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Abstract.

A cross between the asymptotic expansion of an oscillatory integral and the Filon-type methods is

obtained by applying a Filon-type method on the error term in the asymptotic expansion, which is in

itself an oscillatory integral. The efficiency of the approach is investigated through analysis and numerical

experiments, and a potential for better methods than current ones is revealed. In particular can savings in

the required number of potentially expensive moments be expected. The case of multivariate oscillatory

integrals is discussed briefly.

AMS subject classification (2000): 65D30.

Key words: high oscillation, quadrature, asymptotic expansions, Filon integration.

1 Introduction

The quadrature of highly oscillatory integrals has been perceived as a hard problem. Tradi-
tionally one would have to resolve the oscillations by taking several sub-intervals for each period,
resulting in a scheme whose complexity would grow linearly with the frequency of the oscillations.
More careful analysis will however reveal that by exploiting the structure of certain classes of
oscillatory integrals better discretisation schemes can be devised, schemes where the error actu-
ally decreases when the frequency of the oscillations increases. This is well known in asymptotic
analysis with eg. saddle point methods and the method of stationary phase approximation[15, 13].
Recently attention has been directed at numerical methods with similar properties. Examples of
such methods are Filon-type methods[7, 8] Levin-type methods[12, 14] and numerical steepest
descent[6].

We are considering oscillatory integrals of the form

(1.1) I[f ] =

∫ 1

−1

f(x)eiωg(x)dx,

where ω is a large parameter. It is well known that an ordinary Gaussian quadrature applied to
this integral will have an error of O(1) as ω grows large. A much better approach to approximating
I[f ] when ω is large is found through an asymptotic expansion: Assuming g′(x) 6= 0, −1 ≤ x ≤ 1,
integration by parts yields

(1.2) I[f ] =
1

iω

[

f(1)

g′(1)
eiωg(1) − f(−1)

g′(−1)
eiωg(−1)

]

− 1

iω

∫ 1

−1

d

dx

[ f(x)

g′(x)

]

eiωg(x)dx.

When ω becomes large the integral term in equation (1.2) vanishes faster than the boundary
terms, by an extension of Riemann-Lebesgue’s lemma, so the boundary terms can approximate
the integral. Furthermore the process can be repeated on the integral remainder to obtain a full
asymptotic expansion. This expansion will however not be perfect. As is often the case with
asymptotic expansions the accuracy is limited due to the divergence of the series.

An even better approach is to choose a set of quadrature nodes c1, . . . , cν , interpolate the function
f by a polynomial f̃ at these points and let

QF
1 [f ] =

∫ 1

−1

f̃(x)eiωg(x)dx =

ν
∑

j=1

bj(ω)f(cj),
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where bj(ω) =
∫ 1

−1
lj(x)eiωg(x)dx for lj(x) the j-th Lagrange cardinal polynomial. A variant of this

approach, then with piecewise quadratic interpolation in the Fourier-case when g(x) = x, dates
back to L.N.G. Filon[4]. Schemes of this type are referred to as Filon-type methods. Constructing

bj(ω) requires the moments
∫ 1

−1
xmeiωg(x)dx. Moments are oscillatory integrals themselves that

hopefully can be calculated by analytical means as in the Fourier case. If not, the numerical
steepest descent method can be applied to compute moments for the Filon-type method, an
approach which works well in practical applications[6, 2]. Iserles proved[7] that as long as the
endpoints of the interval are included as quadrature nodes and g′(x) 6= 0, −1 ≤ x ≤ 1, this
approach will carry an error

QF
1 [f ] − I[f ] ∼ O(ω−2), ω → ∞.

The superiority of this approach over the asymptotic expansion can be understood by realising
that the method is exact for a class of problems, regardless of the size of ω. As for the behaviour
for large ω it was proved by Iserles and Nørsett[10] that by applying Hermite interpolation to
interpolate f(x) with p derivatives at the endpoints, the asymptotic behaviour of the error can be
expressed as

QF
p [f ] − I[f ] ∼ O(ω−p−1), ω → ∞

The theory can be expanded to the cases where g has stationary points, that means points ξ with
g′(ξ) = 0. What must be done to achieve good asymptotic properties is basically to include the
stationary points among the quadrature nodes[8].

Considering the asymptotic expansion with the remainder term (1.2) one cannot fail to notice
that the problem has really been transformed into boundary terms plus the remainder term,
which is an integral of the same form as the original. A natural question to ask in light of this
observation is whether treating the remainder term with a specialised technique, like the Filon-type
quadrature, numerical steepest descent or a Levin-type method, could improve accuracy. In the
following this question will be addressed, in particular for the choice of the Filon-type quadrature
QF

p as quadrature method. In the above-mentioned case this would amount to a new method

QFA[f ] =
1

iω

[

f(1)

g′(1)
eiωg(1) − f(−1)

g′(−1)
eiωg(−1)

]

− 1

iω
QF

p

[ d

dx

[

f/g′
]

]

.

We will refer to methods of this form as combined Filon/asymptotic methods. Observe that for
ω 6= 0 this method is consistent in the sense that accuracy can be improved by using a better
quadrature method on the remainder term, a property which the asymptotic expansion does not
have. Furthermore, because of the 1/ω-factor, the asymptotic error behaviour will be better
than for the classical Filon-type method applied directly. This means that less work, in terms of
moments, is needed to get high asymptotic order. The combined method is in this sense a true
cross between the asymptotic method and the Filon-type method, combining good qualities of
both methods. These observations will be elaborated on in the following with emphasis on the 1D
case without stationary points, with stationary points and a brief look into the multivariate case.

2 The Asymptotic method and Filon-type methods

We begin the exposition by presenting an overview of the constituent parts of the combined
method: The asymptotic expansion of the highly oscillatory integral and the Filon-type meth-
ods. In the following we will denote by Qp[f ] ≈ I[f ] a highly oscillatory quadrature method of
asymptotic order p, meaning that for smooth f

Qp[f ] − I[f ] ∼ O(ω−p−1), ω → ∞.

Note that in some parts of the literature this would be referred to as order p+1. This corresponds
to absolute error decay, whereas ours is relative error decay in the case of no stationary points
where I[f ] ∼ 1/ω [15]. In the presence of stationary points the picture is slightly different, and
for simplicity we will then avoid the concept of asymptotic order.



Combined Filon/asymptotic method 3

2.1 The case of no stationary points

Assume for the time being that there are no stationary points in the interval of interest, that
means g′(x) 6= 0, −1 ≤ x ≤ 1. An asymptotic expansion of the highly oscillatory integral (1.1)
is obtained by successively applying integration by parts. This approach gives us a full expansion
through the following partial expansion

I[f ] = −
s

∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

+
1

(−iω)s

∫ 1

−1

σs[f ](x)eiωg(x)dx,(2.1)

where

σ0[f ](x) = f(x)

σm+1[f ](x) =
d

dx

σm[f ](x)

g′(x)
, k = 0, 1, . . . .(2.2)

The correctness of the above expansion can easily be checked through an induction argument. A
full asymptotic expansion of the highly oscillatory integral (1.1) is then

(2.3) I[f ] ∼ −
∞
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

.

Truncating the series after s terms, yields the asymptotic method

(2.4) QA
s [f ] = −

s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

.

The method has asymptotic order s. This can be seen by writing out the remainder term, which is
an oscillatory integral O(ω−1) multiplied by (−iω)−s. Note that the concept of asymptotic order
is rather useless for not-so-large ω. In fact the asymptotic expansion is divergent in the general
case, and this divergence is more severe for smaller ω. Thus the asymptotic method is rather
useless for small ω. Furthermore, divergence implies that only a fixed accuracy can be attained
- adding terms will not always increase accuracy. This is problematic for practical applications
where usually a given accuracy is sought.

The Filon-type methods will be accurate also for smaller ω and have controllable error, but that
is at the cost of moments. We define the moments

µk(ω) =

∫ 1

−1

xkeiωg(x)dx,

and assume these can be computed, possibly at a significant cost. Then the Filon-type method
is obtained by choosing a set of nodes −1 = c1 < c2 < · · · < cν = 1 and integer multiplicities
m1, . . . ,mν ≥ 1 associated with each node. Let n =

∑ν
j=1 mj − 1 and f̃ be the unique Hermite

interpolation polynomial of degree n obtained by interpolating f at the points {cj}ν
j=1 with the

corresponding multiplicities,

f̃(x) =
ν

∑

l=1

ml−1
∑

j=0

αl,j(x)f (j)(cl).

The Filon-type method is defined as

(2.5) QF
s [f ] =

∫ 1

−1

f̃(x)eiωg(x)dx =

ν
∑

l=1

ml−1
∑

j=0

βl,j(ω)f (j)(cl),
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where βl,j(ω) =
∫ 1

−1
αl,j(x)eiωg(x)dx is obtained from linear combinations of moments. As for s,

the asymptotic order of this method, we we state a theorem due to Iserles and Nørsett[10]:

Theorem 2.1. Suppose m1,mν ≥ s, then for every smooth f and smooth g with g′(x) 6=
0, −1 ≤ x ≤ 1

QF
s [f ] − I[f ] ∼ (ω−s−1), ω → ∞.

The proof is obtained by expanding f − f̃ as in equation (2.3) and observing that the first s
terms will cancel due to the interpolation criteria. This theorem can be summarised by saying
that only by adding derivative information at the endpoints of the interval can the asymptotic
order of the method be improved. Information about derivatives can also be supplied indirectly by
clustering interpolation nodes near the endpoints. If the nodes approach the endpoints as 1/ω high
asymptotic order can be attained[9]. Note that increasing the order of the interpolating polynomial
f̃ will increase the accuracy of the method for some fixed ω, at least when the interpolation nodes
are the Chebychev points. This is indeed confirmed by numerical experiments[9]. This means
that for any ω a prescribed accuracy can be attained, a property which is crucial for practical
applications.

2.2 Generalized Filon and asymptotic method in the presence of stationary points

When g has stationary points Theorem 2.1 is no longer valid, a fact which is suggested by
the singularity introduced in the integral in remainder term of the asymptotic expansion (1.2).
Assume in the following that g(x) has only one stationary point ξ ∈ (−1, 1), which amounts to
saying g′(ξ) = 0, g′(x) 6= 0, x ∈ [−1, 1]\{ξ}. Furthermore assume that g′(ξ) = · · · = g(r)(ξ) = 0,
and g(r+1)(ξ) 6= 0, this means that ξ is a rth order stationary point. The method of stationary
phase[3, 13] states that in this case the leading order behaviour of the highly oscillatory integral
(1.1) is of the form

(2.6) I[f ] ∼ Cω−1/(r+1), ω → ∞.

This means that the main contribution to the value of the integral comes from the stationary
point, suggesting that the interpolation nodes for the Filon-type methods should include station-
ary points as well as the endpoints.

Assume for simplicity that ξ is a first order stationary point meaning g′(ξ) = 0 and g′′(ξ) 6= 0.
Writing

I[f ] = f(ξ)I[1] + I[f − f(ξ)]

= f(ξ)I[1] +
1

iω

∫ −1

1

f(x) − f(ξ)

g′(x)

d

dx
eiωg(x)dx,

then integrating by parts gives the following expression:

I[f ] = f(ξ)I[1] +
1

iω

[

f(1) − f(ξ)

g′(1)
eiωg(1) − f(−1) − f(ξ)

g′(−1)
eiωg(−1)

]

− 1

iω

∫ 1

−1

d

dx

f(x) − f(ξ)

g′(x)
eiωg(x)dx.(2.7)

Now, since g′′(ξ) 6= 0, the singularity is removable. The expansion can be continued giving a full
expansion reminiscent of the expansion (2.3). More generally, for a rth order stationary point we
introduce the generalized moments

µk(ω; ξ) = I[(· − ξ)k] =

∫ 1

−1

(x − ξ)keiωg(x)dx, k ≥ 0.

Note that these can be written in terms of ordinary moments. Now write

I[f ] =

r−1
∑

j=0

1

j!
f (j)(ξ)µj(ω; ξ) + I



f(x) −
r−1
∑

j=0

1

j!
f (j)(ξ)(x − ξ)j



 .(2.8)
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Again the singularity is removable, and the expansion can be formed. We will later need the
expansion with the remainder term, so this will be formulated as a lemma1:

Lemma 2.2. Suppose ξ is a stationary point of order r, and that ξ is the only stationary point
inside the interval [−1, 1]. Then for every smooth f

I[f ] =
r−1
∑

j=0

1

j!
µj(ω; ξ)

s
∑

m=1

1

(−iω)m−1
ρm−1[f ](j)(ξ)

−
s

∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)

(

ρm−1[f ](1) −
r−1
∑

j=0

1

j!
ρm−1[f ](j)(ξ)(1 − ξ)j

)

(2.9)

− eiωg(−1)

g′(−1)

(

ρm−1[f ](−1) −
r−1
∑

j=0

1

j!
ρm−1[f ](j)(ξ)(−1 − ξ)j

)

]

+
1

(−iω)s
I
[

ρs[f ]
]

,

where

ρ0[f ](x) = f(x)

ρm+1[f ](x) =
d

dx

ρm[f ](x) −
∑r−1

j=0
1
j!ρm[f ](j)(ξ)(x − ξ)j

g′(x)
, k = 0, 1, . . .(2.10)

Proof. This is proved by induction. The Lemma is certainly true for s = 0. Now

I
[

ρs[f ]
]

=

r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)µj(ω; ξ)

+
1

iω

∫ 1

−1

ρs[f ](x) − ∑r−1
j=0

1
j!ρs[f ](j)(ξ)(x − ξ)j

g′(x)

d

dx
eiωg(x)dx.

Integration by parts gives

I
[

ρs[f ]
]

=
r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)µj(ω; ξ)

− 1

(−iω)

[

eiωg(1)

g′(1)

(

ρs[f ](1) −
r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)(1 − ξ)j

)

− eiωg(−1)

g′(−1)

(

ρs[f ](−1) −
r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)(−1 − ξ)j

)

]

+
1

(−iω)
I
[

ρs+1[f ]
]

.

Inserting into equation (2.9) proves the Lemma.

As before, truncating the expansion (2.9), that is the two m-summations after s terms, yields
the asymptotic method. The asymptotic behaviour of the error in this method is found by the
method of stationary phase applied to the remainder. Thus we get for the asymptotic method,

QA[f ] − I[f ] ∼ O(ω−s−1/(r+1)), ω → ∞.

1Note that the conclusion in this lemma is different from that of Iserles & Nørsett in [10], Theorem 3.2, which
we suggest is flawed.
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For an even more general case, in the presence of more than one stationary point, the interval
can be partitioned such that each sub interval contains only one stationary point, and then an
expansion can be made for each sub interval. As before, truncating the expansion after s terms
yields the asymptotic method.

Now to the Filon-type method: Let ξ be a unique stationary point of order r: g′(ξ) = 0 and
g′(x) 6= 0 for x ∈ [−1, 1]\{ξ}, g′(ξ) = · · · = g(r)(ξ) = 0, and g(r+1)(ξ) 6= 0. The generalized
Filon method[10] is constructed by choosing nodes −1 = c1 < c2 < · · · < cν = 1 such that the
stationary point is among the nodes, that is cq = ξ for some q ∈ {1, 2, . . . , ν}. Given multiplicities

m1,m2, . . . ,mν ≥ 1 corresponding to each node, we let f̃ be the unique Hermite interpolation
polynomial of degree n =

∑ν
j=1 mj − 1 obtained by interpolating f at the points {cj}ν

j=1 with the
corresponding multiplicities. The method is now simply

QF [f ] =

∫ 1

−1

f̃(x)eiωg(x)dx.

The above integral is computed from linear combinations of moments.
We present another theorem by Iserles and Nørsett[10] regarding the asymptotic error behaviour

of the generalized Filon method.

Theorem 2.3. Let m1,mν ≥ s and mq ≥ s(r + 1) − 1. Then

QF [f ] − I[f ] ∼ O(ω−s−1/(r+1)), ω → ∞.

This theorem is, like Theorem 2.1 proved by expanding f − f̃ and showing that terms up to
order s cancel. The method is trivially expanded to cater for several stationary points, possibly
of different order.

3 The combined Filon/asymptotic method

Let us for the moment assume that there are no stationary points of g in [−1, 1]. This assumption
will be relaxed later on. A combined Filon/asymptotic method is constructed from the asymptotic
expansion with the remainder term (2.1) by applying a Filon-type method on the remainder term,
which is in itself an oscillatory integral. Denoting by QFA

p,s a method which is obtained by applying
a p-th order Filon-type method on the remainder of an s-term expansion we get

QFA
p,s [f ] = −

s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

+
1

(−iω)s
QF

p

[

σs[f ]
]

,(3.1)

where the σm[f ] are defined as in equation (2.2). Note that this formula is consistent for ω 6= 0
in the sense that if we resolve the remainder term exactly, then the formula is exact as well.
Furthermore, note that the idea is not restricted to Filon-type methods. Any quadrature method
Qp can be applied:

Theorem 3.1. Let g be such that g′(x) 6= 0, −1 ≤ x ≤ 1. Applying a highly oscillatory
quadrature method Qp of asymptotic order p on the remainder in the s-term asymptotic expansion
(2.1) yields a method Qp,s. Applied to any smooth f this method is of order p + s, that is

Qp,s[f ] − I[f ] ∼ O(ω−p−s−1), ω → ∞.
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Proof. Writing out the asymptotic expansion of Qp,s[f ] − I[f ] gives

Qp,s[f ] − I[f ] ∼ 1

(−iω)s
Qp[σs[f ](x)]

+

∞
∑

m=s+1

1

(iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

=
1

(−iω)s

(

Qp[σs[f ](x)] −
∞
∑

j=1

1

(iω)j

[eiωg(1)

g′(1)
σj−1[σs[f ]](1)

− eiωg(−1)

g′(−1)
σj−1[σs[f ]](−1)

]

)

∼ 1

(−iω)s
O(ω−p−1) = O(ω−p−s−1),

where the last line appears by using the asymptotic error property of the method Qp.

We will here limit our attention to the case where Qp is a Filon-type method, and we call the
combined method QFA

p,s a Filon/asymptotic method.

Example 3.1. For the simplest case set s = 1 and get

(3.2) QFA
p,1 [f ] =

1

iω

[

eiωg(1)

g′(1)
f(1) − eiωg(−1)

g′(−1)
f(−1)

]

− 1

iω
QF

p

[

d

dx

f

g′

]

,

which is a method of asymptotic order p + 1.

w
10 20 30 40 50 60 70 80 90 100

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 3.1: The absolute value of the error for the combined Filon/asymptotic method (top) and
the classical Filon-type method (bottom) from example 3.2, all scaled by ω3.

Example 3.2. We wish to compute

∫ 1

−1

eiωx

2 + x
dx.
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Interpolating f(x) = 1/(2+x) and its first derivative at x = −1 and x = 1 will give us a Filon-type
method of asymptotic order s = 2. This method requires four moments. Interpolating only the
function value of σ1(x) = −1/(2 + x)2 at the two endpoints gives the combined Filon/asymptotic
scheme which is also of asymptotic order 2, but only needs two moments. We expect this to be
at the cost of not that good approximation properties compared to the classical method, which is
indeed confirmed by experiments, see figure 3.1. Note that the crests of the curve of one method
seems to correspond with the troughs of the other, much like what was pointed out by Iserles &
Nørsett in [10]. This behaviour will be discussed in section 5.

The key element in a discussion of the efficiency of this method is the need for moments.
Recall that a classical asymptotic method needs no moments, but it breaks down for small ω
and the error is not controllable. On the other hand a classical Filon-type method can be made
precise also for moderately sized ω, but at the cost of moments. A Filon-type method needs a
minimum of 2p moments to obtain asymptotic order p. The combined Filon/asymptotic method
is situated between the Filon-type method and the asymptotic method, both in spirit and in terms
of requirements. For example, this method can obtain any asymptotic order as well as accuracy
for moderately sized ω with the use of only two moments. The asymptotic nature of the method
is revealed by the 1/ωs-factor which indicates that it will perform bad as ω → 0. For ω = 0 the
method does not work, as opposed to the classical Filon-type method which in this case reduces to
a classical quadrature method. The combined method can, like the classical Filon-type method, be
made precise to a prescribed tolerance by adding more moments. The usefulness is here dictated
by the cost of computing moments, as well as the cost of computing σm[f ] and its derivatives. The
following example, example 3.3, shows how a combined Filon/asymptotic method performs better
than a classical Filon-type method with approximately the same input data. This observation will
be elaborated on in section 5.1.

Example 3.3. Once again we wish to compute with a combined Filon/asymptotic method the

w
10 20 30 40 50 60 70 80 90 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

(a)

w
10 20 30 40 50 60 70 80 90 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

(b)

Figure 3.2: a) Error for the Filon/asymptotic method with interpolation nodes [−1, 0, 1](top), and
[−1,−1/3, 1/3, 1](bottom), scaled by ω3. b) Error for the classical Filon-type method scaled by
ω3 (same scale as (a).)

integral
∫ 1

−1

eiωx

2 + x
dx,
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but this time we include internal nodes. Interpolating σ1(x) = −1/(2 + x)2 at the nodes [−1, 0, 1],
and [−1,−1/3, 1/3, 1] will result in combined schemes requiring three and four moments respec-
tively. That means comparable to the classical Filon-type method from example 3.2, which is
obtained by interpolating f(x) = 1/(2 + x) with its first derivative at the endpoints requiring four
moments. Both this classical method and the above described combined methods have asymptotic
order 2. Comparing error plots for the methods(see figure 3.2) we see that the combined method
with nodes [−1, 0, 1] has almost exactly the asymptotic error constant as the classical method when
ω increases, whereas the one with nodes [−1,−1/3, 1/3, 1] has a significantly smaller error constant.
In figure 3.3 we see how the different methods behaves for small ω. Note that including internal
nodes reduces the severity of the singularity. Even for quite small ω the best Filon/asymptotic
method is better than the classical method.

w
1 2 3 4 5 6 7 8 9 10

 10 - 6

 10 - 5

 10 - 4

 10 - 3

 10 - 2

 10 - 1

 100

 101

Figure 3.3: Log-plot of the error for the Filon/asymptotic method with interpolation nodes
[−1, 1](top), [−1, 0, 1](middle) and [−1,−1/3, 1/3, 1](bottom), not scaled. Error for the classi-
cal Filon-type method shown as a dotted line

3.1 The combined Filon/asymptotic method with stationary points

Extending the method to cater for stationary points is fairly straightforward given Lemma 2.2.
Assume in the following that ξ is the only stationary point of order r in [−1, 1]. This requirement
is not crucial, it will just simplify otherwise horrific expressions. In the following we will denote
by Qp a method tailored for this problem, like the generalized Filon-type quadrature, which for
smooth f bears an error

Qp[f ] − I[f ] ∼ O(ω−p−1/(r+1)), ω → ∞

Applying the generalized Filon method QF
p on the expansion (2.9) yields the generalized com-
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bined Filon/asymptotic method

QFA
p,s [f ] =

r−1
∑

j=0

1

j!
µj(ω; ξ)

s
∑

m=1

1

(−iω)m−1
ρm−1[f ](j)(ξ)

−
s

∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)

(

ρm−1[f ](1) −
r−1
∑

j=0

1

j!
ρm−1[f ](j)(ξ)(1 − ξ)j

)

(3.3)

− eiωg(−1)

g′(−1)

(

ρm−1[f ](−1) −
r−1
∑

j=0

1

j!
ρm−1[f ](j)(ξ)(−1 − ξ)j

)

]

+
1

(−iω)s
QF

p

[

ρs[f ]
]

ρm[f ] are defined as in equation (2.10). Recall that QF
p is constructed by interpolating f in the

endpoints and ξ (c1, cν and cq) with multiplicities m1, mν and mq respectively. Using a generic
method Qp we have the following theorem:

Theorem 3.2. Assume g′(ξ) = · · · = g(r)(ξ) = 0, g(r+1)(ξ) 6= 0 and g′(x) 6= 0 for x ∈
[−1, 1]\{ξ}. Let Qp be a method which for any smooth f has the asymptotic error

Qp[f ] − I[f ] ∼ O(ω−p−1/(r+1)), ω → ∞.

For the combined method Qp,s, constructed by applying Qp on the remainder term in expansion
(2.9), applied to any smooth f it is true that

Qp,s[f ] − I[f ] ∼ O(ω−p−s−1/(r+1)), ω → ∞.

Proof. Completely analogous to the proof of Theorem 3.1 we get

Qp,s[f ] − I[f ] ∼ 1

(−iω)s

(

Qp[ρs[f ]] −
∫ 1

−1

ρs[f ](x)eiωg(x)dx
)

∼ 1

(−iω)s
O(ω−p−1/(r+1)) = O(ω−p−s−1/(r+1)).

Again we restrict our treatment to the method QFA
p,s constructed from a generalized Filon-type

method.

Example 3.4. The simplest case is a problem with only one stationary point ξ of order one, ex-
panded with one term(as in equation (2.7)). The combined Filon/asymptotic method (3.3) written
out is then

QFA
p,1 [f ] =µ0(ω)f(ξ) +

1

iω

(

f(1) − f(ξ)

g′(1)
eiωg(1) − f(−1) − f(ξ)

g′(−1)
eiωg(−1)

)

(3.4)

− 1

iω
QF

p

[

d

dx

f(x) − f(ξ)

g′(x)

]

Example 3.5. The oscillator of the integral

∫ 1

−1

exeiω 1
2 x2

dx

has an order one stationary point at x = 0. Interpolating ρ1[f ](x) = d
dx

f(x)−f(ξ)
g′(x) = xex−ex+1

x2

at the nodes [−1, 0, 1] (using l’Hospital’s rule to obtain the value at the stationary point) gives a
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Figure 3.4: a) The absolute value of the error for the combined Filon/asymptotic method
with c = [−1, 0, 1] (top), together with classical Filon-type method (bottom) in logarithmic
scale. b) Combined method with c = [−1,−1/2, 0, 1/2, 1] (bottom), and the classical Filon-type

method(top). All curves are scaled by ω
5
2 . Logarithmic scale is used in (a) in order to properly

represent both curves in the same plot.

combined Filon/asymptotic scheme on the form of (3.4). The predicted error behaviour seems to be
confirmed by experiments (see figure 3.4). The proposed scheme needs three moments plus the first
generalized moment µ0 which is constructed from these. A classical Filon-type method requires a
total of seven to obtain the same asymptotic order. Figure 3.4 (a) shows that the proposed method
has a much higher asymptotic error constant than the classical Filon-type method, however do we
only need to add two interpolation nodes, that is two moments, to beat it. See figure 3.4 (b) for
illustration.

4 Extension to the multivariate case

For the model multivariate highly oscillatory integral we write

I[f,Ω] =

∫

Ω

f(x)eiωg(x)dV,

where Ω ∈ R
d and f, g : Ω → R. Bringing the highly oscillatory quadrature methods into the

multivariate setting presents us with a whole set of complications. For example we will have
to take into account not only stationary points, x s.t ∇g(x) = 0, but also points of resonance,
those are boundary points where ∇g is orthogonal to the boundary, ie. no oscillation along the
boundary. For general smooth boundaries resonance will necessarily be a problem, in this case
theory is not yet fully developed. Furthermore, computing moments will be even more expensive
than in the univariate case. For oscillatory integrals on simplices and polygons we refer to [11] for
a theoretical treatment.

In the following we assume that no stationary points or resonance points are present. Further-
more we restrict our treatment to the d-dimensional simplex2. The Filon-type method is in this
case, like in the 1D case, constructed by interpolating in critical points, here being the vertices

2Note that polygons can be tiled by simplices, thus generalising the results for a simplex to the polygon case.
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of the simplex. Increasing asymptotic order is done by increasing the number of interpolated
derivatives at the vertices.

The point of departure for developing a combined formula will here be the Stokes-type formula
for a simplex as presented in [11]:

I[f,Sd] =
1

iω

∫

∂Sd

nT (x)∇g(x)
f(x)

||∇g(x)||2 eiωg(x)dS

− 1

iω

∫

Sd

∇T

[

f(x)

||∇g(x)||2∇g(x)

]

eiωg(x)dV.(4.1)

Using the formula repeatedly on the remainder term yields an expansion with an integral remainder
term. We here state this as a theorem:

Theorem 4.1. For any smooth f and smooth g without stationary points and subject to the
non-resonance condition, it is true that

I[f,Sd] = −
s

∑

m=1

1

(−iω)m

∫

∂Sd

nT (x)∇g(x)
σm−1(x)

||∇g(x)||2 eiωg(x)dS

+
1

(−iω)s

∫

Sd

σs(x)eiωg(x)dV,(4.2)

where

σ0(x) = f(x)

σm+1(x) = ∇T

[

σm(x)

||∇g(x)||2∇g(x)

]

.

Proof. The proof follows from an iterated use of formula (4.1).

The expansion (4.2) can be carried on to obtain a full expansion for large ω, showing that
the value of the integral is asymptotically determined by integrals over the faces of the simplex.
Furthermore, by expanding the lower dimensional integrals one repeatedly ”pushes” the integrals
from faces to edges(lower dimensional faces), a process which terminates at the vertices, indicating
that the value of the integral is asymptotically determined by data at the vertices of the simplex.
The expansion can also be used to show that the value of the integral I[f,Sd] decays like O(ω−d).

Now the combined method in all its glorious generality:

Theorem 4.2. Assume Qp is a quadrature method with asymptotic order p, that is

I[f,Sd] − Qp[f,Sd] ∼ O(ω−d−p), ω → ∞.

For any smooth f and g, without stationary points and subject to the non-resonance condition,
the method

Q[f,Sd] = −
s

∑

m=1

1

(−iω)m

∫

∂Sd

nT (x)∇g(x)
σm−1(x)

||∇g(x)||2 eiωg(x)dS

+
1

(−iω)s
Qp[σs,Sd](4.3)

is of asymptotic order s + p.
Proof. As in proof of theorem 3.1, write out the expansion of the error and use the asymptotic

error property of Qp.

This method is not really a quadrature rule per se, as we have not addressed the fact that also the
boundary integrals have to be treated somehow. A lower dimensional, thus cheaper, quadrature
method might be used. Using the Stokes-type formula to reduce the dimension of the boundary
integrals until we are left with a formula incorporating data only at the vertices is a possibility,
but then also treating the resulting remainder terms with a Filon-type method is preferable in
order to retain control over the error.
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4.1 Quadrature on the 2D simplex

To illustrate the combined Filon/asymptotic approach in the multivariate case we consider the
case of the 2D simplex. Assume no stationary points or resonance points are present and write

I[f,S2] =

∫ 1

0

∫ 1−y

0

f(x, y)eiωg(x,y)dxdy,

Applying the Stokes-type formula once yields:

I[f,S2] =
1

iω

∫ 1

0

n1
T∇g(x, 0)

f(x, 0)

||∇g(x, 0)||2 eiωg(x,0)dx(4.4)

+
√

2
1

iω

∫ 1

0

n2
T∇g(x, 1 − x)

f(x, 1 − x)

||∇g(x, 1 − x)||2 eiωg(x,1−x)dx

− 1

iω

∫ 1

0

n3
T∇g(0, y)

f(0, y)

||∇g(0, y)||2 eiωg(0,y)dy

− 1

iω

∫ 1

0

∫ 1−y

0

∇T

[

f(x, y)

||∇g(x, y)||2∇g(x, y)

]

eiωg(x,y)dxdy

with n1 = [0,−1],n2 = [
√

2
2 ,

√
2

2 ] and n1 = [−1, 0] being outer normals as illustrated in figure 4.1.

1

3n
2n

n

Figure 4.1

Example 4.1.

Considering the problem

I =

∫ 1

0

∫ 1−y

0

sin(x + y)eiω(x−2y)dxdy,

we construct a classical Filon-type method of order 2, meaning the error goes down like O(ω−4), by
interpolating function values and derivatives at the vertices. An interpolation point at (1/4, 1/4)
is included in order to fix the last parameter in a full third order interpolation polynomial. Thus
10 moments are required. Constructing a combined method with the same asymptotic order from
the formula (4.4), which consists of three univariate and one bivariate integrals, can be done with
a first order multivariate method applied to the remainder term and a second order univariate
method(error goes like O(ω−3)) on the boundary terms. In total we need four univariate moments
per edge plus three bivariate moments for the remainder term. Adding an interpolation point in
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Figure 4.2: a) The error of the classical Filon-type method, scaled by ω4. b) The combined
method, also scaled by ω4.

(1/4, 1/4) for the sake of comparison gives a method with similar accuracy as the classical method,
see figure 4.2. We observe that in this case the combined method performs better than the classical
method, for general problems the two methods will have comparable accuracy.

Assuming bivariate moments are much harder to compute than univariate moments, the example
shows a good improvement of efficiency. On the downside the combined method is harder to
implement, and for error control, the error of four quadratures must be balanced, which can pose
a problem.

The combined method can also be constructed in a more extreme way, sorting out all information
at the vertices as simple terms, and all integrals as remainder terms. Carrying out the compu-
tations for the non-resonant 2D simplex problem without stationary points yields the following
expression:

I =
1

(iω)2

[

eiωg(0,0)f(0, 0)

||∇g(0, 0)||2
(

gy(0, 0)

gx(0, 0)
+

gx(0, 0)

gy(0, 0)

)

− eiωg(1,0)f(1, 0)

||∇g(1, 0)||2
(

gy(1, 0)

gx(1, 0)
− gx(1, 0) + gy(1, 0)

gx(1, 0) − gy(1, 0)

)

− eiωg(0,1)f(0, 1)

||∇g(0, 1)||2
(

gx(0, 1)

gy(0, 1)
+

gx(0, 1) + gy(0, 1)

gx(0, 1) − gy(0, 1)

)

]

+
1

(iω)2

[

∫ 1

0

d

dx

[

f(x, 0)gy(x, 0)

||∇g(x, 0)||2gx(x, 0)

]

eiωg(x,0)dx

−
∫ 1

0

d

dx

[

f(x, 1 − x)(gx(x, 1 − x) + gy(x, 1 − x)

||∇g(x, 1 − x)||2(gx(x, 1 − x) − gy(x, 1 − x))

]

eiωg(x,1−x)dx

+

∫ 1

0

d

dy

[

f(0, y)gx(0, y)

||∇g(0, y)||2gy(0, y)

]

eiωg(0,y)dy

]

− 1

iω

∫ 1

0

∫ 1−y

0

∇T

[

f(x, y)

||∇g(x, y)||2∇g(x, y)

]

eiωg(x,y)dxdy,

Note however that this approach will potentially only reduce on the number of univariate moments
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needed, the bivariate remainder term is still at large. Therefore we will not pursue this approach
further.

5 Error estimates

In Example 3.2 where the simple univariate case without stationary point was considered, we
observed how the troughs in the error plot for a particular Filon/asymptotic method seem to
correspond with the peaks of a classical Filon-type method. This is exactly the same observation
Iserles and Nørsett made in [9], but then for two different Filon-type methods. The behaviour we
have observed can be explained in a similar way. This investigation will also lead to a method for
comparing classical Filon-type methods and Filon/asymptotic methods of the same asymptotic
order.

Assume in the following that g′(x) 6= 0, −1 ≤ x ≤ 1. From the discussion on the asymptotic
order of a Filon-type method and equation (2.3) it is clear that

QF
p [f ] − I[f ] ∼

eF
p [f ]

ωp+1
+ O(ω−p−2), ω → ∞.

eF
p [f ] is basically the next term in the expansion of f − f̃ , with f̃ being the interpolant of f :

eF
p [f ] =

eiωg(1)

g′(1)
[σp[f̃ ](1) − σp[f ](1)] − eiωg(−1)

g′(−1)
[σp[f̃ ](−1) − σp[f ](−1)].

By arguing that σp[f ] = f(p)

(g′)p + a linear combination of f (k) multiplied by a function involving

derivatives of g, k = 0, . . . , p − 1, one states that for a Filon-type method the asymptotic error
constant |eF

p | can be estimated by

ΛF
−[f ] ≤ |eF

p [f ]| ≤ ΛF
+[f ],

where

ΛF
±[f ] =

∣

∣

∣

∣

∣

|f̃ (p)(1) − f (p)(1)|
|g′(1)|p+1

± |f̃ (p)(−1) − f (p)(−1)|
|g′(−1)|p+1

∣

∣

∣

∣

∣

.

The exact same reasoning can be used to estimate the asymptotic error constant for a combined
Filon/asymptotic method QFA

p,s . Keeping in mind that the asymptotic order of this method is p+s
we can write

QFA
p,s [f ] − I[f ] ∼

eFA
p,s [f ]

ωp+s+1
+ O(ω−p−s−2), ω → ∞.

Now the Filon-type method is applied to the remainder, so it should be clear that

eFA
p,s [f ] =

eiωg(1)

g′(1)
[σ̃s[f ](p)(1) − σs[f ](p)(1)] − eiωg(−1)

g′(−1)
[σ̃s[f ](p)(−1) − σs[f ](p)(−1)].

Here σ̃s[f ] denotes the interpolant of σs[f ], and σ̃s[f ](p)(x) its p-th derivative evaluated in x. This
gives

ΛFA
− [f ] ≤ |eFA

p,s [f ]| ≤ ΛFA
+ [f ],

with

ΛFA
± [f ] =

∣

∣

∣

∣

∣

|σ̃s[f ](p)(1) − σs[f ](p)(1)|
|g′(1)|p+1

± |σ̃s[f ](p)(−1) − σs[f ](p)(−1)|
|g′(−1)|p+1

∣

∣

∣

∣

∣

.

Example 5.1. Example 3.2 concerns the problem
∫ 1

−1
eiωx

2+x dx, whereby applying a Filon-type
method we obtain

f̃(x) = −1

9
x3 +

2

9
x2 − 2

9
x +

4

9
and [ΛF

−,ΛF
+] = [0.5930, 1.1852].
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The combined Filon/asymptotic method has

σ̃1[f ](x) =
4

9
x − 5

9
and [ΛFA

− ,ΛFA
+ ] = [1.1852, 1.9259].

These estimates explain the most significant features of Figure 3.1. For the schemes in Example
3.3 we have:

c = [−1, 0, 1] : σ̃1[f ](x) = − 11
36x2 + 4

9x − 1
4 , [ΛFA

− ,ΛFA
+ ] = [0.7037, 1.1852]

c = [−1,− 1
3 , 1

3 , 1] : σ̃1[f ](x) = 248
1225x3 − 391

1225x2

+ 2668
11025x − 2606

11025 , [ΛFA
− ,ΛFA

+ ] = [0.3754, 0.6492]

These calculations fit well with what has been observed, note in particular how the method with
c = [−1, 0, 1] closely matches the classical Filon-type method.

5.1 Comparing the classical Filon and Filon/asymptotic methods

Now it is time to address the important question: Will a combined Filon/ asymptotic method
get better accuracy than the classical Filon-type method from the same information3? For sim-
plicity, consider the Fourier case g(x) = x, and also assume derivatives of f are easily available.
The maximum error for a Filon-type method and a combined Filon/asymptotic method, both of
asymptotic order p, as ω becomes large are then

ΛF
+[f ] = |f̃ (p)(1) − f (p)(1)| + |f̃ (p)(−1) − f (p)(−1)|,

ΛFA
+ [f ] = |σ̃s[f ](p−s)(1) − σs[f ](p−s)(1)| + |σ̃s[f ](p−s)(−1) − σs[f ](p−s)(−1)|

= |σ̃s[f ](p−s)(1) − f (p)(1)| + |σ̃s[f ](p−s)(−1) − f (p)(−1)|.

Now g(x) = x implies that σs[f ] = f (s), and σ̃s[f ] is the interpolant of f (s). We see that both
methods have an error which is determined by the interpolant’s ability to approximate the pth
derivative of f at the endpoints. The error constant in the Filon-type method comes from in-
terpolating f and differentiating the interpolant, for the combined approach take s derivatives,
interpolate, then differentiate. The possibility to more freely chose the placement of the interpo-
lation nodes, not restricted to the endpoints, will also result in a better approximation of the pth
derivative, explaining at least in part why the combined method performs better than the classical
method with the same data. We wish to explore this a bit further.

In the following we will do a small computation to demonstrate what can be gained by using
a combined method. Consider a method constructed from 2p nodes distributed equidistantly,
including endpoints, to approximate the error in a p − 1 term asymptotic expansion, that is
a QFA

p−1,1-type method, compared to a Filon-type method of asymptotic order p of minimum

complexity QF
p ? By an order p method of minimum complexity we mean a method constructed

by interpolating only p derivatives at the endpoints with no internal nodes, implying that we use
the minimum number of moments to attain order p. Now bear in mind that equidistant points
are by no means optimal, but are just used for the sake of demonstration. These two methods
are both are of asymptotic order p and use 2p moments. QF

p requires p data at each endpoint to
interpolate f , it is well known that the error of the Hermite interpolation is[5]

f̃(x) − f(x) =
f (2p)(c1)

(2p)!
(x + 1)p(x − 1)p,

where c1 ∈ [−1, 1]. Then from Rodrigues’ formula[1]

f̃ (p)(x) − f (p)(x) =
f (2p)(c1)

(2p)!
Pp(x)2pp!,

3Information here signifies moments.
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with Pp(x) being the pth Legendre polynomial. As |Pn(±1)| = 1 we have

(5.1) ΛF
+[f ] = 2p+1p!

|f (2p)(c1)|
(2p)!

= |f (2p)(c1)|
21−p

√
π

Γ(p + 1
2 )

.

For the QFA
p−1,1-type method, we consider the case with n+1 equidistant nodes, including endpoints.

We interpolate σp−1[f ], and the interpolation error is now[5]:

σ̃p−1[f ](x) − f (p−1)(x) =
f (p−1+n+1)(c2)

(n + 1)!

n
∏

i=0

(x − 1 + i
2

n
),

for c2 ∈ [−1, 1]. This simplifies to

σ̃p−1[f ](x) − f (p−1)(x) =
f (p+n)(c2)

(n + 1)!

2n+1Γ(n
2 (x + 1))

nn+1Γ(n
2 (x − 1))

.

Differentiating gives

σ̃p−1[f ]′(x) − f (p)(x) =
f (p+n)(c2)

(n + 1)!

2n

nn

(Ψ(n
2 (x + 1) + 1) − Ψ(n

2 (x − 1))Γ(n
2 (x + 1) + 1)

Γ(n
2 (x − 1))

,

with Ψ being the digamma function. The limit of the above expression as x tends to ±1 can be
found with a bit of effort:

lim
x→±1

[σ̃p−1[f ]′(x) − f (p)(x)] = f (p+n)(c2)(±1)n 2n

(n + 1)nn
.

Now

(5.2) ΛFA
+ [f ] = |f (p+n)(c2)|

2n+1

(n + 1)nn
.

For the case where the two methods use the same moments n = 2p − 1, and then

ΛFA
+ [f ] = |f (3p−1)(c2)|

22p

2p · (2p − 1)2p−1
.

Now we investigate the relative sizes of the two asymptotic error constants.

ΛFA
+ [f ]

ΛF
+[f ]

=
|f (3p−1)(c2)| 22p

(2p)(2p−1)2p−1

|f (2p)(c1)| 2
1−p

√
π

Γ(p+ 1
2 )

=
|f (3p−1)(c2)|
|f (2p)(c1)|

8p

4

Γ(p + 1/2)√
πp(2p − 1)2p−1

.

If we use no derivatives, that is p = 1, the ratio is one, and for increasing p the ration is decreasing.
In general the derivatives can often be assumed to be of magnitude |f (n)| ∼ Ln, this will in the
limit not alter the conclusion. The significance of the above calculations is most easily appreciated
through a plot. Figure 5.1 shows that, assuming the derivatives of f are of the same order of
magnitude, the combined Filon/asymptotic method will have a smaller error constant when using
the same number of moments.

Example 5.2. As a final little calculation we once again investigate Example 3.3 and the close
match between the c = [−1, 0, 1] combined Filon/asymptotic method and the classical Filon-type
method, both of order p = 2. Equation (5.1) with p = 2 gives for the latter

ΛF
+[f ] ∼

√
π

2 3
4

√
π

=
2

3
.

The c = [−1, 0, 1] combined Filon/asymptotic method has three equidistant nodes, that is n = 2.
Equation (5.2) gives,

ΛFA
+ [f ] ∼ 23

3 · 22
=

2

3
.
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Figure 5.1: Log-plot of the ratio 8p

4
Γ(p+1/2)√

πp(2p−1)2p−1 .

This fits well with the close match between the two methods that we observe in example 3.3.
Provided that derivatives are of the same order, these methods will in general perform similarly.

We must remark that although the proposed method apparently performs better, it is by no
means optimal. The freedom to choose interpolation nodes could be used to minimise the error,
placing nodes closer to the boundary would generally be better as derivatives at the boundary
would be better approximated, see [9], but this also depends on the size of ω. In the limit ω → ∞,
placing all the nodes at the boundary, increasing the asymptotic order would be best. On the
other hand, a more spread out distribution would probably be beneficial for smaller ω. All this
seems to make the whole discussion about asymptotic error constants slightly artificial.

6 Conclusion

We have demonstrated the feasibility of combining the asymptotic expansion of highly oscillatory
integrals and Filon-type methods. Experiments as well as theoretical calculations show that the
combined method can achieve better precision than the classical Filon-type method with more or
less the same information. The extra cost of the combined method lies mainly in more complicated
expressions, especially for cases with several stationary points or in the multivariate case. In order
to make a combined method for more general oscillatory integrals we must have an asymptotic
expansion with an oscillatory integral remainder. However, such an expansion is not always
available.
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