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We present a coupled thermal-fluid model for Bénard-Marangoni convection
in a three-dimensional fluid layer. The governing equations are derived in detail
for two reasons: first, we do not assume a flat free surface as commonly done;
and second, we prepare for the use of flexible discretizations. The governing
equations are discretized using spectral elements in space and an operator split-
ting approach in time. Since we are here primarily interested in steady state
solutions, the focus is on the spatial discretization. The overall computational
approach is very attractive to use for several reasons: (i) the solution can be
expected to have a high degree of regularity, and rapid convergence can be
expected; (ii) the spectral element decomposition automatically gives a con-
venient parameterization of the free surface that allows powerful results from
differential geometry to easily be exploited; (iii) free surface deformation can
readily be included; (iv) both normal and tangential stresses are conveniently
accounted for through a single surface integral; (v) no differentiation of the
surface tension is necessary in order to include thermocapillary effects (due to
integration-by-parts twice); (vi) the geometry representation of the free surface
need only be C0 across element boundaries even though curvature effects are
included. Three-dimensional simulation results are presented, including the
free surface deflection due to buoyancy and thermocapillary effects.

1 Introduction

We consider here Bénard-Marangoni convection where a fluid layer is heated from below.
This problem has previously been studied extensively experimentally, theoretically, and
computationally. One of the intriguing features with this problem is the formation of
hexagonal convection cells from random initial conditions; see [2, 25, 14]. This formation
can originate from different effects: it can be caused by small density variations due to the
fact that the density is a function of the temperature (i.e., from buoyancy forces), or it
can be due to variations in the surface tension due to the fact that the surface tension is
a function of the temperature (i.e., thermocapillary forces), or both effects can be present
at the same time.

However, the free surface deformation associated with these cells has previously only
been studied experimentally [2, 6, 14] or analyzed analytically using linear stability anal-
ysis [23]. It is known experimentally that the free surface will either be depressed or
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elevated over each hexagonal cell, depending on whether surface-tension-gradient effects or
buoyancy effects are dominating [14]. It should be remarked that Bénard himself had
an incorrect interpretation of which effect was dominating in his original experiments
[2]; Rayleigh’s [22] subsequent stability analysis also assumed buoyancy-driven convec-
tion. Only several decades later were Bénard experiments correctly interpreted through
surface-tension-gradient effects [4, 21, 23].

To our knowledge, the deflection of the free surface has never before been investigated
using simulation tools; only a fixed and flat "free surface" has been used in earlier nu-
merical studies [24, 19]. We assume that this is partially due to the fact that the free
surface deformation is small, but also partially because the imposition of the simultaneous
curvature and surface-gradient effects along curved boundaries is a non-trivial task.

Our goal with this study is to present a way to accurately simulate Bénard-Marangoni
convection, including the free surface deformation. Our work will focus on the prediction
of steady state solutions. The solutions (velocity, temperature, pressure, and geometry)
are expected to be of high regularity, and thus high order spatial discretizations should be
very attractive to use for this class of application.

The governing equations for this problem are the incompressible Navier-Stokes equations
coupled to a convection-diffusion equation for the temperature. Because our goal is to
impose general free surface boundary conditions on potentially deformed surfaces, we need
to use the full stress formulation of the Navier-Stokes equations. This formulation is not
commonly used in earlier analysis due to the simplified assumptions about a flat "free
surface." In addition, similar to the approach presented in [12], we would like to represent
the free surface boundary conditions in general curvilinear coordinates; this will prove very
advantageous for the subsequent numerical treatment.

An outline of the paper is as follows. In Section 2 we present a derivation of the full
mathematical model for Bénard-Marangoni convection. We present the governing equa-
tions in strong form, including all the boundary conditions, and allowing for all the possible
effects discussed above. Since such a complete model is not commonly used, we present
the derivation in some detail, including some important results from differential geometry.
We also present the non-dimensionalization of the governing equations and introduce the
relevant non-dimensional numbers for this problem. In Section 3 we present the weak
formulation of the governing equations. In particular, we exploit the powerful results pre-
sented in [12] that allow for a very convenient way to impose the free surface boundary
conditions. In Section 4 we present the Arbitrary Lagrangian Eulerian (ALE) formulation
of the governing equations, and this formulation represents the starting point for our dis-
cretization. In Section 5 we discuss a discretization approach based on spectral elements in
space [17] and an operator splitting approach in time. However, the discussion is limited to
particular aspects of the surface parameterization, and how to conveniently impose both
the normal and tangential stresses along the free surface. We then present a numerical
test problem in Section 6, followed by a number of simulation results of three-dimensional
Bénard-Marangoni convection in Section 7.

2 Governing equations: strong form

We consider Bénard-Marangoni convection problem in a three-dimensional container in-
cluding both buoyancy-driven flows (natural convection) as well as surface-tension-driven
flows (Marangoni flows); see Figure 1.

This problem represents a coupled thermal fluid problem. The governing equations are
given by the conservation of mass, linear momentum and energy.
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Figure 1: Three-dimensional Bénard-Marangoni convection problem: a fluid layer of thick-
ness d is heated from below. Gravity is pointing downwards. The bottom surface
represents a fixed wall kept at a constant temperature T0. The top surface rep-
resents a free surface which may be deformed.

Buoyancy-driven flow is due to the fact that the density, ρ, is a function of the tem-
perature, T , something which gives rise to a volumetric body force in the presence of
temperature gradients. Surface-tension-driven flow is due to the fact that the surface ten-
sion, γ, is a function of the temperature, something which gives rise to surface forces (or
thermocapillary forces) along the free surface in the presence of temperature gradients.

We will assume the following linearizations:

ρ(T ) = ρ0(1− β(T − T0)), (1)
γ(T ) = γ0(1− τ(T − T0)). (2)

Here, ρ0 and γ0 represent the reference values of the density and the surface tension at the
temperature T0, while β and τ are constants (typically positive). The temperature T = T0

will be imposed on the bottom surface.
At the top surface, we assume that, in the absence of convection, the temperature is

held at a constant value T = T1. We also assume that the temperature T in the domain
can be expressed as

T (x1, x2, x3, t) = T0 −
∆T

d
x3 + Θ(x1, x2, x3, t), (3)

where ∆T = T0 − T1 > 0 is the positive temperature difference between the bottom and
the top surface in the purely conductive regime, d is the distance between the top and
bottom surfaces, and Θ represents the deviation in the temperature from a purely linear
temperature profile. In the following, we assume that Θ = 0 at the bottom surface, while
∂Θ
∂n = 0 at the top surface.

A couple of remarks are in order at this point. First, with the onset of convection, we
expect Θ to be nonzero at the surface; in particular, we expect the surface gradient of Θ
to be nonzero. The implication of this is that the temperature T is no longer exactly equal
to T1 at the top surface as it is in the purely conductive regime. Second, experiments have
shown that the top surface becomes slightly deformed with the onset of convection. This
means that the normal derivative along the top surface does not exactly correspond to the
derivative with respect to x3. We will account for a potential surface deformation in our
mathematical model and in our simulations.

The governing equations for the fluid velocity, the pressure and the temperature can be
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expressed as (the Boussinesq approximation):
∂uj

∂xj
= 0, in Ω, (4)

ρ0

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=

∂σij

∂xj
− ρ(T )gδi3, in Ω, i = 1, 2, 3, (5)

ρ0c

(
∂T

∂t
+ uj

∂T

∂xj

)
= k

∂2T

∂xj∂xj
, in Ω. (6)

Here, ui is the i-th component of the fluid velocity in an inertial reference frame, xj is the
j-th coordinate, g is gravity (a positive constant), c represents the specific heat capacity, k
is the thermal conductivity, and δ is the Kronecker delta symbol. Summation over repeated
indices is assumed. The stress tensor σij for a viscous Newtonian fluid is given as

σij = −pδij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3, (7)

where p is the pressure and µ is the dynamic viscosity.
We remark that the fluid is modelled as an incompressible fluid, but with a buoyancy

term (volumetric body force) arising from small density variations following (1). The fluid
flow is also coupled to the temperature via the surface tension; see (2). The temperature
is coupled to the fluid flow via the convection term in (6).

The domain Ω represents the fluid layer. The top and bottom surfaces of this domain
will be denoted as ∂Ωt and ∂Ωb, respectively. The vertical side wall(s) will be denoted as
∂Ωs. This can be a single cylindrical wall as depicted in Figure 1, however, we will later
also consider domains with polygonal cross-sections.

2.1 Boundary conditions

We now discuss the boundary conditions. We assume that the bottom surface and the
vertical side walls are rigid. Hence, along ∂Ωb and ∂Ωs we impose homogeneous Dirichlet
boundary conditions for the velocity,

ui = 0, on ∂Ωb ∪ ∂Ωs, i = 1, 2, 3.

Along the top surface ∂Ωt we impose free surface boundary conditions. Both for the
mathematical and numerical treatment of these boundary conditions it will prove highly
advantageous to express these conditions using surface-intrinsic coordinates. However,
before giving the expressions, we first introduce some necessary notation and definitions
from differential geometry [26, 9, 15].

Consider the surface patch Γ depicted in Figure 2. We assume that a point x on Γ
has coordinates given through the parameterization xi = xi(r1, r2), i = 1, 2, 3, with −1 ≤
r1, r2 ≤ 1. The following results from differential geometry will then prove useful:

gα =
∂x
∂rα

, α = 1, 2, (8)

gα · gβ = gαβ , α = 1, 2, β = 1, 2, (9)

gαkg
kβ = δβ

α, (10)

gα = gαβgβ, (11)

g =
√

det(gαβ). (12)
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Figure 2: A plot depicting part of a deformed surface Γ in three dimensions. We assume
that there exist a parameterization of this surface patch using two independent
coordinates. In particular, we can describe the surface patch through a one-to-
one mapping of an undeformed square. From this surface parameterization, we
can define covariant base vectors g1 and g2 at any point on the surface. These
vectors will span the tangent plane, but will generally not be orthogonal or of
unit length.

Here, the vectors gα represent the covariant base vectors, while the vectors gα represent
the contravariant base vectors. Both sets of vectors span the tangent plane, and the two
sets are mutually orthogonal (gα · gβ = δαβ).

The free surface boundary conditions along a surface patch Γ can then be expressed as
[16, 15]

niσijnj = γκ, (13)

tiσijnj = ti

(
gα
i

∂γ

∂rα

)
. (14)

Here, κ is twice the mean curvature, ni, i = 1, 2, 3, is the outward unit normal on the
surface, and ti, i = 1, 2, 3, represents any tangent vector on the surface. We remark that
the quantity (gα

i
∂γ
∂rα ) represents the ith component of the surface gradient of the surface

tension, or equivalently, the tangential surface forces in the ith direction. Note that, with
no loss in generality, we have assumed an atmospheric pressure equal to zero in (13).

Since the surface tension depends on the co-ordinates indirectly via the temperature,
the tangential boundary conditions can also be expressed as

tiσijnj = −ti

(
gα
i

∂T

∂rα
γ0τ

)
. (15)

Note that the derivative dγ
dT = −γ0τ according to our linearization (2).

2.2 Treatment of the pressure

Before we express the governing equations in non-dimensional form, we discuss the treat-
ment of the pressure. In the momentum equations, we express the buoyancy term on the
right hand side as

ρ0g δi3(1− β(T − T0)) = ρ0g δi3 + ρ0giδi3β
∆T

d
x3 − ρ0g δi3βΘ.

The first two terms on the right hand side can again be expressed as

ρ0g δi3 + ρ0g δi3β
∆T

d
x3 =

∂

∂x3

(
ρ0gx3 +

1
2
ρ0gβ

∆T

d
x2

3

)
δi3.
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Hence, these two terms can be "absorbed" into the pressure by defining a modified pressure

p∗(x1, x2, x3, t) = p(x1, x2, x3, t) + ρgx3 +
1
2
ρ0gβ

∆T

d
x2

3.

The meaning of this is just that the modified pressure already includes the contribution
from the hydrostatic pressure (the term ρgx3) and the contribution from the buoyancy
term associated with a linear temperature profile, 1

2ρ0gβ ∆T
d x2

3. In summary, with the new
modified pressure, we can write

− ∂p

∂xi
+ ρ0g δi3(1− β(T − T0)) = −∂p∗

∂xi
+ ρ0g δi3βΘ, i = 1, 2, 3.

In the following, we will assume that we do this modification of the pressure and will just
drop the superscript *.

2.3 Non-dimensionalization

We now proceed with non-dimensionalizing the governing equations. To this end, we non-
dimensionalize the spatial co-ordinates by setting

x′i = xi/d, i = 1, 2, 3,

and scaling time with the thermal diffusion time constant,

t′ = t/(d2/αT ),

where the thermal diffusivity αT = k/ρ0c. The scaling of length and time naturally gives
a scaling for velocity as the ratio d/(d2/αT ) = αT /d. Hence, we non-dimensionalize the
velocity as

u′i = ui/(αT /d), i = 1, 2, 3.

In addition, it will prove natural to non-dimensionalize the pressure as

p′ = p/(µαT /d2).

Finally, we scale the temperature using the temperature difference ∆T , i.e.,

T ′ = T/∆T.

Dropping all the primes, the governing equations in Ω can then be expressed in non-
dimensional form as

∂uj

∂xj
= 0, (16)

1
Pr

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= −∂σij

∂xj
+ Ra Θδi3, i = 1, 2, 3, (17)

∂Θ
∂t

+ uj
∂Θ
∂xj

=
∂2Θ

∂xj∂xj
+ u3. (18)



Here, all the dependent and independent variables should be interpreted as being non-
dimensional quantities according to the scalings discussed above. In addition, we have
introduced the Prandtl number,

Pr =
ν

αT

where ν = µ/ρ0 is the kinematic viscosity, and the Rayleigh number,

Ra =
gβ∆Td3

αT ν
.

We also need to non-dimensionalize the boundary conditions. To this end, we need to
use the same scalings as for the governing equations. For the normal direction along the
free surface ∂Ωt we get

niσijnj = γ κ, (19)

where γ is a non-dimensional surface tension given by

γ(Θ) =
1

Ca
+ Ma (1−Θ), (20)

and κ is the non-dimensional curvature. Note that γ in (20) depends on the non-dimensional
temperature Θ, the Capillary number, Ca, defined as

Ca =
µαT

γ0d
,

and the Marangoni number, Ma, defined as

Ma =
γ0τ∆T d

µαT
.

For the tangent direction along the free surface, we get

tiσijnj = Ma
(

tig
α
i

∂

∂rα
(1−Θ)

)
. (21)

The components of the non-dimensional stress tensor are given as

σij = −pδij +
(

∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3,

where p and ui, i = 1, 2, 3 represent the non-dimensional pressure and nondimensional
velocity, respectively.

The remaining boundary conditions are:

∂Θ
∂n

= 0, on ∂Ωt, (22)

∂Θ
∂n

= 0 and ui = 0, i = 1, 2, 3, on ∂Ωs, (23)

Θ = 0 and ui = 0, i = 1, 2, 3, on ∂Ωb. (24)

Finally, we need to specify initial conditions for the temperature and the velocity.
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3 Governing equations: weak form

We now present the weak formulation of the non-dimensionalized problem (16)-(18), sub-
ject to the boundary conditions (19), (21), and (22)-(24).

We first introduce the function spaces X, Y , and Z defined as

X = {v(t) ∈ H1(Ω(t)), v(t) = 0 on ∂Ωb ∪ ∂Ωs},
Y = {q(t) ∈ L2(Ω(t))},
Z = {v(t) ∈ H1(Ω(t)), v(t) = 0 on ∂Ωb}.

The governing equations for fluid flow can then be expressed as: find ui(t) ∈ X, i = 1, 2, 3
and p(t) ∈ Y such that

1
Pr

∫
Ω(t)

(
vi

∂ui

∂t
+ viuj

∂ui

∂xj

)
dΩ =

∫
Ω(t)

(
− ∂vi

∂xj
σij + viRa Θδi3

)
dΩ + Iγ(vi), ∀vi(t) ∈ X,

(25)∫
Ω(t)

q
∂uj

∂xj
dΩ = 0, ∀q(t) ∈ Y, (26)

while the governing equation for heat transfer can be expressed as: find Θ(t) ∈ Z such
that ∫

Ω(t)

(
v

∂Θ
∂t

+ v uj
∂Θ
∂xj

)
dΩ =

∫
Ω(t)

(
− ∂v

∂xj

∂Θ
∂xj

+ v u3

)
dΩ, ∀v(t) ∈ Z. (27)

Note that we have here explicitly indicated that the (non-dimensional) domain Ω can be
a function of time. In (25)

Iγ(vi) =
∫

∂Ωγ(t)
viσijnj dS (28)

is the surface integral resulting from integration by parts of the volume term
∫
Ω(t) vi

∂σij

∂xj
dΩ.

Using the boundary conditions (19) and (21) we can express this integral as

Iγ(vi) =
∫

∂Ωγ(t)
vi

(
γ(Θ)κni + Ma

(
gα
i

∂

∂rα
(1−Θ)

))
dS (29)

The curvature-normal product κ ni can again be replaced with a very powerful expression
presented in [12] and derived in detail in [3],

κ ni =
1
g

∂(ggα
i )

∂rα
, (30)

where g is the square root of the determinant of the metric tensor; see (12). Inserting (30)
into (29) and using (20) we get

Iγ(vi) =
∫

∂Ωγ(t)
vi

((
1

Ca
+ Ma (1−Θ)

)
1
g

∂(ggα
i )

∂rα
+ Ma

(
gα
i

∂

∂rα
(1−Θ)

))
dS. (31)

Using integration by parts on the integral in (31) and simplifying the expressions, we
readily arrive at the following simple expression for the surface integral Iγ(vi),

Iγ(vi) = −
∫

∂Ωγ(t)
γ(Θ)

∂vi

∂rα
gα
i dS. (32)



We now make several remarks regarding the final form (32). First, we have here assumed
that we do not get any contribution from the boundary of the free surface (i.e., the surface
of the free surface) when we perform the second integration by parts. This assumption
is satisfied when the free surface is attached to a wall (vi = 0), for periodic boundary
conditions (which we will also consider below), and for free surfaces with no boundaries at
all (e.g., for bubbles). Second, the simple form (32) is the same as presented in [12], and
we will here exploit this form in order to simulate three-dimensional Bénard-Marangoni
flows. To our knowledge, this is the first time this variational form has been exploited for
such problems, and where also free surface deformations are allowed. Third, this simple
expression includes the contribution from both normal and tangential stresses; the integrand
has a form similar to a surface Laplacian and allows for a variable surface tension. Note
that no differentiation of the surface tension is required. Another advantage of this form
comes from the fact that the regularity requirement on the geometry representation has
been lowered through integration-by-parts; only the first derivative of xi is necessary even
though this expression also incorporates curvature effects.

4 ALE formulation

Let us now briefly recall the main ingredients in deriving the Arbitrary Lagangian Eulerian
formulation [13] from (25), (26), and (27). First, we introduce a domain velocity with
components wi, i = 1, 2, 3, in order to describe the time-dependent evolution of the domain
Ω(t) both in the interior and on the boundary, i.e.,

dxi

dt
= wi, i = 1, 2, 3.

Second, we can exploit Reynolds transport theorem [1] in order to move the differentia-
tion with respect to time outside the volume integral; this will prove very useful for the
subsequent numerical treatment since Ω is, in general, time-dependent. Finally, we exploit
Euler’s expansion formula [1] to arrive at the following ALE-formulation of fluid problem
(25)-(26): find ui(t) ∈ X, i = 1, 2, 3 and p(t) ∈ Y such that

1
Pr

d
dt

∫
Ω(t)

viui dΩ =
∫

Ω(t)

(
− ∂vi

∂xj
σij + viRa Θδi3

)
dΩ + Iγ(vi)

− 1
Pr

∫
Ω(t)

(
vi[uj − wj ]

∂ui

∂xj
− viui

∂wj

∂xj

)
dΩ, ∀vi(t) ∈ X, (33)∫

Ω(t)
q
∂uj

∂xj
dΩ = 0, ∀q(t) ∈ Y. (34)

The ALE-formulation of the heat transfer problem (27) reads: find Θ(t) ∈ Z such that

d
dt

∫
Ω(t)

v ΘdΩ =
∫

Ω(t)

(
− ∂v

∂xj

∂Θ
∂xj

+ v u3

)
dΩ

−
∫

Ω(t)

(
v [uj − wj ]

∂Θ
∂xj

− v Θ
∂wj

∂xj

)
dΩ, ∀v(t) ∈ Z. (35)

We remark that the last integrals in (33) and (35) represent all the convective contributions.
In addition, we must also impose a kinematic condition along the free surface ∂Ωt(t):

wjnj = ujnj . (36)

9



This condition says that the normal velocity of the free surface must coincide with the
normal fluid velocity along the free surface ("fronttracking"). No particular condition
is required for the tangential domain velocity, and this flexibility can be exploited when
considering the subsequent numerical treatment. There is also significant flexibility in
terms of the extension of the domain velocity from the boundary to the interior; see [10].

Finally, we need to impose initial conditions for the temperature and the velocity.

5 Discretization

Our starting point for the numerical discretization is the ALE formulation presented above.
The domain Ω(t) is first decomposed into K spectral elements, Ωk, k = 1, . . . ,K; see
[17]. Each element Ωk is considered as a unique mapping Φk of the reference domain
Ω̂ = (−1, 1)3; in the following, the reference variables are denoted as rα, α = 1, 2, 3.

Following this spatial discretization procedure, the fluid velocity, the temperature, the
mesh velocity, and the geometry are all approximated as Nth order polynomials in each
spatial direction in each element (all expressed in terms of the reference variables rα,
α = 1, 2, 3), while the pressure is approximated as polynomials of degree N − 2 within
each element. The discrete problem derived through a Galerkin procedure then represents
a stable discretization and results in a spatial discretization error which depends on the
regularity of the solution and the data; see [17].

The spectral element method has previously been used to simulate three-dimensional,
viscous, free surface flows [12, 5], however, the more general case involving Bénard-Marangoni
flows with deformable free surfaces has not been considered before using any computational
method. In the rest of this section we thus focus on the geometry representation and on
how this is used to incorporate the general free surface boundary conditions discussed
earlier.

Consider for a moment the geometry representation within element Ωk. We express the
physical coordinates using a nodal, tensor-product basis,

xk,N
i (r1, r2, r3) =

N∑
l=0

N∑
m=0

N∑
n=0

(xk,N
i )lmn `l(r1)`m(r2)`n(r3), i = 1, 2, 3, (37)

where (xk,N
i )lmn are the basis coefficients (nodal values), and `p(r) ∈ PN (−1, 1) is the

one-dimensional Lagrangian interpolant through the Gauss-Lobatto Legendre points ξq,
q = 0, . . . , N , and with `p(ξq) = δpq. A common procedure to determine the nodal values
(xk,N

i )lmn is to first determine the surface values from known data, and then compute the
interior values via a Gordon-Hall mapping procedure [11, 8]. It should be clear from (37)
that, since the geometry is also approximated as Nth order polynomials, we are using an
isoparametric representation.

The free surface boundary conditions are imposed through the surface integral given in
(32). Let us briefly discuss the details of how this is done for the discrete problem. First,
we remark that the free surface will comprise a number of element faces. For example, in
Figure 3, the free surface (top surface) is comprised of 12 element faces. Let us assume that
the free surface representation corresponding to element Ωk is given by (37) for r3 = 1. In
this case, the surface patch depicted in Figure 2 is simply given by xk,N

i (r1, r2, 1). Hence,
we automatically have a parameterization of each surface patch. Applying (8) to this
surface parameterization, we can easily construct the covariant base vectors gα through
simple differentiation. At this point, the metric tensors, contravariant base vectors etc.
can easily be computed from (9)-(12).



In the discrete problem the surface integral (32) is first broken up into a sum of smaller
integrals, each integral going over one single element face (or surface patch). Each such
integral is again expressed in terms of the reference variables (e.g., r1 and r2), and a
standard Gauss-Lobatto Legendre quadrature rule is used. Note that the differential dS
in (32) should be expressed as dS = g dr1 dr2 before Gauss quadrature is employed.

For the temporal discretization we have extended the convection-Stokes splitting ap-
proach presented in [18] (the OIF-method) to time-dependent geometries. This has allowed
us to obtain first, second or third order convergence in time for selected problems; see the
following section for a numerical test problem. We remark that the work presented in
this paper is part of a larger research effort on high-order methods for problems in time-
dependent domains, and the technical details of the temporal treatment will be reported
elsewhere. The applications we focus on in this paper represent steady state solutions,
however, each discrete approximation is obtained by integrating the unsteady equations
until a steady state has been reached.

Figure 3: Spectral element grid for the simulation of Bénard-Marangoni convection in a
three-dimensional "cylinder"; the cross-section is here a six-sided polygon. The
domain is decomposed into a single layer of K = 12 spectral elements, each of
order N . The free surface (top surface) is here comprised of twelve element faces,
with each face representing a surface patch Γ as discussed earlier; see Figure 2.

6 Numerical test problem

We first verify our discretization approach by solving the three-dimensional Navier-Stokes
equations in a cylindrical domain as depicted in Figure 4. The domain boundary is here
fixed at all times, however, we specify an artificial time-periodic mesh velocity in the
interior. The mesh velocity is a function of both space and time, and is zero on the domain
boundary; see Figure 5. In fact, the mesh velocity is chosen to be C∞ within each spectral
element, but only C0 across the element boundaries. We also specify a forcing function
in the momentum equations by requiring that the following analytic solution satisfies the
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incompressible Navier-Stokes equations (here expressed in cylindrical coordinates):

ur(r, θ, z, t) =
1
5

sin2(πr) sin(θ) sin(2πz) sin(t), (38)

uθ(r, θ, z, t) = −1
5

sin2(πr) cos(θ) sin(2πz) sin(t), (39)

uz(r, θ, z, t) =
1

10π
sin(πr)

(
2π cos(πr) +

2
r

sin(πr)
)

sin(θ)(cos(2πz)− 1) sin(t), (40)

p(r, θ, z, t) = sin2(πr) sin(πz) sin(t). (41)

The convergence results in Figure 6 show the expected behavior: first, second, and third
order convergence in time, and exponential convergence in space for problems with analytic
solutions and data. A complete discussion of the splitting scheme, together with additional
numerical results, will be presented in a forthcoming article.

7 Simulation of three-dimensional Bénard-Marangoni flows

We now present simulation results which exploit many benefits of the proposed computa-
tional approach. In particular, we consider Bénard-Marangoni convection in a horizontal
fluid layer heated from below and with a free surface on the top. The terms "top" and
"bottom" here refer to the case when gravitational forces are present (e.g., on Earth with
gravity pointing downwards); however, we also consider zero-gravity conditions.

An issue which has been studied extensively, both experimentally and theoretically, is
the small deformation of the free surface in the presence of hexagonal cells. Depending
on whether buoyancy effects or surface tension gradient effects are dominating, the free
surface is either elevated or depressed at the centers of the cells. Previous computational
studies of Bénard-Marangoni convection have been done, however, all these studies assume
a fixed and undeformed "free" surface. In the present study, we include all the physical
effects, combining both normal and tangential stresses along the free surface via the surface
integral Iγ . We are therefore able to compute the associated surface deflection over each
hexagonal cell.

We now report some of the results obtained by our computational approach. The first
results are for the case with an infinite Prandtl number and zero Rayleigh number. In
steady state, this corresponds to the limit of solving the steady Stokes equations in zero
gravity conditions. The computational domain is a three-dimensional box, with periodic
boundary conditions specified along the "vertical" sides. This particular case has been
studied computationally in [24] and [19], but then with a fixed and flat "free" surface.

The spectral element discretization used to solve this problem is depicted in Figure 7.
Specifically, the physical domain is given by Ω = (0, lx)× (0, ly)× (0, d), with

lx
d

=
4π√
3k

,
ly
d

=
4π

k
,

and with k = 1.9929. The specific periodicity lengths are compatible with the formation of
a single hexagonal cell as predicted by linear stability theory [21, 7, 14]. These periodicity
lengths are also used in [24] and [19].

At this point we comment on the periodic boundary conditions that we impose along
the "vertical" sides (periodicity in the x1 and x2 directions). Periodic boundary conditions
were also used in [24], while [19] imposed symmetry boundary conditions. Both [24] and
[19] used the velocity formulation of the Navier-Stokes equations, which is appropriate for



Figure 4: Computational domain used in the convergence study of the ALE scheme. The
cylindrical domain is decomposed into two layers of spectral elements, each layer
comprising five spectral elements.
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Figure 5: The external boundary of the cylindrical domain in Figure 4 is fixed. However,
we specify a mesh velocity in the interior of the cylinder which is a function of
both space and time (periodic in time). The plot shows the grid-configuration at
a few time levels of the mid-plane of the cylinder during one single period. The
exact flow solution in the cylindrical domain is given by (38)-(41).

13



10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

∆ t

E
rr

or

 

 

1.order
2.order
3.order

4 6 8 10 12 14 16 18 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

E
rr

or

Figure 6: The left plot depicts the discretization error (energy norm) as a function of the
time step, ∆t, for a first, second, and third order temporal splitting scheme;
the spatial error is here subdominant the temporal error. The right plot depicts
the discretization error as a function of the polynomial degree, N , used in each
spectral element; the temporal error is here subdominant the spatial error for
N < 15.

this problem as long as a flat and fixed "free" surface is assumed. However, it is interesting
to note that symmetry boundary conditions cannot be used in our case since we are using
the full stress formulation of the Navier-Stokes equations; symmetry boundary conditions
(i.e., zero tangential stress) along the "vertical" sides will not be compatible with the free
surface boundary conditions for this problem.

Figure 7: Spectral element grid for the simulation of Bénard-Marangoni convection in a
three-dimensional box. The domain is decomposed into a single layer of K =
6 spectral elements, each of order N . The free surface (top surface) is here
comprised of six element faces.

Along the free surface, the normal mesh velocity is set equal to the normal fluid velocity in
accordance with the kinematic condition (36). Homogeneous Dirichlet boundary conditions
are chosen for the tangential components, and the interior mesh velocity is computed
through a simple element-based Gordon-Hall mapping; see [11]. These choices can certainly
be justified for this type of applications where we expect the free surface deformation to be
small. Note that, at steady state, the normal fluid velocity is zero along the free surface,
and the mesh velocity is zero in the entire domain. Also note that, at steady state, the
temporal splitting scheme will have steady state errors, similar to the original OIF-scheme
for fixed geometries; see [18].



The initial condition for the velocity is zero, while the temperature (or, more precisely,
the deviation from a purely conductive temperature profile) is set to be a random field at
time t = 0. Specifically, we set Θ(x1, x2, x3, t = 0) = Θ0 · Rand(x1, x2) · x3(2 − x3), with
Θ0 = 0.1, and Rand(x1, x2) a random variable in the [0, 1] range.

We first present numerical results for Ma = 90. The results in Figure 8 depict the
velocity vectors and temperature distribution over the free surface at steady state (top
view); we clearly see the presence of hexagonal cells. The center of each cell is hot, while
the exterior region of each cell is cold. In Figure 9 we also show the deformation of the free
surface over a single cell; the depressed free surface at the center of the cell is consistent
with the fact that there are no buoyancy effects. Figure 10 illustrates the same results seen
from above (using a different shading to represent surface elevation); we clearly see that the
results are independent of the particular surface discretization, indicating the advantages
of expressing the surface integral Iγ in (32) using surface intrinsic coordinates. Finally, in
Figure 11, we report the maximum surface deflection as a function of the Capillary number;
the results are consistent with earlier theoretical results based on linear stability analysis;
see [23].

Figure 8: Numerical results for the three-dimensional Bénard-Marangoni convection prob-
lem. The left plot shows the velocity vectors, while the right plot depicts the
temperature distribution over the free surface at steady state (top view) for the
case with Ma = 90, Ra = 0, Pr = ∞, and Ca = 3 · 10−4.

We have also computed the kinetic energy

Eu =
1

2lxly

∫
Ω
(u2

1 + u2
2 + u2

3) dV

for different values of the Marangoni number and at steady state. For these results we have
assumed a fixed free surface in order to be able to compare with earlier presented results.
In Figure 12 we plot E

1/2
u as a function of Ma in the range between 78 and 80. Note that

we start with the largest Marangoni numbers and reduce Ma until we do not observe any
hexagonal cells. From this plot we see that this happens when the Marangoni number
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Figure 9: Non-dimensional free surface elevation over a single periodic structure using two
different spectral element grids: one grid with straight sides (left) and one grid
with deformed sides (right) inside the periodic structure. Here, Ma = 90, Ra = 0,
Pr = ∞, and Ca = 3 · 10−4.

Ma = 79.2. This should be compared with a critical Marangoni number Mac = 79.6 based
on linear stability analysis [20]. Our simulation results are in good agreement with the
results presented in [24] where the subcritical regime extends down to Ma = 79.0.

Finally, we show the steady state results for a case where both buoyancy effects and
surface gradient effects are present; the particular values of the non-dimensional numbers
correspond to the properties of silicon oil. The domain has the shape of a hexagon (top
view). The boundary conditions for the fluid problem are solid walls on the bottom and
along the vertical sides, and free surface conditions on the top surface. The boundary
conditions for the thermal problem are homogeneus Dirichlet condition on the bottom
surface and adiabatic conditions along the remaining sides. The initial condition for the
velocity is zero, while the temperature (or, more precisely, the deviation from a purely
conductive temperature profile) is again set to be a random field at time t = 0. Figure 13
depicts the temperature contours at steady state, while Figure 14 depicts the corresponding
free surface deflection. The formation of seven cells is in qualitative agreement with the
numerical and experimental results presented in [19] using a flat "free" surface. However,
we are here also able to predict the detailed free surface deflection.

8 Conclusions

We have presented a coupled thermal-fluid model for Bénard-Marangoni convection in a
three-dimensional fluid layer. The governing equations have been derived in a fair amount
of detail due to the fact that we have not assumed a flat free surface. In addition, we
have presented the free surface boundary conditions (normal and tangential stresses) in
general curvilinear coordinates, and thus prepared for the use of flexible discretizations.
Based on the weak form of the governing equations, we have presented a high order spatial
discretization approach using spectral elements. An operator splitting approach has been
used for the temporal treatment. Since we primarily have been interested in steady state
solutions, the focus has been on the spatial discretization. The overall computational ap-
proach is very attractive to use for several reasons: (i) the solution can be expected to have
a high degree of regularity and rapid convergence can be expected; (ii) the spectral element
decomposition automatically gives a convenient parameterization of the free surface that



Figure 10: Similar results as in Figure 9, but now showing the top view. A particular
shading is here used to illustrate the free surface elevation. Note that the
simulation results do not depend on whether we use a very regular spectral
element grid (left plot) or an artificially deformed grid (right plot).

allows powerful results from differential geometry to easily be exploited; (iii) free surface
deformation can easily be included; (iv) both normal and tangential stresses are conve-
niently accounted for through a single surface integral; (v) no differentiation of the surface
tension is necessary to include thermocapillary effects (due to integration-by-parts twice);
(vi) the geometry representation of the free surface need only be C0 even though curva-
ture effects are included. The proposed approach has been used to simulate Marangoni
flows at zero-gravity conditions and at infinite Prandtl number. Finally, we have presented
simulation results of Bénard-Marangoni convection in silicon oil. All the results we have
obtained are in good agreement with previously reported computational results. However,
we are here also able to predict the free surface deflection due to buoyancy and thermo-
capillary effects; these results are in qualitative agreement with previous experimental and
analytical results.
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Figure 13: Three-dimensional simulation results for the Bénard-Marangoni convection
problem in a hexagonal domain for the case Ma = 105, Ra = 48, Pr = 890, and
Ca = 3 · 10−4 (corresponding to silicon oil): temperature contours (top view).
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(a)

(b)

Figure 14: Three-dimensional simulation results for the Bénard-Marangoni convection
problem in a hexagonal domain for the case Ma = 105, Ra = 48, Pr = 890, and
Ca = 3 · 10−4 (corresponding to silicon oil); see Figure 13: (a) a surface plot of
the non-dimensional free surface deflection; (b) side view, including axes. Note
that the surface deformation is largest in the center of the domain where the
effect of the domain boundary is smallest.
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