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Implicit-explicit (IMEX) multistep methods are very useful for the time discretiza-
tion of convection diffusion PDE problems such as the Burgers equations and also
the incompressible Navier-Stokes equations. Semi-discretization in space of the latter
typically gives rise to an index 2 differential- algebraic (DAE) system of equations.
Runge-Kutta (RK) methods have been considered for the time discretization of such
DAE systems. However, due to their implicit nature, they generally have a drawback
over the IMEX multistep methods in terms of computational costs per step. In this
paper we propose an exponential integration method for index 2 DAEs of a special
class that includes the type arising from the incompressible Navier-Stokes problem.
The methods are based on the backward differentiation formulae (BDF), belong to the
class of IMEX multistep methods and are unconditionally stable.
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1 Introduction

We consider differential-algebraic equations (DAEs) of the form9y � Cpyqy� f py, zq, (1.1a)

0 � gpyq, (1.1b)

with consistent initial dataypt0q � y0, zpt0q � z0, wherey � yptq P Rn, z � zptq P Rm, for all
t P rt0,Ts; while f : Rn � Rm Ñ Rn, g : Rn Ñ Rm andC � Cpyq : Rn Ñ Rn�n is a matrix-
valued function ofy. The notation9y denotes the derivative with respect tot. DAEs of this type also
arise from the semi-discretization (in space) of the incompressible Navier-Stokes equations, where
Cpyqy represents the nonlinear convection term,f py, zq represents the diffusion and pressure terms
and gpyq comes from the incompressibility constraint. Assuming (1.1) generally result from a
convection diffusion PDE, we will refer to the termCpyqy as the convecting vector field or simply
the convection term.

The system of DAEs (1.1) is ofdifferential index2 if the functions f , g are sufficiently differ-
entiable and the matrixfzgy is nonsingular in a neighbourhood of the solution. The algebraic part
(1.1b) represents the main constraint. A second (hidden) constraint,

gypyqpCpyqy� f py, zqq � 0, (1.2)
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is given by differentiating the main algebraic constraint with respect tot. The variabley is com-
monly referred to as thedifferential or statevariable while thez-variable is thealgebraic or con-
straint variable or simply theLagrange multiplier.

Runge-Kutta (RK) methods have been considered for the time discretization of index 2 DAE
systems (see [10, 9, 2, 21, 15, 16]). Some of these RK methods achieve high order of convergence
with comparatively little storage requirements and have good stability properties. However, due
to their implicit nature, they generally have a drawback over the IMEX1 multistep methods in
terms of computational costs per time step. For reasons of ease of implementation, we only wish
to consider IMEX methods that treat the nonlinear termCpyqy explicitly and the termf py, zq
implicitly as it may be stiff and linear in most applications.

Among the class of implicit RK (IRK) methods, DIRK2 methods applied to (1.1) appear cheaper
to implement than fully implicit RK methods. DIRK methods require solving at most one linear
system per stage, for example, if (1.1) is linear. However, the order of convergence is greatly
limited by the stage order3 of the DIRK methods (which is at most 3 for most of the DIRK methods
in the literature). For example the DIRK methods with nonzero diagonal entries, e.g. most of the
methods in [1, 3], will give convergence of order at most 2 (see [9, p.18] and [10, Lemma4.4,
Thm.4.5, p.495-496]). All the DIRK methods in [19, 25, 20] have stage order at most 3, thus they
would lead to convergence of order at most 3 (according to [14, Thm.5.2]).

In the framework of exponential integrators, we have considered a direct application of the
Lie group methods proposed by the authors in [7] to solve (1.1). These methods are typically
constructed from IMEX partitioned RK methods with a DIRK part, and are referred to asDIRK-
CF (See Appendix A.3 for details). Without much surprise we found that the DIRK-CF methods
(constructed from various IMEX RK methods with DIRK parts) only give convergence of order
2, since both the stage orders of the DIRK and explicit RK (ERK) methods are low. We obtain a
similar observation with direct application of various IMEX RK methods (with DIRK parts) such
as those in [3] and [19].

Linear k-step BDF methods, on the other hand, are known to give convergence of orderp �
k, for 1 ¤ k ¤ 6, in both variables (see for example [10, VII.3]). The BDF methods areA-
stable for 1¤ k ¤ 2 andApαq-stable for 3¤ k ¤ 6. We however do not wish to treat the
nonlinear termCpyqy implicitly. IMEX multistep methods have been developed andapplied for the
time discretization of convection diffusion PDE problems such as the Burgers equations (see for
example [18, 4]) and also the incompressible Navier-Stokesequations (see [22, 17, 12, 24, 28, 8]).
Semi-discretization in space of the latter typically givesrise to an index 2 differential- algebraic
(DAE) system of the type (1.1). We hereby propose a new class of exponential integrators for
(1.1) which are multistep and based on the backward differentiation formula (BDF). We name
these methodsBDF-CF for short. The methods are a subclass of IMEX multistep methods and
has about the same implementation ease as the DIRK-CF but cangive us order of convergence
higher than 2 both in the algebraic and differential variables. We recall that explicit multistep
exponential integrators have recently been studied for semilinear ODEs by Calvo and Palencia
[5] and also by Ostermann and Thalhammer [23]. There the authors consider exponentials of the
linear term. The methods we present here can also be applied to such ODEs (if we can express the
nonlinear term in the formCpyqy), but we would treat the nonlinear term explicitly by exponentials
and the linear term implicitly.

Hence givenk initial values y0, . . . , yk�1, we define thek-step exponential BDF (BDF-CF)

1IMEX methods are time integration methods that treat, for example, the termCpyqy explicitly and the remaining
terms implicitly.

2A RK method with coefficientstai j ,bi , ciu, i, j � 1, . . . , s, is calleddiagonally implicitor DIRK if ai j � 0 for all
i ¡ j andaii � 0 for somei � 1, . . . , s.

3A RK method with coefficientstai j ,bi , ciu, i, j � 1, . . . , s, has (internal)stage order q, if q is the greatest integer
such that

°s
j�1 ai j c

k�1
j � ck

i {k, i � 1, . . . , s hold for all k � 1, . . . ,q.
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method as follows: Findpyk, zkq such that

αkyk � k�1̧

i�0

αiϕiyi � h fpyk, zkq, (1.3a)

0 � gpykq (1.3b)

whereϕi :� exp
�°k�1

j�0 ai�1, j�1hCpy jq	 , i � 0, . . . , k � 1, andai j P R, i, j � 1, . . . , k, are

coefficients of the method, whileαi , i � 0, . . . , k, are coefficients of the lineark-step classical BDF
method. Methods of this type permit the exact integration ofthe convection term via exponentials,
an idea also found useful in the DIRK-CF methods for convection dominated convection diffusion
PDEs [7] and in the multirate methods for atmospheric flow simulation [27]. We refer to this kind
of methods ascommutator-free4 (CF) multistep exponential integrators, since they involve matrix
exponentials whose exponents do not contain matrix commutators. Thus the name BDF-CF is
used for the method (1.3). In a more general setting involving CF exponential integrators [6], the
functionsϕi would be defined as a composition of matrix exponentials. However, in the BDF-
CF methods considered here single exponentials would suffice. More precisely we shall write a
k-order (typicallyk-step) method as BDFk-CF. The overall method is termedsemi-Lagrangianif
we treat each flow,ϕiyi , in a semi-Lagrangian fashion (described in [7, Sect.3.1]),and is found
useful for the time integration of convection diffusion PDEs and the Navier-Stokes equations.
Nevertheless, the flows can also be computed using other numerical methods such as the direct
approximation of the matrix exponentials via a Padé approximant or by using a Krylov subspace
method. The semi-Lagrangian approach was shown [7] to be more stable and accurate than the
latter two methods, in the solution of convection dominatedconvection-diffusion problems. A
further requirement in the semi-Lagrangian case is to have the matrix-valued functionCpyq linear.
In this paper the semi-Lagrangian approach has been used in all numerical experiments involving
time dependent PDEs.

Assuming once again that the system (1.1) arises from the semi-discretization (in space) of a
PDE (e.g.,the Navier-Stokes equations), then a close comparison of the BDF-CF methods with the
operator-integrating-factor splitting methods of Madayet al. [22] (also considered in [8]) will be
as follows: Findpyk, zkq such that

αkyk � k�1̧

i�0

αi ỹi � h fpyk, zkq, gpykq � 0, (1.4)

whereαi are coefficients of the classicalk�step BDF method, and ˜yi are solutions of linearized
pure convection problems 9̃y � Cppkptqqỹ, t P pti , tkq, ỹptiq � yi

wherepkptq P Rn is a pk � 1q-degree polynomial extrapolation of the initial values. The BDF-
CF methods, however, compute the values ˜yi :� ϕiyi in a different manner (without a special
linearization of the convection term).

The rest of the paper is organized as follows. In Section 2 we present a derivation of the new
class of methods. In Section 3 we state some convergence results for the methods and provide a
numerical evidence for the convergence of methods up to order 4. We discuss the stability of the
methods in Section 4, making comparisons with some well-known IMEX multistep methods in
the literature. Unless stated otherwise, we shall say that amethod has‘order’ p to refer to the
temporal order of convergence of the method. Also we shall only consider constant time steps,

4using the terminology of Celledoniet al. [6]
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which shall be written ash :� ∆t. Given initial time t0, we shall writetn to denote time leveln
such thattn :� t0� nh. For a given field variablev � vptq we denote the numerical approximation
at timetn by vn � vptnq. In general we shall use the notation} � } for an arbitrary but well-defined
norm of a vector or function.

2 Construction of commutator-free exponential BDF methods

Given a discrete time intervalt0, . . . , tK � T and initial datay0, . . . , yk�1, 1 ¤ k ¤ K, we describe
ak�step BDF-CF method as follows

Algorithm 1. BDF-CF method

for n� k� 1 to K � 1 do

ϕi � exp

�
h

ķ

j�1

ai�1, jCpyn�k� jq� , i � 0, . . . , k� 1,

αkyn�1 � k�1̧

i�0

αiϕiyn�1�k�i � h fpyn�1, zn�1q, (2.1a)

0 � gpyn�1q (2.1b)

end for

whereai, j P R, i, j � 1, . . . , k, are coefficients of the BDF-CF method andαi are coefficients of
the classicalk�step BDF method. Thus one can represent ak�step BDF-CF method in terms of
its coefficients as in the following table

yn�k�1 a1,1 . . . a1,k
...

... . . .
...

yn ak,1 . . . ak,k

Cpyn�k�1q . . . Cpynq
So that for eachn ¥ k� 1 the method solves for the unknown values,yn�1, zn�1, given the
initial valuesyn�k�1, . . . , yn. For reasons of convenience (but without loss of generality)we shall
often drop the indexn or simply treat the case withn � k � 1 as in (1.3). The first order (one-
step) BDF-CF method is simply the semi-explicit backward Euler method, obtained by choosing
ϕ0 � expphCpynqq in (1.3). We shall therefore only considerk-step methods, fork ¥ 2.

For simplicity we shall restrict the analysis of the methodsto an ODE of the form9y � Cpyqy� f pyq. (2.2)

Extension to the DAE (1.1) is more or less direct.
Let us denote the exact value at timet j by ŷ j :� ypt jq, j � 0, . . . k, and write

ϕ̂i :� exp
�

h
°k�1

j�0 ai�1, j�1Cpypt jqq	 , i � 0, . . . , k�1. Also let 9̂y j , :̂y j , . . . denote the derivatives

with respect to the time variable.
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2.1 Second order method (BDF2-CF)

Thetruncation errorτ2phq for a two-step method is given by

1
h

�
3
2

ŷ2 � 2ϕ̂1ŷ1 � 1
2
ϕ̂0ŷ0

� � f pŷ2q � τ2phq. (2.3)

For a classical second order BDF method we have

1
h

�
3
2

ŷ2 � 2ŷ1 � 1
2

ŷ0

� � Cpŷ2qŷ2 � f pŷ2q � Oph2q. (2.4)

For a second order methodτ2phq � Oph2q. Therefore combining (2.3) and (2.4) will give

1
h

�
2ϕ̂1ŷ1 � 1

2
ϕ̂0ŷ0 � 2ŷ1 � 1

2
ŷ0

��Cpŷ2qŷ2 � Oph2q, (2.5)

which is a reasonable requirement for a second order method.
Putting

ŷ0 � ŷ1 � h9̂y1 � Oph2q,
ŷ2 � ŷ1 � h9̂y1 � Oph2q,

we get via Taylor expansion (aboutt � t1q
Cpŷ2qŷ2 � Cpŷ1qŷ1 � hCpŷ1q 9̂y1 � hC1pŷ1qp 9̂y1qŷ1 � Oph2q,
ϕ̂0ŷ0 � ŷ0 � a11hrCpŷ1q � hC1pŷ1qp 9̂y1qspŷ1 � h9̂y1q � a12hCpŷ1qpŷ1 � h9̂y1q� h2

2
pa11� a12q2C2pŷ1qŷ1 � Oph3q,

ϕ̂1ŷ1 � ŷ1 � a21hrCpŷ1q � hC1pŷ1qp 9̂y1qsŷ1 � a22hCpŷ1qŷ1 � h2

2
pa21� a22q2C2pŷ1qŷ1 �Oph3q.

Substituting into (2.5) and comparing coefficients of like terms and powers ofh we obtain the
following order conditions on the coefficients for order 2

2pa21� a22q � 1
2
pa11� a12q � 1 � 0, (2.6a)�2a21� 1

2
a11� 1 � 0, (2.6b)

1
2
pa11� a12q � 1 � 0, (2.6c)pa21� a22q2 � 1

4
pa11� a12q2 � 0. (2.6d)

Solving this system yields a one-parameter set of coefficients, illustrated in the following table

yn�1 2p1� 2γq �4γ
yn γ 1� γ

Cpyn�1q Cpynq
from which we define the second order BDF2-CF methods as

3
2

yn�1 � 2ϕ1yn � 1
2
ϕ0yn�1 � h fpyn�1q, n ¥ 1, (2.7)
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whereϕ0 � expp2p1� γqhCpyn�1q � 4γhCpynqq , andϕ1 � exppγhCpyn�1q � p1� γqhCpynqq .
Applied to the DAE (1.1) we get

1
h
r3
2

yn�1 � 2ϕ1yn � 1
2
ϕ0yn�1s � f pyn�1, zn�1q,

0� gpyn�1q. (2.8)

2.2 Third order method (BDF3-CF)

The truncation errorτ3phq for a three-step method is given by

1
h

�
11
6

ŷ3 � 3ϕ̂2ŷ2 � 3
2
ϕ̂1ŷ1 � 1

3
ϕ̂0ŷ0

� � f pŷ3q � τ3phq. (2.9)

A classical third order BDF method will satisfy

1
h

�
11
6

ŷ3 � 3ŷ2 � 3
2

ŷ1 � 1
3

ŷ0

� � Cpŷ3qŷ3 � f pŷ3q � Oph3q. (2.10)

Combining (2.9) and (2.10), and requiring thatτ3phq � Oph3q we get

1
h

�
3ϕ̂2ŷ2 � 3

2
ϕ̂1ŷ1 � 1

3
ϕ̂0ŷ0 � 3ŷ2 � 3

2
ŷ1 � 1

3
ŷ0

��Cpŷ3qŷ3 � Oph3q. (2.11)

We put in (2.11)

ŷ0 � ŷ1 � h9̂y1 � h2

2
:̂y1 � Oph3q,

ŷ2 � ŷ1 � h9̂y1 � h2

2
:̂y1 � Oph3q,

ŷ3 � ŷ1 � 2h9̂y1 � 2h2:̂y1 � Oph3q,
and carry out a Taylor expansion (aboutt � t1q. Comparing coefficients of like terms and powers
of h we obtain the order conditions for order 3, comprising of 10 linearly dependent equations in 9
unknowns (see Appendix A.2 ). Solving the system of equations in Maple yields a three-parameter
family of methods, illustrated in the following table

yn�2
33
2 � 9

4β� 9γ �18� 9α� 9
2β� 9γ 9

2 � 9α� 9
4β

yn�1 3� 2α� 1
2β� 2γ β �1� 2α� 1

2β� 2γ
yn α 1� α� γ γ

Cpyn�2q Cpyn�1q Cpynq ,

from which the third order BDF3-CF methods are defined forn ¥ 2.

2.3 Fourth order method (BDF4-CF)

We determine the coefficients,tai ju, i, j � 1, . . . , 4, for the fourth order method by requiring that
the equation

1
h

�
4ϕ̂3ŷ3 � 3ϕ̂2ŷ2 � 4

3
ϕ̂1ŷ1 � 1

4
ϕ̂0ŷ0 � 4ŷ3 � 3ŷ2 � 4

3
ŷ1 � 1

4
ŷ0

��Cpŷ4qŷ4 � Oph4q (2.12)

is satisfied. Again using Taylor expansion and comparing coefficients of like terms we obtain a
6-parameter set of coefficients given by
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yn�3 4α� 4σ� 8̺� 12� γ � 2κ �4α� 8̺� 2γ � 3κ � 8� 4σ
yn�2 �3β� 3α� 3

2̺� 3
16γ � 3

8κ� 3
4σ� 3

2 9β� 9
2α� 9

8̺� 9
32γ� 9

32κ � 9
8σ� 21

4
yn�1 α 2� ̺� σ� α
yn β 1

4 � 3β� 1
2α� 1

8̺� 3
32κ� 1

32γ� 1
8σ

Cpyn�3q Cpyn�2q
γ κ�9β� 9

4α� 9
4̺� 9

16κ � 9
4σ� 9

2
3
8̺� 3β� 3

4α� 3
32γ � 15

32κ � 3
8σ� 3

4
σ ̺

3β� 3
4α� 3

4̺� 1
16γ � 3

16κ �β� 1
4α� 5

8̺� 1
32γ� 3

32κ � 1
8σ� 3

4
Cpyn�1q Cpynq ,

defining the fourth order method forn ¥ 3.
A similar procedure can be used to design BDF-CF methods of order up to 6. It is not yet clear

if one can obtain stable methods of order higher than 6 in thismanner, since the classicalk-step
BDF methods are only stable up to tok ¤ 6.

3 Some Convergence Results for the BDF-CF methods

We shall follow the strategy used by Haireret al. [10, 9] to justify the convergence of the BDF-CF
methods (2.1) when applied to the DAE (1.1). We begin with an existence and uniqueness theorem
similar to the one in [10, Thm3.1,p.482].

Theorem 3.1. Suppose that the initial values yj , zj , j � 0, . . . , k� 1, satisfy

y j � ypt jq � Ophq, zj � zpt jq � Ophq, gpy jq � Oph2q. (3.1)

Then the nonlinear system

αkyk � k�1̧

i�0

αiϕiyi � h fpyk, zkq, (3.2a)

0 � gpykq (3.2b)

as in (1.3) withαk � 0, has a solution for h¤ h0. Furthermore, this solution is unique and
satisfies

yk � yptkq � Ophq, zk � zptkq � Ophq. (3.3)

The proof follows the pattern used by Hairer and Wanner [10, Thm3.1, p.482] with minor
modifications.

Proof. We set

η � � k�1̧

i�0

αi

αk
ϕiyi , (3.4)

and defineζ close tozptkq such that

gypηqp f pη, ζq �Cpηqηq � Ophq. (3.5)

We then replaceh{αk by a new step size which we again denote byh, without loss of generality.
The system (3.2) becomes equivalent to

yk � η� h fpyk, zkq, (3.6a)

0 � gpykq, (3.6b)

7



which is the backward Euler method with initial datapη, ζq. Thus we can apply “Theorem 3.1” of
[9, p.31] to conclude the proof. It only suffices therefore to show that

η� yptkq � Ophq, ζ � zptkq � Ophq, gpηq � Oph2q. (3.7)

(a) The first part of (3.7) follows by using thatϕiyi � yi �Ophq and
°k

i�0αi � 0, together with
the assumptions in (3.1). Thus we get

η� yptkq � � 1
αk

k�1̧

i�0

αipϕiyi � yptkqq� � 1
αk

k�1̧

i�0

αipyi � yptkqq � Ophq� � 1
αk

k�1̧

i�0

αirpyi � yptiqq � pyptiq � yptkqqs � Ophq.
So that

η� yptkq � Ophq.
(b) Lastly, using the constraint (1.2) and the fact thatgy fz is invertible, we see (via Taylor

expansion) that

gypηqp f pη, ζq�Cpηqηq � gypyptkqq fzpyptkq, zptkqq�pζ�zptkqq�Op}η�yptkq}q�Oph2q. (3.8)

Inserting (3.5) we get
ζ � zptkq � Ophq.

(c) The proof of the third part of (3.7) follows exactly as in [10,Thm3.1,p.482].

�

The next theorem, which is proved exactly as in [10, Thm3.2, p.484], considers the influence of
perturbations in the application of BDF-CF methods to (1.1).

Theorem 3.2. Suppose yk, zk are given by (3.2) and consider perturbed valuesŷk, ẑk satisfying

αkŷk � k�1̧

i�0

αiϕ̂i ŷi � h fpŷk, ẑkq � hδ, (3.9a)

0 � gpŷkq � θ (3.9b)

whereϕ̂i :� exp
�°k�1

j�0 ai�1, j�1hCpŷ jq	 , i � 0, . . . , k � 1. In addition to the assumptions of

Theorem 3.1, suppose that for j� 0, . . . , k� 1,

ŷ j � y j � Ophq, ẑj � zj � Ophq, δ � Ophq, θ � Oph2q. (3.10)

Then, for h¤ h0, we have the estimates}ŷk � yk} ¤ Const
�}ΨpŶ0 � Y0q} � h}δ} � }θ}� , (3.11a)}ẑk � zk} ¤ Const

h

�
k�1̧

j�0

}gypŷkqpϕ̂ j ŷ j � ϕ jy jq} � h}ΨpŶ0 � Y0q} � h}δ} � }θ}�(3.11b)

whereΨpŶ0�Y0q :� pϕ̂k�1ŷk�1�ϕk�1yk�1, . . . , ϕ̂0ŷ0�ϕ0y0qT and}ΨpŶ0�Y0q} :� max
0¤ j¤k�1

}ϕ̂ j ŷ j�
ϕ jy j}.
8



3.1 Local error

Suppose we consider exact initial valuesy j � ypt jq, zj � zpt jq, j � 0, . . . , k� 1, in the BDF-CF
formula (3.2) and also choose in (3.9) ˆy j � ypt jq, ẑj � zpt jq, j � 0, . . . , k. Then we will have
from (3.9) thatθ � 0, and by the construction of the BDF-CF methods the truncationerror gives
δ � Ophpq. Also, since we now havey j � ŷ j , zj � ẑj for j   k, we get the following local error
estimate, as a consequence of the estimates of Theorem 3.2.

Theorem 3.3. Suppose that the BDF-CF method (3.2) applied to the DAE (1.1)has a truncation
error of order p (in the sense implied by (2.3)). Then its local error satisfies

yk � yptkq � Ophp�1q, zk � zptkq � Ophpq. (3.12)

3.2 Global Error

We observe that the convergence of the BDF-CF methods will require that the matrix-valued func-
tion Cpyq is sufficiently smooth on the space spanned by the initial data at each advancement in
time.

Remark 3.4. We have the following remarks on the global convergence of the methods.

(a) The result in Theorem 3.3 is still obtainable if we replace the terms}ΨpŶ0 � Y0q} and}gypŷkqpϕ̂ j ŷ j � ϕ jy jq}, j � 0, . . . , k� 1, in (3.11) by the approximation (linearization)}gypŷkqpϕ̂ j ŷ j � ϕ jy jq} ¤ }gypŷkqpŷ j � y jq} � Oph}gypŷkqŷ j � y j}q, (3.13a)}ΨpŶ0 � Y0q} ¤ }∆Y0} �Oph}∆Y0}q (3.13b)

where∆Y0 :� pŷk�1 � yk�1, . . . , ŷ0 � y0qT and}∆Y0} :� max
0¤ j¤k�1

}ŷ j � y j}. Such approx-

imations are possible by using Taylor expansion methods, which in turn depend on the
smoothness of the functionCpyq.

(b) Using (3.13) appropriately we can follow the same proof as “Theorem 3.5” of [10, p.486]
to obtain the convergence of the BDF-CF applied to the index 2DAE (1.1). Thus according
to “Theorem 3.5” of [10, p.486] we expect to get convergence of order p � k, for k ¤ 6, in
both the algebraic and differential variables, upon applying thek�step BDF-CF method as
detailed out in Algorithm 1 on page 4. This is investigated numerically in the following two
subsections.

3.3 Numerical example

We here consider the index 2 problem (see [11])9y1 � y2
1 � z� cost � 1,9y2 � y2
1 � y2

2 � sint � 1, t P r1, 2s,
0 � y2

1 � y2
2 � 1,

(3.14)

whose exact solution is given by

y1ptq � sint, y2ptq � cost, zptq � cos2 t.

This DAE is comparable to (1.1) with

y� py1, y2qT , gpyq � y2
1�y2

2�1, Cpyq � �
y1 0
y1 y2



, f � f pt, y, zq � �

z� cost � 1� sint � 1



.
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We now solve (3.14) using each of the methods BDF1-CF, BDF2-CF (γ � 0), BDF3-CF (α �
β � γ � 0) and BDF4-CF (α � β � γ � σ � ̺ � κ � 0). Since the DAE system is small, we
have computed the matrix exponentials using MATLAB’s builtin expm function. The global error
(in the discreteL2-norm, see Appendix A.1) at timeT � 2, is plotted as a function of time step
h, taking h � 1{2r , r � 4, . . . , 11. As shown in Figure 1, we observe that fork � 1, . . . , 4, the
method BDFk-CF gives convergence of orderp� k in both the differential and algebraic variables
y andz. This agrees with the conclusion in Remark 3.4 fork ¤ 4.
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Figure 1: Order of different BDF-CF methods to index 2 DAE (3.14). Errors are measured (in the
discreteL2-norm) at timeT � 2 as functions of time steph � 1{2r , r � 4, . . . , 11. (a)
shows the errors in the differential variabley, while (b) shows the errors in the algebraic
variablez.

3.4 Numerical test on Navier-Stokes

Next we consider the incompressible Navier-Stokes equations inR2,

ut � pu � ∇qu � �∇p̄� 1
Re
∇

2u, in Ω, (3.15a)

∇ � u � 0, in Ω, (3.15b)

with prescribed initial data and velocity boundary conditions. The constantRe is the Reynolds
number,x � px1, x2qT P Ω � R2, t P r0,Ts, while u � upx, tq � pu1, u2qT P R2 is the fluid
velocity andp̄� p̄px, tq P R is the pressure.

For the spatial discretization we employ a spectral elementmethod (SEM) based on a standard
Galerkin weak formulation. The approximation is done inPN�PN�2 compatible velocity-pressure
discrete spaces, i.e., keeping the time variablet fixed, we approximate the velocity by aN-degree
Lagrange polynomial based on Gauss-Lobatto-Legendre (GLL) nodes in each spatial coordinate,
and the pressure bypN � 2q-degree Lagrange polynomial based on Gauss-Legendre (GL) nodes.
A more vivid description of this type of spatial discretization of Navier-Stokes is given by Fischer
et.al [8]. The result is a semi-discrete (time-dependent) system of equations

B9y�Cpyqy� Ay� DTz � 0, (3.16a)

Dy � 0 (3.16b)

wherey � yptq P Rn, z � zptq P Rm, represent the discrete velocity and pressure respectively,
while the matricesA, B,C,D,DT represent the discrete Poisson (negative Laplace), mass, convec-
tion, divergence and gradient operators respectively. Thesystem (3.16) satisfies the requirements
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of the index 2 DAE (1.1), withf py, zq � B�1pAy� DTzq, gpyq � Dy, linear in their arguments.
The matrixgy fz � DB�1DT is invertible sinceB is positive definite. In fact, givenw P Rm, w � 0,
we have that

wTpgy fzqw � pDTwqTB�1DTw ¡ 0,

makingDB�1DT positive definite (assuming that the compatibility of the discrete spaces makes
D to be of full rank). Thus the BDF-CF methods are applicable for the time integration of (3.16).

As a test example we consider the Taylor vortex problem [22, 26], with exact (analytic) solution
given by

u1 � � cospπx1q sinpπx2qexpp�2π2t{Req, (3.17a)

u2 � sinpπx1q cospπx2qexpp�2π2t{Req, (3.17b)

p̄ � �1
4
rcosp2πx1q � cosp2πx2qsexpp�4π2t{Req. (3.17c)

In this example we have used Dirichlet boundary conditions on the spatial domainΩ � r�1, 1s2,
spectral element discretization (SEM) of orderN � 12 with Ne � 4 rectangular elements, and
the time integration is done up to timeT � 1 using different constant stepsizesh � T{2r , r �
4, . . . , 9. The error in both time and space is measured. The error (at time T) in the velocity is
measured in theH1-norm and the error in the pressure is measured in theL2-norm (see Appendix
A.1 for description of these norms). Figure 2 shows the temporal orders of convergence obtained
with the methods BDF1-CF, BDF2-CF (withγ � 0) and BDF3-CF (withα � β � γ � 0) applied
to the semi-discrete incompressible Navier-Stokes problem (3.16). The Reynolds number used
is Re � 2π2. The same example was also used to test the fourth order method, BDF4-CF (not
included in the figures), which showed a better overall convergence than the lower order methods.
In this case, however, the temporal error is no longer dominant over the spatial error, and the
overall error (both in time and space) is no longer monotonicwith respect toh.
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Figure 2: Temporal order test of different BDF-CF methods for the incompressible Navier-StokespRe � 2π2q. Taylor vortex problem onx, y P r�1, 1s, considered. We use Dirichlet
BCs onΩ � r�1, 1s2 and SEM of orderN � 12 with Ne � 4 uniform rectangular
elements. Errors are measured at timeT � 1 and plotted as functions of time step
h � T{2r , r � 4, . . . , 9. (a) The errors in the velocity measured in theH1-norm. (b) The
errors in the pressure measured in theL2-norm.
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4 Stability of the BDF-CF methods

We study the stability of the BDF-CF methods, and make some comparisons with the IMEX
multistep semi-explicit BDF (SBDF) methods of Ascheret.al [4], also studied in [18, 13]. The
following remark shows a relation between the BDF-CF methods and the SBDF methods.

Remark 4.1. If we introduce linearizations of the form

expphCpy0qq y1 � y1 � hCpy0qy1

in the BDF-CF1, BDF-CF2 (withγ � 0) and BDF-CF3 (withα � 0, β � 2, γ � 1), we obtain
exactly the SBDF methods of Ascheret.al [4].

4.1 A nonlinear problem

The authors in [4] demonstrated the strong stability and time-step restrictions of the SBDF meth-
ods among others, in the treatment of convection-diffusion problems with small viscosity coeffi-
cients. An interesting observation is the improved stability of the BDF-CF over the SBDF methods
at smaller viscosities. We consider the Burgers equation in1D

ut � uux � νuxx, x P p�1, 1q, t ¡ 0 (4.1)

with initial condition up0, xq � sinπx, and homogeneous Dirichlet boundary conditions. We
discretize in space via the Gauss-Lobatto-Chebyshev spectral collocation method to obtain an
ODE of the form (2.2). This same test problem was considered in [4]. In Figure 3 we show the
relative error inL8 grid-norm measured at timeT � 2 for a range a viscosity parameters in the
range 0.001 ¤ ν ¤ 0.1. For each time steph � 1{10, 1{20, 1{40, 1{80, we have usedN � 40
spatial nodes. The reference or “exact” solution is computed for N � 80 spatial nodes using
MATLAB’s ode45 built in function, with sufficiently small relative and absolute error tolerances.

An observation from Figure 3 seems to reveal that the BDF-CF methods are numerical more
stable (with larger time step restrictions) than the SBDF methods. Unlike the BDF-CF methods,
the SBDF methods give unbounded solutions at smaller viscosity parameters, especially as the
Courant number increases with increasing time steph. The better performance of the BDF-CF
methods at low viscosities is believed to be partly due to exponential integration of the convection
term and partly due to the semi-Lagrangian computation of exponential flows (see also [7]).

4.2 Linear Stability

We now consider a linear stability analysis like the one donein [4], whereby we apply the methods
to a simple problem of the type 9y� pλ� ı̂υqy, (4.2)

whereλ, υ P R, and ı̂ is the unit imaginary number satisfying ˆı2 � �1. Notice that (4.2) is
equivalent to (2.2) withCpyq � ı̂υI and f pyq � λy.

Letω :� pλ� ı̂υqh P C, and letωR andωI denote the real and imaginary parts ofω respectively,
suppressing the dependence onh. Applying the SBDF2 method to (4.2) yields the characteristic
polynomial

Φpτ;ωq :� p3� 2ωRqτ2 � 4p1� ı̂ωI qτ� 2ı̂ωI � 1;

meanwhile the BDF2-CF method has characteristic polynomial

Φpτ;ωq :� p3� 2ωRqτ2 � 4êıωI τ� e2ı̂ωI .
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Figure 3: Burgers equation over a range of viscosity parameters. We use Dirichlet BCs on the
domainr�1, 1s; N � 40. Relative errors (in theL8-norm) are measured at timeT � 2
as functions of viscosityν P t0.001, 0.002, . . . , 0.01, 0.02, . . . , 0.1u, for time stepsh �
1{10, 1{20, 1{40, 1{80. SBDF1 and BDF1-CF are the first order methods. For BDF2-CF
we usedγ � �1, while for BDF3-CF we usedα � 1, β � �13{2, γ � 3. Note: The
plot labels in (a) apply to all four diagrams.

The stability region is then given by the set

S :� tω P C : |maxtτ : Φpτ;ωq � 0u| ¤ 1u
In Table 1 we write down the characteristic polynomials of the second to fourth order BDF-CF
and SBDF methods. Figure 4 shows the stability regions (shaded by contour lines) for these SBDF
and BDF-CF methods.

We observe from Figure 4 that all the BDF-CF methods areA-stable. In particular the BDF2-CF
has characteristic roots given by

τ1,2 � eı̂ωI r2�a1� 2ωRs{p3� 2ωRq,
and it is easy to show that forωR ¤ 0 we have|2�`1� 2ωR| ¤ |3� 2ωR|, which implies that|τ1,2| ¤ 1. In fact, givenωR � �r, r ¥ 0,|2�a1� 2ωR| � |2�`1� 2r| ¤ 2�b|1� 2r|.
For 0¤ r ¤ 1{2,

2�b|1� 2r| � 2�`1� 2r ¤ 3¤ 3� 2r � |3� 2ωR|;
13



Table 1: Characteristic polynomials for BDF-CF and SBDF methods

order BDF-CF
2

�
3
2 � ωR

�
τ2 � 2êıωI τ� 1

2e2ı̂ωI

3
�

11
6 � ωR

�
τ3 � 3êıωI τ2 � 3

2e2ı̂ωI τ� 1
3e3ı̂ωI

4
�

25
11 � ωR

�
τ4 � 4êıωI τ3 � 3e2ı̂ωI τ2 � 4

3e3ı̂ωI � 1
4e4ı̂ωI

order SBDF
2

�
3
2 � ωR

�
τ2 � 2p1� ı̂ωI qτ� 1

2p1� 2ı̂ωI q
3

�
11
6 � ωR

�
τ3 � 3p1� ı̂ωI qτ2 � 3

2p1� 2ı̂ωI qτ� 1
3p1� 3ı̂ωI q

4
�

25
11 � ωR

�
τ4 � 4p1� ı̂ωI qτ3 � 3p1� 2ı̂ωI qτ2 � 4

3p1� 3ı̂ωI q � 1
4p1� 4ı̂ωI q

and forr ¡ 1{2,
2�b|1� 2r| � 2�`2r � 1 ¤ 2� 2r ¤ 3� 2r � |3� 2ωR|.

On the other hand, the SBDF methods are onlyApαq-stable, in sense of [10, Definition2.1,p.250],
with α   900 (see Figure 4). The SBDF4 shows even smaller stability region than the methods of
lower order in its class.

We can thus conclude that for a linear convection-diffusion problem with constant coefficients
and diffusion parameterν ¡ 0, the time-step restrictions due to stability are much more relaxed in
the BDF-CF methods than for the SBDF, both in the cases of small and largeν. The SBDF methods
poses even more severe time-step restrictions for smallν. This is evident from the stability regions
plotted in Figure 4.

Conclusion

So far we have derived new exponential multistep methods based on the BDF scheme, that can
be applied to both ODEs and a class of index 2 DAEs in a semi-explicit or IMEX manner. The
methods are shown to be unconditionally stable (e.g. for linear problems). Numerical experiments
given reveal that when the methods are suitable for convection dominated convection diffusion
problems when implemented in a semi-Lagrangian fashion. The convergence of the methods
have been verified numerically on a Navier-Stokes problem. An interesting future work will be
to analize or investigate the Courant-Friedrichs-Lewy (CFL) condition in the limiting case as the
viscous term vanishes.
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Figure 4: Stability domainsS � C (shaded gray, with contour lines) for SBDF and BDF-CF
methods. Each domainS (partly shown) is unbounded and includes the whole negative
real axis, and part/whole of the imaginary axis.

Appendix

A.1 Definition of norms

For a square-integrable functionu : Ω Ñ Rn, whereΩ � Rm is bounded and connected, theL2-
andH1-norms, denoted} � }L2, } � }H1, are defined by}u}2

L2
:� ņ

i�1

»
Ω

u2
i dΩ, (A.3)

and theH1-norm is defined by }u}2
H1

:� ņ

i�1

»
Ω

u2
i dΩ. (A.4)

In the spectral element approximations the continuous integrals of numerical solutions are accu-
rately computed using Gauss quadrature rules.

Given a vectory � py1, . . . , yKqT P RK, thediscrete L2-norm, denoted} � }2, is defined by}y}2
2 :� Ķ

j�1

y2
j . (A.5)
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A.2 Order conditions for order 3 method BDF3-CF

3pa31 � a32� a33q � 3
2
pa21� a22� a23q � 1

3
pa11� a12� a13q � 1, (A.6a)

3pa31� a32� a33q � 1
3
pa11� a12� a13q � 2, (A.6b)

3pa33� a31q � 3
2
pa23� a21q � 1

3
pa13� a11q � 2, (A.6c)

3pa31� a32� a33q � 1
3
pa11� a12� a13q � 4, (A.6d)

3pa31� a33q � 3
2
pa21� a23q � 1

3
pa11� a13q � 4, (A.6e)

3pa33� a31q � 1
3
pa13� a11q � 4, (A.6f)

3pa31� a32� a33q2 � 3
2
pa21� a22� a23q2 � 1

3
pa11� a12� a13q2 � 0, (A.6g)

3pa31� a32� a33q2 � 1
3
pa11� a12� a13q2 � 0, (A.6h)

3pa31� a32� a33q3 � 3
2
pa21� a22� a23q3 � 1

3
pa11� a12� a13q3 � 0, (A.6i)

3pa31� a32� a33qpa33� a31q � 3
2
pa21� a22� a23qpa23� a21q�1

3
pa11� a12� a13qpa13� a11q � 0. (A.6j)

A.3 DIRK-CF methods

Suppose the pairtai j , bi , ciu andtãi j , b̃i , c̃iu, for i, j � 1, . . . , s, define the coefficients of as-stage
additive partitioned RK method (for DIRK-CF the partitioned RK coefficients are such that the
first is DIRK and the second is ERK). We define coefficientsα j

il , β
j
l , l � 1, . . . , J, for some integer

J ¥ 1, such that

ãi j � J̧

l�0

α
j
il , b̃ j � J̧

l�0

β
j
l . (A.7)

Then a direct application of the DIRK-CF methods to (1.1) forone time steprtn, tn � hs is given
by the following algorithm:

Algorithm 2. DIRK-CF method

for i � 1 to sdo

ϕi � exp

�
h

ķ

αk
iJCpYkq� � . . . � exp

�
h

ķ

αk
i1CpYkq� ,

Yi � ϕiyn � h
j̧

ai jϕiϕ
�1
j f pYj ,Z jq, (A.8a)

0 � gpYiq, (A.8b)
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end for

ϕs�1 � exp

�
h

ķ

βk
JCpykq� � . . . � exp

�
h

ķ

βk
1Cpykq� ,

yn�1 � ϕs�1yn � h
i̧

biϕi f pYi ,Ziq, (A.8c)

0 � gpyn�1q, (A.8d)

which computes the numerical solutionyn�1 from a given initial valueyn. The valuesYi ,Zi

for i � 1, . . . , s, denote the numerical approximations of the stage valuesyptiq, zptiq respectively,
and

°
j denotes

°s
j�1 . The method is easy to implement when the coefficientstai j , bi , ciu, i, j �

1, . . . , s, defines a DIRK method. Typically the constraints, 0� gpYiq, 0 � gpyn�1q, are enforced
via a projection technique [2, 10, 21, 22]. If the DIRK methodis stiffly accurate we immediately
obtain thatzn�1 � Zs, otherwise if the RK matrixpai j q is invertible, we get

zn�1 � zn � ş

i j�1

ωi j pZ j � znq, (A.9)

whereωi j are entries of the inverse of the RK matrixpai j q (see [10]).
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