schrödinger equation (1) the L matrix becomes diagonal with entries

Lkk = −ik2, k = −NF
2 + 1, . . . , NF

2 (3)

and the nonlinear function N(y) becomes

N(y) = −i ·F
(
(V (x) + λ|F−1(y)|2)F−1(y)

)
(4)

in which each component of y represents a particular Fourier mode, k.

2 Exponential integrators

Exponential integrators are explicit schemes which recover the exact solution
to linear problems. As such, this class of schemes is well suited to problems
which can be split into a linear and a nonlinear part, and for which the linear
part is either stiff or unbounded and the nonlinear part grows more slowly
than the linear part. When semi-discretizing PDEs, this happens if spatial
derivatives in the linear part are of higher order than in the nonlinear part.
We note that the Schrödinger equation, whether semi-discretized as in (2)
or in its original PDE form (1), satisfies these requirements although the
matrix L of (2) is unbounded only in terms of the parameter NF .
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In the following, we consider systems of ordinary differential equations
split into a linear and a nonlinear part as

ẏ = Ly +N(y, t), y(0) = y0. (5)

As alluded to in the above paragraph, exponential integrators applied to this
problem possess two primary features

1. If L = 0, the integrator reduces to a classical Runge–Kutta or linear
multistep method.

2. If N(y, t) = 0 for all y and t, the integrator reproduces the exact
solution to (5).

The nonlinear function N may depend on time, but the linear part should
not be explicitly time dependent in order for the exponential integrator to
be computationally competitive. Moreover, exponential integrators implic-
itly assume that most of the system’s inherent dynamic behaviour can be
ascribed to the linear operator L.

Classical integrators are divided into two classes; linear multistep meth-
ods and one-step Runge–Kutta methods. This paper considers only expo-
nential Runge–Kutta methods. We note that the framework of general lin-
ear methods, a generalization of both linear multistep methods and Runge–
Kutta methods, may also be extended to define exponential integrators as
in [2].

Exponential integrators of Runge–Kutta type are written as

Yi =
s∑

j=1

aij(hL)hN(Yj , t0 + cjh) + exp(cihL)y0 (6a)

y1 =
s∑

i=1

bi(hL)hN(Yj , t0 + cjh) + exp(hL)y0 (6b)

in which Yi, i = 1, . . . , s are internal stages and y1 is the final approximation
of y(t1) = y(t0 + h). This format extends the common format of Runge–
Kutta schemes in that the coefficients aij and bi are now analytic functions
of the linear operator L.

In order to fulfill the two features of an exponential integrator, aij(0) and
bi(0) must be the coefficients of some underlying Runge–Kutta-method. It
is evident that this scheme will solve linear equations (N(y, t) = 0) exactly.
Extending the notation of Butcher, the coefficient functions and collocation
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nodes are written up in the tableau

c1 a11(z) · · · a1s(z)
...

...
...

cs as1(z) · · · ass(z)

b1(z) · · · bs(z)

(7)

where we have used z = hL for convencience.
The two simplest choices of exponential integrators of Runge–Kutta type

are the Lawson–Euler

yn = exp(hL)yn−1 + exp(hL)N(yn−1, tn−1), (8)

0 0
ez

and Nørsett–Euler

yn = exp(hL)yn−1 + ϕ1(hL)N(yn−1, tn−1), (9)

0 0
ϕ1(z)

schemes. The function ϕ1(z) in the Nørsett–Euler scheme is given by ϕ1(z) =
(ez − 1)/z. The latter scheme has been reinvented several times, and is also
known as etd Euler, filtered Euler, Lie–Euler (using the affine Lie group)
and exponentially fitted Euler.

2.1 Lawson schemes

The Lawson exponential integrators, of which Lawson–Euler is a special
case, are derived by introducing a change of variables involving an integrat-
ing factor and applying a classical Runge–Kutta scheme to the transformed
equation. Given an underlying Runge–Kutta scheme with coefficients ãij , b̃i
and corresponding quadrature nodes ci, the Lawson exponential integrator
coefficient functions are as given in [14]

aij(z) = ãije(ci−cj)z and bi(z) = b̃ie(1−ci)z. (10)

Lawson schemes are particularly simple to implement, but have some dis-
advantages as reported early in the history of exponential integrators. For
example, they do not preserve fixed points of the differential equation, and
are also known for rather large error constants.

The aim of this paper is to elaborate on the performance of a Lawson
exponential integrator based on Kutta’s classical fourth order method. This
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scheme is given by the tableau

0

1
2

1
2ez/2

1
2

1
2

1 ez/2

1
6ez 1

3ez/2 1
3ez/2 1

6

(11)

and will be denoted “Lawson4”.
Ehle and Lawson modified the Lawson schemes in their paper [7] and

introduced another fourth order exponential integrator also using the ϕ1-
function, thereby slightly improving the performance for parabolic appli-
cations and regaining fixed point preservation. Their modification was in
the direction of etd-schemes, but it is not competitive to the now known
etd-schemes.

2.2 Exponential time differencing (ETD)

Rather than using integrating factors, we may approximate the nonlinear
function N(y, t) by some polynomial in t, and integrate the approximate
equation exactly. The resulting schemes are known in recent literature as
the “exponential time differencing” (etd) schemes, although this name is
not entirely descriptive. The polynomial approximation may be calculated
using previous steps of the integration process, thus producing multistep etd
schemes, or by Runge–Kutta-like stages, resulting in etd schemes of Runge–
Kutta type. We refer the reader to the review paper [15] for a thorough
review of exponential integrators of these types.

For notational simplicity, and without loss of generality, we consider only
autonomous problems N(y) = N(y(t)) in the remainder of this paper.

Lemma 2.1. The exact solution of the initial value problem

ẏ(t) = Ly(t) +N(y(t)), y(0) = y0,

has the expansion

y(t) = etLy0 +
∞∑
i=1

ϕi(tL)tiN (i−1)(y0).

where

ϕi(z) =
1

(i− 1)!

∫ 1

0
e(1−θ)z θi−1 dθ. (12)
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Proof. The basic idea is just a Taylor expansion of the nonlinear function
N(y(t)) and the variation of constants formula. A proof may be found in [13,
Lemma 1.1].

We will in this paper compare the Lawson4 scheme (11) against the
most commonly used fourth order etd scheme, etd4rk, due to Cox and
Matthews [6]. The coefficients of etd4rk are given by

0

1
2

1
2ϕ1( z

2)

1
2

1
2ϕ1( z

2)

1 ϕ1( z
2)(ez/2 − 1) ϕ1( z

2)

b1(z) b2(z) b3(z) b4(z)

(13)

in which
b1(z) = ϕ1(z)− 3ϕ2(z) + 4ϕ3(z)

b2(z) = b3(z) = 2ϕ2(z)− 4ϕ3(z)
b4(z) = −ϕ2(z) + 4ϕ3(z).

Computationally, the Lawson4 scheme (11) is much cheaper and easier to im-
plement on a computer than etd4rk. The evaluation of ϕ-functions in (12)
has numerical issues, and we believe this is best dealt with using scaling and
corrected squaring together with Padé approximants. Details on this may
be found in [2].

3 Order conditions

Classical order analysis for numerical integrators develops Taylor expansions
for all quantities. The analysis, however, is rigorous and valid only in the
limit as hL→ 0. If L is defined by spatially semi-discretizing an unbounded
differential operator L, L may be unbounded in terms of a parameter, typ-
ically the spatial resolution. Thus, hL → 0 cannot generally be guaran-
teed independently of the parameter. As such, classical order analysis is
of somewhat limited use in the study of exponential integrators applied to
unbounded semi-linear problems. Nevertheless, classical order conditions
must be satisfied for exponential integrators and traditional Runge–Kutta
integrators alike. The Lawson4 (11) and etd4rk (13) schemes are methods
with classical order four. Details on classical order analysis for exponential
integrators using B-series may be found in the paper [1].

A recent paper of Hochbruck and Ostermann [9] studies exponential in-
tegrators applied to infinite dimensional semi-linear parabolic Cauchy prob-
lems. Conditions under which the integrators converge in this abstract set-
ting are rather restrictive, and give rise to the notion of stiff order. Including
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the classical order conditions as special cases, these “stiff order conditions”
constitute an extended set of requirements which must be satisfied to guar-
antee high convergence rates. In this context Lawson4 (11) has stiff order
only 1 and etd4rk (13) has stiff order only 2. The use of ϕ-functions in
the coefficient functions aij(z) and bi(z) of (6) is required to attain high stiff
order.

However, the applicability of stiff order analysis to the nonlinear Schrödinger
equation remains an open issue. Integrators of stiff order four, examples of
which are listed in [2], perform similarly to etd4rk in this study. This sug-
gests that high stiff order is not critical to achieving efficient schemes in all
cases, and these high stiff order schemes are therefore omitted in all plots.

The first stiff order condition for an exponential integrator is easily ob-
tained by comparing the numerical solution given in (6) to the exact solution
from Lemma 2.1. For the first order in h we get the equation

ϕ1(z)hN(y(t0))−
s∑

i=1

bi(z)hN(y(t0)) = 0,

which we rewrite as
ψ1(z)hN(y(t0)) = 0. (14)

Based on this, the first stiff order conditions reads

ψ1(z) =
s∑

i=1

bi(z)− ϕ1(z) = 0. (15)

The Lawson integrators do not satisfy this condition exactly, but the in-
tegrators nevertheless satisfy the condition to a sufficient degree of accuracy,
a notion which will be explained in Section 4. There we study the solution’s
dependence upon the Schrödinger equation potential function V (x).

An easy route to deriving two stiff order conditions is considering preser-
vation of fixed points. Exact preservation of fixed points is important in
many applications, and hence a desirable property of exponential integra-
tors. Requiring Ly = −N(y) and y1 = y0, equation (6b) gives

y0 = −
s∑

i=1

bi(z)z + ezy0

equivalent to
s∑

i=1

bi(z) = ϕ1(z). (16)

For equation (6a) we require Yi = y0 for all i, and we obtain

s∑
j=1

aij(z) = ciϕ1(ciz) for each i. (17)
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Timestep h

‖
y(
·,

1)
−

y
h(
·,

1)
‖

2

Global error, NLS, N = 256, IC: exp(sin(2x)), Pot: 1/(1 + sin2(x)), λ = 1

4

ETD4RK
Lawson4

10−4 10−3 10−2 10−1
10−12

10−10

10−8

10−6

10−4

10−2

Figure 1: A global order test. Both exponential integrators in this study
perform as order 4 integrators. The dotted line is only an indicator line
showing how order 4 looks like.

These are precisely the first and third stiff order conditions in [9]. Lawson
integrators fulfill neither of these conditions, and thus do not preserve fixed
points. etd4rk, however, fulfills both conditions for fixed point preserva-
tion.

Despite their low stiff order, Lawson4 (stiff order 1) and etd4rk (stiff
order 2) still behave as fourth order schemes on our problem, given smooth
initial condition and smooth potential. See Figure 1.

4 Potential function dependency

The first stiff order condition (15) is not satisfied by the Lawson schemes.
The significance of the stiff order conditions in the case of non-parabolic
problems like the Schrödinger equation is unclear, but the conditions still
affect the numerical performance in some cases. Figure 1 shows that the
Lawson scheme is rougly 100 times more accurate than etd4rk at compara-
ble stepsizes, however, as we will justify, the performance results in Figure 1
are strongly influenced by the smoothness of the potential function used in
this particular test.

In this section we study how the regularity of the potential function V (x)
affects the numerical performance of the Lawson4 integrator.
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4.1 Order estimates

The analysis will be based on the rate of decay for the Fourier coefficients of
input functions. The relationship between Fourier decay and differentiability
is taken from a well-known result in Fourier analysis.

Lemma 4.1. If a function f is r times differentiable, that is, f (r) ∈ L1,
then

|f̂(k)| ≤ ‖f (r)‖L1

|k|r
, k ∈ Z\{0} (18)

and |f̂(0)| ≤ ‖f (r)‖L1 .

We estimate the error contribution from the first stiff order condition
(15) in Fourier space. By substitution of the bi(z) of Lawson4 into (15) we
obtain

ψ1(z) =
ez − 1
z

− 1
6
ez − 2

3
ez/2 − 1

6
which, when z is small, has the Taylor expansion

− 1
2880

z4 +O(z5). (19)

For x ∈ R we have |ψ1(xi)| ≤ 2, and we use this to construct an upper
bound for ψ1 for high Fourier modes where the Taylor expansion (19) is not
valid. Let the bound be the function

ψ1,env =

{
(hk2)4

2880 |k| ≤ (2 · 2880)1/8h−1/2

2 |k| > (2 · 2880)1/8h−1/2
(20)

which is sufficiently sharp for our purpose.

Proposition 4.2. If

1. ψ1(z) = −Czp +O(zp+1) for z small.

2. N(y(t)) (in Fourier space) in (2) has a decay rate of at least r for all
time and 1

2 < r ≤ 2p, that is

N(y(t))(k) ≤ KN

|k|r

3. hk2
max � 1

then the local error contribution for the first stiff order condition is

‖hψ1(−ik2)N(k)‖2 = C∗h1+ r
2
− 1

4 +O(h1+ r
2
+ 1

4 ) (21)
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ψ1

|k|
100101

10

1

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

Figure 2: The error in the first stiff order condition for Lawson4, h = 0.1 in
this plot.

Proof. We bound the ψ1(−ik2) function by

ψ1,env(−ik2) =

{
C(hk2)p |k| ≤ kc

2 |k| > kc

where the critical mode value is kc = (2C)
1
2ph−1/2. To estimate the error,

we sum over k in the first stiff order condition

‖ψ1 hN‖2
2 ≤ h2

∑
|k|≤kc

C2(hk2)2pK2
Nk

−2r

+ h2
∑

kc<|k|≤kmax

4K2
Nk

−2r,

in which we estimate the sums using Euler–MacLaurin’s summation formula∑n
k=1 f(k) =

∫ n
0 f(x) dx+ 1

2 (f(n)− f(0))+R̃1 where |R̃1| ≤ 1
2

∫ n
0 |f

′(x)|dx,
for any function f ∈ C1([0, n]), so

‖ψ1 hN‖2
2 ≤ 2h2K2

N

(
C2h2p

( k4p−2r+1
c

4p− 2r + 1
+ k4p−2r

c

)
+ 8

( k1−2r
max

1− 2r
− k1−2r

c

1− 2r
+ k−2r

max − k−2r
c

))
Inserting kc = (2C)

1
2ph−1/2 we get the dependency on h, and the square root

of the dominating term is h1+
r
2−

1
4 as long as NF = 2kmax is large enough

and 1/2 < r ≤ 2p.

If r > 2p, the scheme is not accurate enough to capture the “non-
smoothness” of the N -function, and the first order condition does not con-
tribute to any error of order less than the classical error.
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Thus, as long as the nonlinear function is smooth enough, we can also in-
clude Lawson4 as one of the schemes that obey the first stiff order condition,
although only accurately enough so that its main features as a fourth order
classical method is conserved. Looking at only the first stiff order condition
is sufficient for explaining the observed numerical behaviour in this paper.

4.2 Numerical results

In the following experiments, we have used an artificially constructed poten-
tial with a prescribed decay rate r. This means constructing the potential
by letting its Fourier modes be 1/(ikr) multiplied with a complex number in
which both the real and the imaginary part are normally distributed with
mean zero and variance one. Then we have used matlab’s inverse discrete
fourier transform to get an example function for use. We note that in par-
ticular the hat function has a decay rate of 2, although Lemma 4.1 only
predicts 1. This is due to bounded variation of the hat function.

Figures 3 and 4 show observed error behaviour when solving the nonlin-
ear Schrödinger equation subject to a smooth initial condition and potential
functions of regularity 2 and 4 respectively. Low regularity potential func-
tions lower the regularity of the nonlinear function N(y(x, t)). Assuming N
is no more regular than V (x), Proposition 4.2 then predicts orders 1.75 and
2.75 respectively for the Lawson4 scheme in these cases. We conclude that
the observed order corresponds fairly well to what is predicted by the propo-
sition. Moreover, we see from the plots that for the Lawson schemes, the
global error as a function of time step oscillates rather wildly when not all
eigenmodes are resolved by a small enough h. These oscillations are smooth
on a zoomed plot and are due to some resonance effect. This is further
discussed in Section 6.2.

5 Initial condition dependency

In this section we will see that the etd4rk scheme is more influenced by
the regularity of the initial condition than is the Lawson4 scheme. A crucial
introductory numerical observation is that the dependency on the initial
condition is present in the linearized version as well as in the nonlinear
version, that is when λ = 0 in (1). This facilitates substantially simplified
analysis.

5.1 Analysis for the linear problem

Consider the Fourier domain linear problem

ẏ = Ly +Wy (22)
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y
h(
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2
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Figure 3: Global error when the potential has regularity 2.
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Figure 4: Global error when the potential has regularity 4.
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where L is the Laplacian in Fourier domain as before (diagonal, ik2) and W
is a circulant matrix stemming from a Fourier transform of the potential in
the Schrödinger equation (1). The fact that the matrices L and W in general
do not commute is the source of the order reduction observed in the Lawson
scheme as we shall see. If, on the other hand, the potential function is a
constant, L and W will commute, and order reduction is not observed.

The presentation here resembles the Strang splitting analysis of Jahnke
and Lubich [11] on (22) when the linear operator in the differential equation
is unbounded. They found order reduction due to the same phenomena that
we will see here.

Applying an explicit exponential integrator to (22) we get

y1 = ehLy0 + h
( s∑

i=1

bi(hL)W ecihL
)
y0 +O(h2). (23)

Then, by way of the variation of constants formula, the exact solution to (22)
may be represented as

eh(L+W )y0 = ehLy0 +
∫ h

0
esLW e(h−s)(L+W )y0 ds.

For our fourth order schemes, we iterate the variation of constants for-
mula four times for the exact solution resulting in a sum including up to
five-dimensional integrals. Applying the variation of constants formula once
more to remove W from the exponential, and substituting θ = (h− s)/h, it
is clear that a second order scheme must satisfy

s∑
i=1

bi(hL)W ecihLy0 =
∫ 1

0
e(1−θ)hLW eθhLy0 dθ. (24)

5.2 Regularity requirement for the Lawson scheme

Inserting the Lawson4 scheme bi(hL) coefficients allows an immediate inter-
pretation of (24). The left hand side of (24) is Simpson’s quadrature of the
function f(θ) = e(1−θ)hLW eθhL. The error of Simpson’s quadrature is known
to be f (4)(ξ)/2880 for some ξ ∈ [0, 1], and in this case

f (4)(ξ) = h4e(1−ξ)hL[L, [L, [L, [L,W ]]]]eξhL

= h4e(1−ξ)hLad4
L(W )eξhL.

(25)

Transforming from Fourier space to phase space, L becomes d2/dx2 and
W becomes a multiplication operator denoted by V . One may verify the
formula

adm
d2/dx2(V )0 =

m∑
i=0

2i

(
m

i

)
V (2m−i)ψ

(i)
0 . (26)
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When m = 4, one observes that the Lawson4 scheme satisfies condi-
tion (24) to a sufficient degree of accuracy if the initial condition in phase
space ψ0(x) ∈ C4(−π, π) and the potential V (x) ∈ C8(−π, π).

Iterating the variation of constants formula further, one obtains addi-
tional iterated integrals. As these integrals involve only lower derivatives
of the appropriate f(θ1, θ2, . . . ) function, equating to lowered regularity re-
quirements for V and y0, we omit the details in this exposition.

5.3 Regularity requirement for etd4rk

We interpret (24) in a Gauss quadrature sense with the weight function
w(θ) = e(1−θ)hL. Requring the quadrature formula to be exact for fourth
degree polynomials gives four stiff order conditions.

s∑
i=1

bi(hL)cki =
ϕk+1(hL)

k!
, for k = 0, 1, 2, 3. (27)

For etd4rk this is not in general satisfied when k = 4, and we expect the
principal quadrature error term to depend on g(4)(θ) where g(θ) = W eθhLu0.
Differentiating this function, we get

g(4)(θ) = h4WL4eθhLy0 (28)

an upper bound for which translates to y0 being at least 8 times continu-
ously differnentiable in space. Thus, we should expect etd4rk to demand
more regularity for the initial condition than Lawson4. On the other hand,
etd4rk makes no demand on the regularity of the potential function, as
opposed to the Lawson4 scheme.

5.4 Numerical results

Figures 5 and 6 show global error plots with both Lawson and etd4rk. The
potential is smooth while the regularity of the initial condition is low (Fourier
decay rates of 2 and 4). It is apparent that etd4rk suffers drastically from
the low regularity, and based on experiments, it has order hr/2−1/4 when r
is the regularity, independent of linear problem or not.

6 Discussion

6.1 Computational speed

In terms of construction and implementation, Lawson type exponential in-
tegrators are more immediate than etd type schemes. Particularly, the
coefficient functions of Lawson schemes are given explicitly by (10), whereas
derivation of etd type coefficient functions is typically more cumbersome.
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Figure 5: Smooth potential, initial condition of regularity 2.
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Figure 6: Smooth potential, initial condition of regulary 4.
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Figure 7: Lawson4 is close to order 4 but oscillating in the linear case, λ = 0,
while etd4rk suffers from the low regularity (2) of the initial function. The
potential is smooth, 1/(1 + sin2(x)). In the corresponding local error plot,
etd4rk exhibits order 1.75 and Lawson order 5 with no oscillations.

Additionally, Lawson type schemes require one or more matrix exponentials
for which acceptable algorithms are well known. The etd type schemes re-
quire the evaluation of multiple ϕ-functions, a computational problem which
is at least as difficult as computing matrix exponentials. In evaluating ϕ-
functions, Kassam and Trefethen [12] discovered a stability problem which
they solved by contour integral evaluation in the complex plane. This re-
quires an a priori contour radius which in general is problem dependent and
not trivially available. In our numerical experiments, we found a scaling and
squaring technique together with Padé-approximations of the ϕ-function to
be a better option, inspired by a code from [8]. The actual implementation
is discussed in [2].

6.2 Oscillations in observed order

Most order plots for the Lawson4 integrator show significant oscillations in
observed accuracy as a function of timestep h. Zooming in on each plot
reveals that the the oscillations are smooth but quickly varying magnitudes
of the highest eigenmode of L. These oscillations span roughly 2 orders
of magnitude, and therefore represent a considerable error contribution at
particular time step sizes.

The oscillations are due to some resonance effects, and that these are not
damped as in the case of etd schemes by dividing by z in the ϕ-functions. To
avoid these oscillations the Lawson schemes therefore must use ϕ-based co-
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efficient functions. This, in turn, effectively renders the scheme into another
type than what has been denoted Lawson schemes in this paper. Moreover,
in a sense the resulting scheme is worse than Lawson’s scheme as the modified
scheme becomes more sensitive to the regularity of the initial condition.

6.3 Low regularity potential and initial condition

Using low regularity initial conditions and potential functions, we get the
mixed case of undesirable behaviour from both types of schemes. Varying
both the initial condition and the potential (one particular combination of
which is shown in Figure 8), there is little actual gain from choosing one
scheme over the other. However, due to the observed oscillations, etd4rk
might be a better choice in these cases.
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Figure 8: The mixed case: Both the initial condition and the potential has
regularity 2.

6.4 Exponential general linear methods

General linear methods generalize Runge–Kutta integrators and multistep
integrators. Exponential general linear methods thus generalize the inte-
grators catered for in this paper, as reported in [2]. A class of exponential
general linear methods known as the generalized Lawson schemes, see [17],
mixes the Lawson and etd schemes and give good results on parabolic prob-
lems, achieving high stiff order. However, in the experiments described in
this paper, these schemes never perform better than the best of etd4rk or
Lawson4.
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6.5 Rounding error accumulation

In closing we would like to comment on an important feature of our ex-
periments. The measured error does not decrease further as a function of
decreasing stepsize once the error reaches a level of about 10−10. As this
is several orders of magnitude larger than machine accuracy, it is clear that
rounding errors introduced in the evaluation of the ϕ-functions affect long-
time accuracy of the exponential integrator. We still believe that the Padé
approximation, as described in [2], is the best algorithm for evaluating ϕ-
functions, and that accuracy of exponential integrators may be increased by
further research into this algorithm.

7 Conclusion

We have studied the numerical performance of the Lawson4 scheme com-
pared to the etd4rk scheme on a nonlinear Schrödinger test problem and
observe that the actual performance is heavily influenced by the potential
function and initial condition. In short, Lawson4 is dependent upon the
regularity of the potential function while etd4rk is dependent upon the
regularity of the initial condition. Stiff order conditions are used as a tool
for explaining the observed behaviour, although the general applicability of
stiff order conditions to non-parabolic problems remains unclear. Further
research is necessary to explain phenomena exhibited by exponential inte-
grators on partial differential equations.
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