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integrators for index 2 differential algebraic
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Implicit-explicit (IMEX) multistep methods are very uséfor the time discretiza-
tion of convection diusion PDE problems such as the Burgers equations and also
the incompressible Navier-Stokes equations. Semi-digation in space of the latter
typically gives rise to an index 2 filerential- algebraic (DAE) system of equations.
Runge-Kutta (RK) methods have been considered for the tismalization of such
DAE systems. However, due to their implicit nature, theyagaily have a drawback
over the IMEX multistep methods in terms of computationattsger step. In this
paper we propose an exponential integration method foxi2QdBAESs of a special
class that includes the type arising from the incompresdildvier-Stokes problem.
The methods are based on the backwafi&déntiation formulae (BDF), belong to the
class of IMEX multistep methods and are unconditionallpkta

Keywords: index 2 DAESs, exponential integrators, IMEX nsittp, BDF.

1 Introduction

We consider dferential-algebraic equations (DAES) of the form

y = Cyy+f(y.2, (L1a)
0 = gy, (1.1b)

with consistent initial datg(to) = Yo, z(to) = zo, wherey = y(t) € R", z = z(t) € R™, for all
t e [to, T]; while f : R" x R™" - R", g: R" - R™andC = C(y) : R" —» R"™" is a matrix-
valued function ofy. The notatiory denotes the derivative with respectt®AESs of this type also
arise from the semi-discretization (in space) of the incaragible Navier-Stokes equations, where
C(y)y represents the nonlinear convection tefiy, z) represents the fiusion and pressure terms
andg(y) comes from the incompressibility constraint. Assumind.fDenerally result from a
convection difusion PDE, we will refer to the ter@(y)y as the convecting vector field or simply
the convection term.

The system of DAEs (1.1) is dfifferential index2 if the functionsf, g are stficiently difer-
entiable and the matri%gy is nonsingular in a neighbourhood of the solution. The algielpart
(1.1b) represents the main constraint. A second (hidden) init

ay(Y)(C(y)y + f(y,2)) =0, (1.2)



is given by diferentiating the main algebraic constraint with respedt ¥the variabley is com-
monly referred to as thdifferential or statevariable while thez-variable is thealgebraic or con-
straint variable or simply thé_agrange multiplier.

Runge-Kutta (RK) methods have been considered for the tiswalization of index 2 DAE
systems (see [10, 9, 2, 21, 15, 16]). Some of these RK metlubisva high order of convergence
with comparatively little storage requirements and havedgstability properties. However, due
to their implicit nature, they generally have a drawbackrabe IMEX! multistep methods in
terms of computational costs per time step. For reasonssef @@mplementation, we only wish
to consider IMEX methods that treat the nonlinear teffy)y explicitly and the termf (y, z)
implicitly as it may be stt and linear in most applications.

Among the class of implicit RK (IRK) methods, DIRKnethods applied to (1.1) appear cheaper
to implement than fully implicit RK methods. DIRK methodgjtere solving at most one linear
system per stage, for example, if (1.1) is linear. Howewueg, drder of convergence is greatly
limited by the stage ord&of the DIRK methods (which is at most 3 for most of the DIRK noeth
in the literature). For example the DIRK methods with nopnzdiagonal entries, e.g. most of the
methods in [1, 3], will give convergence of order at most 2(f& p.18] and [10, Lemma4.4,
Thm.4.5, p.495-496]). All the DIRK methods in [19, 25, 20ykastage order at most thus they
would lead to convergence of order at most 3 (according tpTh#n.5.2]).

In the framework of exponential integrators, we have careid a direct application of the
Lie group methods proposed by the authors in [7] to solve)(1These methods are typically
constructed from IMEX partitioned RK methods with a DIRK pand are referred to &3IRK-
CF (See Appendix A.3 for details). Without much surprise wenidthat the DIRK-CF methods
(constructed from various IMEX RK methods with DIRK parts)lypgive convergence of order
2, since both the stage orders of the DIRK and explicit RK (ERKYmods are low. We obtain a
similar observation with direct application of various IMIRK methods (with DIRK parts) such
as those in [3] and [19].

Linear k-step BDF methods, on the other hand, are known to give cgemee of ordeip =
k, for 1 < k < 6, in both variables (see for example [10, VII.3]). The BDF nuath areA-
stable for 1< k < 2 andA(a)-stable for 3< k < 6. We however do not wish to treat the
nonlinear ternC(y)y implicitly. IMEX multistep methods have been developed apglied for the
time discretization of convection fllussion PDE problems such as the Burgers equations (see for
example [18, 4]) and also the incompressible Navier-Stekgstions (see [22, 17, 12, 24, 28, 8]).
Semi-discretization in space of the latter typically givise to an index 2 dierential- algebraic
(DAE) system of the type (1.1). We hereby propose a new clagssmonential integrators for
(1.1) which are multistep and based on the backwafiitrintiation formula (BDF). We name
these methodBDF-CF for short. The methods are a subclass of IMEX multistep nusttend
has about the same implementation ease as the DIRK-CF bugivamis order of convergence
higher than 2 both in the algebraic andfeiential variables. We recall that explicit multistep
exponential integrators have recently been studied foilsmar ODEs by Calvo and Palencia
[5] and also by Ostermann and Thalhammer [23]. There theoaaittonsider exponentials of the
linear term. The methods we present here can also be appl&ath ODESs (if we can express the
nonlinear term in the forr®(y)y), but we would treat the nonlinear term explicitly by expotials
and the linear term implicitly.

Hence givenk initial valuesyy,...,Yk_1, we define thek-step exponential BDF (BDF-CF)

LMEX methods are time integration methods that treat, faneple, the tern€C(y)y explicitly and the remaining
terms implicitly.

2A RK method with cofficients{g;,b,c}, i,j =1,..., s, is calleddiagonally implicitor DIRK if &; = 0 for all
i > janda; #0forsomei =1,..., S.

3A RK method with coéiicients{a;, b, ¢}, i,j = 1,..., s, has (internalstage order if q is the greatest integer
such thatzjszla”(:‘j(_1 =c/k i=1..., sholdforallk = 1,..., g



method as follows: Findyx, z) such that

k—1
ayk+ Y aioyi = hf(yzd), (1.3a)
i=0
0 = g(w) (1.3b)
wheregy; = exp(ZT;éaHl,thC(yj)), i =0,....,k—1 andaj; e R, i,j = 1,...,k are
codficients of the method, while;, i =0, ...,k are codicients of the lineak-step classical BDF

method. Methods of this type permit the exact integratiothefconvection term via exponentials,
an idea also found useful in the DIRK-CF methods for coneactiominated convection fiiusion
PDEs [7] and in the multirate methods for atmospheric flowuation [27]. We refer to this kind
of methods asommutator-fre& (CF) multistep exponential integrators, since they ineatvatrix
exponentials whose exponents do not contain matrix comorgtaThus the name BDF-CF is
used for the method (1.3). In a more general setting invgl@f exponential integrators [6], the
functions¢; would be defined as a composition of matrix exponentials. él@y in the BDF-
CF methods considered here single exponentials woufitsu More precisely we shall write a
k-order (typicallyk-step) method as BDFk-CF. The overall method is terismmi-Lagrangiarif
we treat each flowy;y;, in a semi-Lagrangian fashion (described in [7, Sect.3dfy is found
useful for the time integration of convectionfiision PDEs and the Navier-Stokes equations.
Nevertheless, the flows can also be computed using otherrieaihmethods such as the direct
approximation of the matrix exponentials via a Padé appmaxt or by using a Krylov subspace
method. The semi-Lagrangian approach was shown [7] to be stable and accurate than the
latter two methods, in the solution of convection dominatedvection-dfusion problems. A
further requirement in the semi-Lagrangian case is to Haaenatrix-valued functio(y) linear.

In this paper the semi-Lagrangian approach has been uséidhimaerical experiments involving
time dependent PDEs.

Assuming once again that the system (1.1) arises from thédieonetization (in space) of a
PDE (e.g.,the Navier-Stokes equations), then a close aisopaof the BDF-CF methods with the
operator-integrating-factor splitting methods of Madsaal. [22] (also considered in [8]) will be
as follows: Find(yk, z) such that

k—1

akyk + Y i = hf(yiz), 9() =0, (1.4)
i—0

whereq; are codicients of the classicdd—step BDF method, ang are solutions of linearized
pure convection problems

¥=C(p(t)y, te(tt), )=y

wherepg(t) € R"is a(k — 1)-degree polynomial extrapolation of the initial values.eTBDF-
CF methods, however, compute the valyes= ¢jy; in a different manner (without a special
linearization of the convection term).

The rest of the paper is organized as follows. In Section 2 r@egmt a derivation of the new
class of methods. In Section 3 we state some convergendésriEsuthe methods and provide a
numerical evidence for the convergence of methods up ta drd&e discuss the stability of the
methods in Section 4, making comparisons with some wellkkntMEX multistep methods in
the literature. Unless stated otherwise, we shall say timethod hasorder’ p to refer to the
temporal order of convergence of the method. Also we shdjl consider constant time steps,

4using the terminology of Celledoei al. [6]



which shall be written ak := At. Given initial timetg, we shall writet, to denote time leveh
such that, := tp + nh. For a given field variable = v(t) we denote the numerical approximation
at timet, by v, & v(t,). In general we shall use the notatipr | for an arbitrary but well-defined
norm of a vector or function.

2 Construction of commutator-free exponential BDF methods

Given a discrete time intervéy, ..., tx = T and initial datayo, ..., Y1, 1 < k < K, we describe
ak—step BDF-CF method as follows

Algorithm 1. BDF-CF method

foorn=k—1toK —1do

k
@i = exp (hzai+l,JC(Ynk+J)> 5 I = Ov---vk_ 19

i=1

k—1
akyn+1 + Z QiiYnr1—k+i = hf(Ynt1, Zns1), (219
i=0
0 = 9(Yns1) (2.1b)
end for
whereg; j e R, i,] =1,...,k, are codicients of the BDF-CF method ardl are codficients of

the classicak—step BDF method. Thus one can represekt-atep BDF-CF method in terms of
its codficients as in the following table

Yn—k+1 | Q11 S A1k
Yn ax 1 B - T
‘ C(Yn—kt1) ... C(yn)

So that for eacm > k— 1 the method solves for the unknown valugs, 1, z,.1, given the
initial valuesyn_k.1,...,Yn. FOr reasons of convenience (but without loss of generalig/shall
often drop the index or simply treat the case with = k — 1 as in (1.3). The first order (one-
step) BDF-CF method is simply the semi-explicit backwardeEmethod, obtained by choosing
vo = exp(hC(yn)) in (1.3). We shall therefore only considesstep methods, fdk > 2.

For simplicity we shall restrict the analysis of the methtmlan ODE of the form

y=C(y)y+ f(y). (2.2)
Extension to the DAE (1.1) is more or less direct.
Let us denote the exact value at titpdy y; := y(t;), j=0,...k and write
$i = exp (h le(;éai+]_’j+10(y(tj))) , i=0,...,k—1 Alsoletyj, §,...denote the derivatives

with respect to the time variable.



2.1 Second order method (BDF2-CF)

Thetruncation errorr,(h) for a two-step method is given by

1[3. A 1. . A
h [EY2 — 20151 + ESOOYO] = f($2) + 72(h). (2.3)
For a classical second order BDF method we have
1(3. R 1, o . 5
N e 2y1 + S%| = C(92)%2 + f(¥2) +O(h?). (2.4)

For a second order methad(h) = O(h?). Therefore combining (2.3) and (2.4) will give

£ 26191 - S50~ 291+ 30| — 992 - o) @5
which is a reasonable requirement for a second order method.
Putting
Yo = 91— hy1 + O(h?),
92 = 91 + hjr + O(h?),
we get via Taylor expansion (about t;)

C(92)92 = C(§1)¥1 + hC(§1)$1 + hC'(91) (91)91 + O(K?),
]

oo = Yo + ath[C(§1) — hC'(§1)(§1)]($1 + h§1) + a1ohC(91) (91 + hfir)
h2

+ E(all + a12)°C3(§1)%1 + O(M®),
2

$191 = 91 + 81h[C($1) — hC'(91) (Y1) 191 + ag2hC(§)91 + = (
Substituting into (2.5) and comparing d¢heients of like terms and powers bfwe obtain the
following order conditions on the cé@&ients for order 2

az1 + azz)zcz()‘/l))‘/l + O(hg).

1
2(apy + ag2) — 5(611 +ap)—1 = 0, (2.6a)
1
—2ap1 + Eall -1 = 0, (26b)
5(311 +app) -1 = 0 (2.6¢)
2 1 2
(@21 + ag2) — Z(all +a12)c = O (2.6d)

Solving this system yields a one-parameter set offagents, illustrated in the following table

Yno1 | 2(1+2y) 4y
Yn Y 1-vy
‘ C(¥n-1)  C(yn)

from which we define the second order BDF2-CF methods as

3 1
EYnJrl — 2010 + ESOOYn—l =hf(yny1), n=1, (2.7)



wherego = exp(2(1 + y)hC(yn-1) — 4yhC(yn)) , ander = exp(yhC(yn-1) + (1 —¥)hC(yn)) .
Applied to the DAE (1.1) we get

13 1
H[EYn+1 — 2p1Yn + ESDOVn—l] = f(Yn+1, Znt1)s 2.8)
0 = g(¥n+1)-
2.2 Third order method (BDF3-CF)
The truncation errors(h) for a three-step method is given by
17111, A 3. . 1, . -
H [g)@ = 30292 + 56151 — 5900)’0] = f(¥3) + 73(h). (2.9)
A classical third order BDF method will satisfy
1111, ~ 3. 1, ~ -
n [E)@ — 32+ 55— 5)’0] = C(¥3)95 + f(93) + O(h®). (2.10)
Combining (2.9) and (2.10), and requiring thath) = O(h%) we get
N 3. . 1. . N 3. 1, NN
n [3¢’2y2 — 5P+ 560fo — 32 + 591 — é)’o] — C(93)93 = O(h®). (2.11)

We put in (2.11)
A ~ A h2 ~
Yo =1 —hy1+ 1 + o(hd),

~ N i h?..
Yo =V1+ hyl + Eyl + 0(h3),
Y3 =¥1+ 2h§/1 + 2h2§/1 + O(hg),

and carry out a Taylor expansion (about t;). Comparing cofficients of like terms and powers
of hwe obtain the order conditions for ordercd@mprising of 10 linearly dependent equations in 9
unknowns (see Appendix A.2). Solving the system of equatioMaple yields a three-parameter
family of methods, illustrated in the following table

Yoo| F-2-9  -18+9% + 2B+ 9y -9 -3

Y1 | 3+2a—318—2y B —1—2a—38+2y
Yn @ l-—a—y Y ’
| C(yn-2) C(Yn-1) C(yn)

from which the third order BDF3-CF methods are definedfar 2.

2.3 Fourth order method (BDF4-CF)

We determine the cdiécients,{a;;}, i, j = 1,...,4, for the fourth order method by requiring that
the equation

N A 4 1. . R R 4. 1. A
n [4§03Y3 — 3¢2% + 3%191 — 7%0% — 493 + 39> — 1t Y| - C(9a)¥a = O(h*) (2.12)

is satisfied. Again using Taylor expansion and comparindghoients of like terms we obtain a
6-parameter set of cfiiients given by



Yn-3 dao—40 — 8o+ 12+ 7y + % —4a+80—2y —3k—8+40

3 3 3 3 3 9 9 9 9 9 21
Y2 | —B+30—50+igytgk—30+t5 PW—5a—30—57 55Kk~ 50+ 5

Yn—1 a 2—0—-0—-a
S g T I P
‘ C(Yn-3) C(Yn-2)
Y K
—9ﬂ+%(x+% —1—96K+%0'—% %Q+3ﬂ—%d+%¥+%—2k—%0’+%
o [ )
Sﬂ—%a—%g—i—l—lsy—l—l—%K —,8+%1a+§g—3i2y—3%/<+%0'+%
C(¥n-1) C(¥n)

defining the fourth order method for> 3.

A similar procedure can be used to design BDF-CF methodsdeframp to 61t is not yet clear
if one can obtain stable methods of order higher than 6 inrttdaner, since the classidalkstep
BDF methods are only stable up toke< 6.

3 Some Convergence Results for the BDF-CF methods

We shall follow the strategy used by Haiedral. [10, 9] to justify the convergence of the BDF-CF
methods (2.1) when applied to the DAE (1.1). We begin withyastence and uniqueness theorem
similar to the one in [10, Thm3.1,p.482].

Theorem 3.1. Suppose that the initial valueg,yz;, j = 0,...,k— 1, satisfy
yi —Y(tj) = O(h), zj—z(t;) =0(h), g(y;) = O(h°). (3.1)

Then the nonlinear system
k—1
oYk + Y gy = hf(yz), (3.29
0 = g(w (3.2b)

i=0
as in (1.3) withax # 0, has a solution for h< hg. Furthermore, this solution is unique and
satisfies
Yk — Y(t) = O(h), z —z(t) = O(h). (3.3)

The proof follows the pattern used by Hairer and Wanner [1#0n3.1, p.482] with minor
modifications.

Proof. We set
n=— —¢i (3.4)
and define close toz(tx) such that

ay(m) (f(m,¢) + Clmn) = O(h). (3.5)

We then replacé/ay by a new step size which we again denotehbwithout loss of generality.
The system (3.2) becomes equivalent to

Y« = n+hf(yz), (3.6a)
0 = 9w, (3.6b)



which is the backward Euler method with initial ddtg ). Thus we can apply “Theorem 3.1” of
[9, p.31] to conclude the proof. It only fices therefore to show that

n—y(t) =0(h), ¢—2zt)=0(h), g =0 3.7)

(@) The first part of (3.7) follows by using thaty; = y; + O(h) andzik:O a; = 0, together with
the assumptions in (3.1). Thus we get

1Y) =~ 3 ailiy - y(t)
Lo
= -2 Y il - y(t) + O
@k i=0
1 k—1

So that
n—Y(t) = O(h).

(b) Lastly, using the constraint (1.2) and the fact tggaf, is invertible, we see (via Taylor
expansion) that

ay(m) (f(1,0)+C(m)n) = Gy(¥(t)) F2(¥(t). 2(t)) -~ 2(t)) +O(In—y(t) ) +O(h?). (3.8)

Inserting (3.5) we get
¢ —2(t) = O(h).

(c) The proof of the third part of (3.7) follows exactly as in [Ill)m3.1,p.482].
i

The next theorem, which is proved exactly as in [10, Thm3.284), considers the influence of
perturbations in the application of BDF-CF methods to (1.1)

Theorem 3.2. Suppose i z are given by (3.2) and consider perturbed val§iggy satisfying

k—1

o+ Y @di¥ = hf2) +hs, (393
i=
i 0 = g%k +6 (3.9b)
whereg; := exp (le(;éai+1’j+1hC(yj)) , 1 =0,...,k— 1 In addition to the assumptions of
Theorem 3.1, suppose that foej0, ..., k— 1,
9i—yij=0(h), 2—z =0(), §=0(h), 6=0(h). (3.10)
Then, for h< hg, we have the estimates
9 =yl < Const([¥(Yo — Yo)|| + hls| + [e]). (3119

. Const (%2 A A
|-zl < —; Y loy(3) (@595 — @iyl + h¥ (Yo — Yo) | + hls] + [|6] K3.11b)
j=0

where® (Yo—Yo) 1= (Pk-1Jk—1—k-1Yk1. - - - - BoJo—ayo) " and |¥(Yo—Yo)| := omax 1219~
iyl



3.1 Local error

Suppose we consider exact initial valygs= y(t;j), z; = z(tj), j =0,...,k— 1, in the BDF-CF
formula (3.2) and also choose in (38) = y(tj), z = z(tj), j = 0,...,k Then we will have
from (3.9) that9 = 0, and by the construction of the BDF-CF methods the truncagioor gives
§ = O(hP). Also, since we now havg; = §;, z; = Z; for j < k, we get the following local error
estimate, as a consequence of the estimates of Theorem 3.2.

Theorem 3.3. Suppose that the BDF-CF method (3.2) applied to the DAE {fa%)a truncation
error of order p (in the sense implied by (2.3)). Then its lag#or satisfies

Yk — Y(tk) = 0(hp+l), z — Z(tx) = O(hP). (3.12)

3.2 Global Error

We observe that the convergence of the BDF-CF methods wjliire that the matrix-valued func-
tion C(y) is suficiently smooth on the space spanned by the initial data &t adeancement in
time.

Remark 3.4. We have the following remarks on the global convergence ehtlethods.

(a) The result in Theorem 3.3 is still obtainable if we replace tarms|¥(Yo — Yo)| and

loy(B) (@95 — ¢jyi)l, | =0,...,k—1,in (3.11) by the approximation (linearization)
lay() (@395 =iyl < llgy() (¥ =yl + Ohlgy )y —yil).  (3.13a)
[¥(Yo—Yo)| < [AYo]| +O(h|AYo]) (3.13b)

whereAYp := (Y1 — Yk_1.....50 — Yo)" and|AYo| := o<r}1<a|1(>il||§/j —Y;jl. Such approx-

imations are possible by using Taylor expansion methods¢hwim turn depend on the
smoothness of the functidd(y).

(b) Using (3.13) appropriately we can follow the same proof dse@rem 3.5” of [10, p.486]
to obtain the convergence of the BDF-CF applied to the indBAE (1.1). Thus according
to “Theorem 3.5” of [10, p.486] we expect to get convergenicerder p = k, for k < 6, in
both the algebraic andfierential variables, upon applying the step BDF-CF method as
detailed out in Algorithm 1 on page 4. This is investigatedetically in the following two
subsections.

3.3 Numerical example

We here consider the index 2 problem (see [11])

V1 =Ys+2z+cost— 1,
Yo=Yi+Yy5—sint—1, te[L2] (3.14)

whose exact solution is given by
yi(t) = sint, yo(t) = cost, z(t) = cost.

This DAE is comparable to (1.1) with

_ T B B [y O _ _( z+cost-1
Y=Ly 9y = Vi1 C(y)—(y1 y2>’ f—f(t’y’z)—( —sint — 1 )



We now solve (3.14) using each of the methods BDF1-CF, BDFZ5C= 0), BDF3-CF ¢ =

B =v =0)and BDF4-CF¢ = 8 = y = 0 = o = k = 0). Since the DAE system is small, we
have computed the matrix exponentials using MATLAB'’s binilexpm function. The global error
(in the discretd_»-norm, see Appendix A.1) at timEé = 2, is plotted as a function of time step
h, takingh = 1/2", r = 4,...,11 As shown in Figure 1, we observe that for= 1,...,4, the
method BDKk-CF gives convergence of ordpr= k in both the diferential and algebraic variables
y andz This agrees with the conclusion in Remark 3.4Kat 4.

o -2 )
10 4 10 __e--"®"_1a
o--0""% -2t 4
_-e-" -2 -
107" 1 [ .as Y
- ”
o-" i » b4 ,0’
_ _ -7 ¥ -
~ 107 ~ 107 " -7
< 2 o ~ e
= = .
s s ¥ »
u 10 u 10 " o
v’ .
107 —e—BDF1-CF| | 1070 Le - © - BDF1-CF| |
—8—BDF2-CF o - & - BDF2-CF
—v— BDF3-CF L - v - BDF3-CF
10" —é— BDF4-CF | 4 107" (4 - - BDF4-CF| 4

10° 10”7

h

(a) Erroriny

10° 107
h

(b) Errorinz

Figure 1: Order of dierent BDF-CF methods to index 2 DAE (3.14). Errors are meak(in the
discreteL,-norm) at timeT = 2 as functions of time step= 1/2", r = 4,...,11 (a)
shows the errors in thefiigrential variabley, while (b) shows the errors in the algebraic
variablez

3.4 Numerical test on Navier-Stokes

Next we consider the incompressible Navier-Stokes equsiioR?,

_ 1
—Vp+ —Va,
P+ Re

in Q,

U+ (u-Vju =
V.-u = 0,

in Q, (3.15a)

(3.15b)

with prescribed initial data and velocity boundary coratis. The constarRReis the Reynolds
number,x = (x3,%)" € Q c R?, t e [0,T], while u = u(x,t) = (u;,uz)" € R? is the fluid
velocity andp = p(x,t) € R is the pressure.

For the spatial discretization we employ a spectral elemmaihod (SEM) based on a standard
Galerkin weak formulation. The approximation is don@®jn-Py_» compatible velocity-pressure
discrete spaces, i.e., keeping the time varialiibeed, we approximate the velocity byNrdegree
Lagrange polynomial based on Gauss-Lobatto-Legendre Y@btles in each spatial coordinate,
and the pressure N — 2)-degree Lagrange polynomial based on Gauss-Legendre (@lesn
A more vivid description of this type of spatial discretipai of Navier-Stokes is given by Fischer
et.al [8]. The result is a semi-discrete (time-dependerddesn of equations

By +C(y)y+Ay—D'z = 0,
Dy = 0

(3.16a)
(3.16b)

wherey = y(t) € R", z = z(t) € R™, represent the discrete velocity and pressure respectively
while the matriced\, B, C, D, DT represent the discrete Poisson (negative Laplace), massc
tion, divergence and gradient operators respectively. sigtem (3.16) satisfies the requirements
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of the index 2 DAE (1.1), withf (y,z) = B"1(Ay— D"z), g(y) = Dy, linear in their arguments.
The matrixgy f, = DB~!DT isinvertible sinceB is positive definite. In fact, givew e R™, w # 0,
we have that

w' (gyf)w = (D"w)"B~!D'w > 0,

makingDB DT positive definite (assuming that the compatibility of theatéte spaces makes
D to be of full rank). Thus the BDF-CF methods are applicabtdalie time integration of (3.16).

As a test example we consider the Taylor vortex problem [8R,\ith exact (analytic) solution
given by

up = —cognxy)sin(rx) exp(—27%t/Re), (3.17a)
Uy = sin(rx;) cognxp) exp—2r%t/Re), (3.17b)
p = —%[cos(znxl) + cog2nxz)] exp(—4n?t/Re). (3.17¢)

In this example we have used Dirichlet boundary conditiamghe spatial domai® = [—1, 1],
spectral element discretization (SEM) of ordér= 12 with Ne = 4 rectangular elements, and
the time integration is done up to tinfe = 1 using diferent constant stepsizes= T/2', r =
4,...,9. The error in both time and space is measured. The error (atTmn the velocity is
measured in thél;-norm and the error in the pressure is measured it theorm (see Appendix
A.1 for description of these norms). Figure 2 shows the tempwrders of convergence obtained
with the methods BDF1-CF, BDF2-CF (with= 0) and BDF3-CF (withw = 8 = v = 0) applied

to the semi-discrete incompressible Navier-Stokes prok{{&16). The Reynolds number used
is Re = 272. The same example was also used to test the fourth order meBmie4-CF (not
included in the figures), which showed a better overall coyesece than the lower order methods.
In this case, however, the temporal error is no longer dontinaer the spatial error, and the
overall error (both in time and space) is no longer monotenih respect td.

oo

Vel. Error (H l)
o
<
Press. Error (L 2)
<

(<]

BDF1-CF © BDFI-CF
BDF2-CF| 107 v o BDF2-cE|d
v BDF3-CF v BDF3-CF

i

1S}
4

o

10° 107 10 10° 107 10
h h

(a) Velocity (b) Pressure

Figure 2: Temporal order test offterent BDF-CF methods for the incompressible Navier-Stokes
(Re = 272). Taylor vortex problem orx,y € [—1,1], considered. We use Dirichlet
BCs onQ = [-1,1]? and SEM of ordeN = 12 with Ne = 4 uniform rectangular
elements. Errors are measured at tifhne= 1 and plotted as functions of time step
h=T/2", r =4,...,9.(a) The errors in the velocity measured in thenorm. (b) The
errors in the pressure measured in thenorm.
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4 Stability of the BDF-CF methods

We study the stability of the BDF-CF methods, and make sormmepesisons with the IMEX
multistep semi-explicit BDF (SBDF) methods of Aschedral [4], also studied in [18, 13]. The
following remark shows a relation between the BDF-CF mestamtl the SBDF methods.

Remark 4.1. If we introduce linearizations of the form

exp(hC(yo)) y1 ~ y1 + hC(yo)y1

in the BDF-CF1, BDF-CF2 (wity = 0) and BDF-CF3 (withw = 0, 8 = 2, y = 1), we obtain
exactly the SBDF methods of Aschetral [4].

4.1 A nonlinear problem

The authors in [4] demonstrated the strong stability an@{step restrictions of the SBDF meth-
ods among others, in the treatment of convectidfudion problems with small viscosity cifie
cients. An interesting observation is the improved sthilf the BDF-CF over the SBDF methods
at smaller viscosities. We consider the Burgers equatidmin

U + Ul = vUyxx, X€(—1,1),t>0 (4.2)

with initial condition u(0, x) = sinzx, and homogeneous Dirichlet boundary conditions. We
discretize in space via the Gauss-Lobatto-Chebyshev rgpedilocation method to obtain an
ODE of the form (2.2). This same test problem was considerdd]i In Figure 3 we show the
relative error inL,, grid-norm measured at time = 2 for a range a viscosity parameters in the
range 0001 < v < 0.1. For each time step = 1/10,1/20, 1/40, 1/80, we have usedN = 40
spatial nodes. The reference or “exact” solution is congdite N = 80 spatial nodes using
MATLAB's ode45 built in function, with sifficiently small relative and absolute error tolerances.

An observation from Figure 3 seems to reveal that the BDF-@Ehots are numerical more
stable (with larger time step restrictions) than the SBDFhods. Unlike the BDF-CF methods,
the SBDF methods give unbounded solutions at smaller \itycparameters, especially as the
Courant number increases with increasing time $tephe better performance of the BDF-CF
methods at low viscosities is believed to be partly due tmeeptial integration of the convection
term and partly due to the semi-Lagrangian computation pbezntial flows (see also [7]).

4.2 Linear Stability

We now consider a linear stability analysis like the one darjé], whereby we apply the methods
to a simple problem of the type
y = (1+1w)y, 4.2)

where 1, v € R, and/is the unit imaginary number satisfying = —1. Notice that (4.2) is
equivalent to (2.2) witlC(y) = vl and f(y) = ay.

Letw := (1+1iv)h € C, and letwgr andw, denote the real and imaginary partsofespectively,
suppressing the dependencelo\pplying the SBDF2 method to (4.2) yields the charactaristi
polynomial

O(1;w) = (83— 2wR)T? — 4(1 + iw))T + 2w + 1;

meanwhile the BDF2-CF method has characteristic polynomia

O(1;w) 1= (3— Za)R)T2 — 4gvr 4 Zon,
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Figure 3: Burgers equation over a range of viscosity pararsetWe use Dirichlet BCs on the
domain[—1, 1]; N = 40. Relative errors (in thé,-norm) are measured at tinfe= 2
as functions of viscosity € {0.001,0.002...,0.01,0.02 ...,0.1}, for time stepsh =
1/10,1/20,1/40,1/80. SBDF1 and BDF1-CF are the first order methods. For BDF2-CF
we usedy = —1, while for BDF3-CF we used = 1, = —13/2,y = 3. Note: The
plot labels in (a) apply to all four diagrams.

The stability region is then given by the set

S ={weC:|maxr: d(r;w) =0} <1}

In Table 1 we write down the characteristic polynomials & #econd to fourth order BDF-CF
and SBDF methods. Figure 4 shows the stability regions éshhg contour lines) for these SBDF
and BDF-CF methods.

We observe from Figure 4 that all the BDF-CF methodsfastable. In particular the BDF2-CF
has characteristic roots given by

712 = €92+ /1 4 2wg]/(3 — 2wR),

and it is easy to show that fasg < 0 we havel2 + /1 + 2wgr| < |3 — 2wg|, Which implies that
|T12] < L. Infact, givenwg = —r, 1 = 0,

12+ /14 2wg| = |24+ V1= 21| <24 4/|1—2r|.

Foro<r <1/2

24+4/|1-2r=2+V1-2r <3<3+2r =|3—2wR
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Table 1: Characteristic polynomials for BDF-CF and SBDFhods

order BDF-CF
2 (%’ — a)R) 2 — 269t + %ez"‘"
3 (%1 — wR) 3 _3gwi2 4 %’GZf“"T — %ee’f‘”'
4 (i—? — cuR) 4 — 4gwi3 4 3tiwig2 _ %e’%" + %164;”'

order SBDF
2 (3 —wRr) 7° — 2(1 + iw))7T + 3(1 + 2iw)
3 (B-wr) -3 +iw)r?+ 3(1+ 2iw)r — (1 + 3iw)
4 (22 — wr) ™ — 41 + 1w 7 + 3(1 + 25w )7 — 3(1 4 3iw) + 3(1 + 4iw))

and forr > 1/2,

2+4/|1-2r =2+ vV2r —1<24+2r <3+ 2r =|3—2wg)|.

On the other hand, the SBDF methods are @ly)-stable, in sense of [10, Definition2.1,p.250],
with @ < 90° (see Figure 4). The SBDF4 shows even smaller stability retjfian the methods of
lower order in its class.

We can thus conclude that for a linear convectioffitidion problem with constant cficients
and difusion parameter > 0, the time-step restrictions due to stability are much moliaexesl in
the BDF-CF methods than for the SBDF, both in the cases ofl amadlargey. The SBDF methods
poses even more severe time-step restrictions for simHliis is evident from the stability regions
plotted in Figure 4.

Conclusion

So far we have derived new exponential multistep methodsdobes the BDF scheme, that can
be applied to both ODEs and a class of index 2 DAESs in a senliegxpr IMEX manner. The
methods are shown to be unconditionally stable (e.g. fealiproblems). Numerical experiments
given reveal that when the methods are suitable for corweatominated convection féiusion
problems when implemented in a semi-Lagrangian fashione ddnvergence of the methods
have been verified numerically on a Navier-Stokes problem.imeresting future work will be
to analize or investigate the Courant-Friedrichs-Lewy I(Céondition in the limiting case as the
viscous term vanishes.
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real axis, and pafwvhole of the imaginary axis.

Appendix

A.1 Definition of norms

For a square-integrable function: Q — R", whereQ ¢ R™is bounded and connected, thg
andHj-norms, denoted - |,, || - |n,, are defined by

n
JulZ, == Zf u2dQ, (A.3)
i=1JQ
and theH;-norm is defined by
n
Julg, =Y j u2dQ. (A.4)
=170

In the spectral element approximations the continuougiate of numerical solutions are accu-
rately computed using Gauss quadrature rules.

Given a vectoy = (y1,...,Yk)" € RK, thediscrete l,-norm, denoted - ||, is defined by

K
I3 = > ¥ (A.5)
j=1
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A.2 Order conditions for order 3 method BDF3-CF

3(ag1 + agz + aga) — g(aﬂ + ago + a3) + %(all +app+az3) =1, (A.6a)

3(as1 + ag2 + ags) — %(311 +a1 +a3) =2, (A.6D)

3(agz —as1) — g(azs —ap1) + %(343 —an1) =2, (A.6c)

3(agL + as2 + aga) + %(311 + a2 + a13) = 4, (A.6d)

3(ag1 + ags) — g(aﬂ + ap3) + %(all + ag3) = 4, (A.6e)

3(agz —az1) — %(am —ay) =4, (A.6f)

3(as1 + agz + ags)® — ;(321 + g2 + 8p3)° + %(311 + a2+ &y3)° = 0, (A.69)

3(ag1 + asp + ags)® — %(all +ap+a3)? =0, (A.6h)

3(ag1 + as2 + ags)® — ;(321 + a2 + a3)® + %(311 + a1z + a13)° = 0, (A.61)
3(ag1 + as2 + as3)(az3 — as1) — g(aﬂ + a2 + ap3)(A23 — A1)

+%(a11 + a2 + ag3)(auz — aq1) = 0. (A.6))

A.3 DIRK-CF methods

Suppose the paifa;;, b, ¢} and{aj,Bi, G}, fori,j =1,...,s define the coicients of as-stage
additive partitioned RK method (for DIRK-CF the partiti@h&K codficients are such that the
firstis DIRK and the second is ERK). We define ﬁm'sentScxi’I, ,BIJ, | =1,...,J for some integer
J > 1, such that

J . ~ J .
&=y @, bj=)4. (A7)
=0 1=0

Then a direct application of the DIRK-CF methods to (1.1)dae time stefty, t, + h] is given
by the following algorithm:

Algorithm 2. DIRK-CF method

fori = 1to sdo

exp (h Y a!‘JC(Yk)> ...-exp (h Y a!‘lC(Yk)> ,
K

o =
k
Yi = SOiYnJrhEaajsDisOflf(Yj,Zj), (A.83)
j
0 = gv), (A.8b)
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end for

exp (h Zﬁ'ﬁC(yk)> e (h zﬂzc:(yk)) |
k k

Pst1 =
Ynr1 = 905+1Yn+hzbi90if(Yi,Zi), (A-SC)
i
0 = g(ynsa). (A8d

which computes the numerical solutign, 1 from a given initial valuey,. The valuesy;, Z
fori = 1,..., s denote the numerical approximations of the stage vajigs z(t;) respectively,
andzj denoteszjs:l. The method is easy to implement when theffioents{a;j, by, ¢}, i, j =
1,...,s defines a DIRK method. Typically the constraints=®(Y;), 0 = g(yn+1), are enforced
via a projection technique [2, 10, 21, 22]. If the DIRK methsdtifly accurate we immediately
obtain thaiz,.1 = Zs, otherwise if the RK matrixXa;; ) is invertible, we get

S
Zni1=Zn + Z wij(Zj — Zn), (A.9)
i—1

wherewij are entries of the inverse of the RK matfe; ) (see [10]).
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