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Abstract

Two successive wave heights are modeled by a Gaussian copula, which is referred
to as the Nataf model. Results with two initial distributions for the transformation
are presented, the Næss (1985) model and a two-parameter Weibull distribution,
where the latter is in best agreement with data. The results are compared with
existing models. The Nataf model has also been used for modeling three successive
wave heights.

Results show that the Nataf transformation of three successive wave heights can be
approximated by a first order autoregressive model. This means that the distribution
of the wave height given the previous wave height is independent of the wave heights
prior to the previous wave height. Thus, the joint distribution of three successive
wave heights can be obtained by combining conditional bivariate distributions. The
simulation of successive wave heights can be done directly without simulating the
time series of the complete surface elevation.

Successive wave periods with corresponding wave heights exceeding a certain
threshold have also been studied. Results show that the distribution for succes-
sive wave periods when the corresponding wave heights exceed the root-mean-square
value of the wave heights, can be approximated by a multivariate Gaussian distribu-
tion.

The theoretical distributions are compared with observed wave data obtained
from field measurements in the central North Sea and in the Japan Sea, with lab-
oratory data and numerical simulations.
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1 Introduction

In design and analysis of ships and offshore structures a good description of the surface
elevation is important. The surface elevation can be described by a number of parameters
for individual waves, e.g., the wave height, the wave period, the wave length and the wave
steepness. It is important to find good statistical models that give accurate parameter pre-
dictions and corresponding uncertainty estimates, and it is therefore of interest to find both
marginal probability distributions as well as joint probability distributions for combined
parameters or a single parameter in successive waves.

Estimation of the probability of a wave height exceeding a critical level has long been
recognized as important statistics in design and safety evaluation of coastal and offshore
structures and vessels. However, when e.g. calculating wet-deck slamming and green water
loads, or when selecting the deck elevation of a fixed offshore platform, it is the wave
crest height rather than the total wave height that is of interest. A number of marginal
distributions for the wave crest height are available, both theoretical models and empirical
models. Longuet-Higgins (1952) first introduced the Rayleigh distribution for prediction
of the wave amplitude in a narrow-banded random sea. Cartwright and Longuet-Higgins
(1956) modified the Rayleigh distribution to account for a more broad-banded random sea
by including the spectral bandwidth parameter. In severe sea states nonlinear effects must
be taken into account. A summary of some of the wave crest models can be found in
Prevosto and Forristall (2002). Joint distributions of successive wave crest heights will not
be discussed further in this paper, but this is thoroughly described in Wist et al. (2002)
and Wist (2003).

In addition to the distributions for the wave crest heights, several distributions have been
proposed for the total wave height in order to improve the model of Longuet-Higgins
(1952). Longuet-Higgins (1980) and Næss (1985), among others, have modified the model
to give a better fit to measured wave data. A summary of some of the wave height models
can be found in Vinje (1989). Several two-dimensional distributions exist for modeling
two successive wave heights. These are based on transformations of well known joint
distributions, e.g., the two-dimensional Rayleigh distribution (see Kimura (1980)), or the
two-dimensional Weibull distribution (see e.g. Myrhaug et al. (1995)). It is also of interest
to consider a joint distribution for more than two successive wave heights. Extending the
existing two-dimensional distributions to three-dimensional distributions or higher, is not
possible, since a three-dimensional Weibull distribution is not known. Another approach
must therefore be used, e.g., by using a Nataf transformation (Nataf, 1962) as described
in this paper.

Closely related to the joint distributions is the conditional distribution, e.g., to know the
probability of a wave height exceeding a specified value given that the previous wave height
exceeded the same value. By approximating the process of successive wave heights by a first
order autoregressive (AR(1)) model, the distribution of the wave height given the previous



wave heights is independent of the wave heights prior to the previous wave heights. Thus,
only two-dimensional distributions are required to investigate the conditional statistical
properties.

The study of wave periods is relevant in analysis of ships and structures that can be
excited to move near resonance. For critical wave periods it is also of interest to know the
corresponding wave height. Closely related to this is the study of conditional distributions,
e.g., to know the probability distribution of two or more successive wave periods given
that the corresponding wave heights exceeded a given value. This is of interest e.g. when
studying parametric roll motion of ships. Ships in head sea can under given conditions
experience parametric roll motion when the wave encounter period is approximately half
the natural period of roll motion and the wave heights are exceeding a critical level, see
France et al. (2003).

The study of marginal probability distributions for wave periods have been addressed by
Bretschneider (1959). He assumed that the wave length was proportional to the square
of the wave period, and combined this with a transformation of the Rayleigh distribution.
Longuet-Higgins (1975, 1983) presented two models for the marginal probability distri-
butions for wave periods, where both models were obtained theoretically from the joint
probability density function (pdf) of the envelope amplitude and the time derivative of the
envelope phase. The Longuet-Higgins (1975) model was symmetric about the mean wave
period, while the Longuet-Higgins (1983) model was asymmetric. Cavanié et al. (1976)
presented a joint pdf for wave heights and wave periods that accounted for the asymmetry
in the wave periods. Tayfun (1993) presented a joint distribution of wave heights and wave
periods that was conditioned on the wave height being above a threshold, given by the
mean wave height. The resulting distribution was Gaussian with modified mean value and
standard deviation.

Most theoretical models are based on the narrow-band approximation, but Lindgren and
Rychlik (1982) presented a joint distribution of wave heights and wave periods that also
are valid for broad-banded sea states. However, the expressions involved are not in a
closed form, thus numerical integration is required. Rychlik et al. (1997) also presented
distributions for ocean wave parameters using a transformed Gaussian model.

The study of distributions for wave heights and wave periods in sea states with two-peaked
spectra have been addressed by Rodŕıguez and Guedes Soares using a four-parameter
wave spectrum model, which is a combination of two JONSWAP spectra (Guedes Soares,
1984). A series of papers have been presented on wave heights (Rodŕıguez et al., 2002),
wave periods (Rodŕıguez and Guedes Soares, 2000) and wave heights and wave periods
(Rodŕıguez and Guedes Soares, 1999, 2001).

Fewer models have been presented for joint distribution of two successive wave periods.
Kimura (1980) presented a two-dimensional Weibull distribution and compared the theo-
retical model with data from numerical simulations. Myrhaug and Rue (1993) presented



a two-dimensional distribution based on the Bretschneider (1959) model. A revised model
was given in Myrhaug and Rue (1998). Myrhaug and Slaattelid (1999) presented a para-
metric model of the joint distribution of two successive wave periods. The model was
obtained as a best fit to measured wave data from the Frigg field in the Central North Sea.
The data included more than 3 million individual waves. One application of these models
is the study of near-resonant rolling of ships in beam seas by Myrhaug et al. (2000).

2 Joint distributions of successive wave heights

2.1 Background

The sea surface elevation is assumed to be a stationary, Gaussian, narrow-banded ran-
dom process. Then, according to Longuet-Higgins (1952), the wave height ηh is Rayleigh
distributed, i.e.,

FH(h) = 1 − exp
{

−h2
}

; h =
ηh

hrms
≥ 0, (1)

where h is the dimensionless wave height and hrms = 2(2m0)
1/2 is the root-mean-square

value of the linear wave height. The nth spectral moment, mn, is defined by

mn =

∫ ∞

0

ωnS(ω) dω; n = 0, 1, 2, · · · , (2)

where S(ω) is the one-sided wave spectrum and ω is the angular wave frequency. Later
Goda (1974), Haring et al. (1976) and Forristall (1978) among others, showed by compar-
ison with data from the Japanese coasts and the Gulf of Mexico, respectively, that this
choice of normalizing factor overpredicts the wave heights. Forristall (1978) analyzed 116
hours of hurricane generated waves from the Gulf of Mexico, and fitted a two-parameter
Weibull distribution to the data. Later Longuet-Higgins (1980) showed that the same data
were well predicted by the Rayleigh distribution in Eq. (1), if the normalizing factor was
selected as h̃rms = 1.85(2m0)

1/2. The reduction in the rms-value was explained by the finite
bandwidth in the field data, which also was discussed in general by Boccotti (1982).

Næss (1985) used a different approach to derive an expression for the wave height in a

stationary, narrow-banded Gaussian wave train. By defining ρN = Rη(τ/2)
Rη(0)

, where Rη(τ) is

the autocorrelation function of the Gaussian wave elevation, the distribution function of
the dimensionless wave height was given by

FH(h) = 1 − exp

{

− 2h2

1 − ρN

}

. (3)



The joint density function of two successive wave heights H1 and H2 is given by the two-
dimensional Rayleigh distribution (see Longuet-Higgins (1986))

fH1,H2
(h1, h2) =

4h1h2

1 − κ2
h

exp

{

−h2
1 + h2

2

1 − κ2
h

}

I0

[

2κhh1h2

1 − κ2
h

]

; h1 =
ηh1

hrms
, h2 =

ηh2

hrms
, (4)

where I0 denotes the modified Bessel function of zeroth order given by

I0(z) =
1

π

∫ π

0

ez cos θ dθ. (5)

Furthermore, the parameter κh is related to the correlation coefficient, ρh, between H1 and
H2 by

ρh ≡ ρH1,H2
=

E(κh) − 1
2
(1 − κ2

h)K(κh) − π
4

1 − π
4

, (6)

where K(κh) and E(κh) are complete elliptic intergrals of the first and second kind, respec-
tively. Based on the Næss (1985) model in Eq. (3), transformation of variables combined
with Eq. (4) give the pdf of H1 and H2 as

fH1,H2
(h1, h2) =

16h1h2

(1 − κ2
h)(1 − ρN)2

exp

{ −2(h2
1 + h2

2)

(1 − κ2
h)(1 − ρN )

}

I0

[

4κhh1h2

(1 − κ2
h)(1 − ρN)

]

. (7)

In the following Eq. (7) will be referred to as the two-dimensional Næss model.

2.2 Successive wave heights modeled by using copulas

If the marginal distribution functions are known, then a joint distribution function can
be constructed by using copulas. An introduction and overview of the subject is given
in Nelsen (1999), and a historical development can be found in Schweizer (1991). It was
Sklar who first introduced the term copula in 1959. However, earlier Fréchet (1957) among
others had made important contributions to the subject.

Sklar’s theorem stated that if the random variables X1, . . . , Xp have marginal distribution
functions FX1

, . . . , FXp
, respectively, and joint distribution function FX1,...,Xp

, then there
exists a p-dimensional copula C such that

FX1,...,Xp
(x1, . . . , xp) = C

(

FX1
(x1), . . . , FXp

(xp)
)

. (8)

If FX1
, . . . , FXp

are all continuous, C is unique. Conversely, if C is a p-dimensional copula
and FX1

, . . . , FXp
are distribution functions, then the function FX1,...,Xp

defined by Eq. (8)
is a p-dimensional distribution function with margins FX1

, . . . , FXp
.

The Gaussian distribution is often preferable in the multivariate case. The analytical
expression for the multivariate distribution allows to calculate exact statistical quantities



of interest. The use of standard Gaussian distributions for the marginal distributions is
often referred to as the Nataf model (see e.g. Liu and Der Kiureghian (1986)), although
Nataf (1962) only described the general use of copulas.

The Nataf transformation has been used for modelling other sea state parameters that are
not discussed in this paper, like the significant wave height and the peak period, see e.g.
Monbet and Prevosto (2001) and Fouques et al. (2004).

The method of constructing a joint distribution function for successive wave heights will
be shown in the bivariate case, and the extension to the multivariate case is trivial. A
two-dimensional Gaussian copula is given by

C(u1, u2) = Φ
(

Φ−1(u1), Φ
−1(u2)

)

, (9)

where the standard Gaussian distribution is given by

Φ(z) =
1√
2π

∫ z

−∞

e−
1

2
t2 dt =

1

2

[

1 + erf

(

z√
2

)]

, (10)

and erf[ ] is the error function defined by

y = erf(x) =
2√
π

∫ x

0

e−t2 dt. (11)

The inverse of Φ(z) is given by

Φ−1(uZ) =
√

2erf−1 [2uZ − 1] , (12)

where the random variable UZ = Φ(Z) is uniformly distributed on [0, 1].

The two-dimensional distribution function of two successive wave heights H1 and H2 is
given from Eqs. (8) and (9) by

FH1,H2
(h1, h2) = C (FH1

(h1), FH2
(h2)) = Φ

(

Φ−1 [FH1
(h1)] , Φ

−1 [FH1
(h1)]

)

, (13)

where the initial marginal distributions FH1
and FH2

are optional.

The random variable UH = FH(h) is uniformly distributed on [0, 1]. By defining ΨH(h) =
Φ−1(uH), the pdf of H1 and H2 is given by

fH1,H2
(h1, h2) =

Ψ′
H(h1)Ψ

′
H(h2)

2π
√

1 − ρ2
12

× exp

{

− 1

2(1 − ρ2
12)

(

ΨH(h1)
2 + ΨH(h2)

2 − 2ρ12ΨH(h1)ΨH(h2)
)

}

,

(14)



where ρ12 is the correlation coefficient between ΨH(h1) and ΨH(h2), and ′ denotes the
derivative of ΨH with respect to h, which is found by using the derivative of the inverse
error function given by

d

dy
erf−1(y) =

√
π

2
exp

{

[

erf−1(y)
]2
}

. (15)

Two different models will be presented here as initial distributions. First, the Næss (1985)
model in Eq. (3) is selected. Second, to improve the transformation of the data to fit the
Gaussian distribution, a two-parameter Weibull distribution of the form

FH(h) = 1 − exp

{

−
(

h

α

)β
}

(16)

will be used. One should note that the Weibull distribution is more flexible to fit the data
than the Næss (1985) model with only one parameter. The Weibull parameters α and β
are found from maximum likelihood estimation.

By using the Næss (1985) model as the initial distribution and defining ΨN
H(h) = Ψ−1(uH)

with UH = FH(h) from Eq. (3), the resulting transformation is

ΨN
H(h) =

√
2erf−1

[

2

(

1 − exp

{

− 2h2

1 − ρN

})

− 1

]

, (17)

with derivative

ΨN ′

H (h) =
4
√

2πh

1 − ρN

exp

{

(

erf−1

[

1 − 2 exp

{

− 2h2

1 − ρN

}])2

− 2h2

1 − ρN

}

. (18)

By using the Weibull distribution as the initial distribution and defining ΨW
H (h) = Ψ−1(uH)

with UH = FH(h) from Eq. (16), the resulting transformation is

ΨW
H (h) =

√
2erf−1

[

2

(

1 − exp

{

−
(

h

α

)β
})

− 1

]

, (19)

with derivative

ΨW ′

H (h) =
√

2π
βhβ−1

αβ
exp







(

erf−1

[

1 − 2 exp

{

−
(

h

α

)β
}])2

−
(

h

α

)β







. (20)

When using copulas, the resulting joint distribution function always has correct marginals.
However, the dependency structure should be examined by e.g. a paired plot.



The extension to the multivariate case is trivial, and the probability density function of
H = [H1, . . . , Hp]

T is given by

fH(h) =

∏p
i=1 Ψ′

H(hi)

(2π)p/2|Σ|1/2
exp

{

−1

2
ΨH(h)TΣ−1ΨH(h)

}

, (21)

where the covariance matrix, Σ, is given by

Σ =











1 ρ12 · · · ρ1p

ρ12 1 · · · ρ2p
...

. . .
...

ρ1p · · · 1











. (22)

2.3 Successive wave heights modeled by a first order autoregres-

sive (AR(1)) model

There are two useful representations of a time series X(t). One is to use an autoregressive
(AR) representation. The other is a moving average (MA) representation, which will not be
discussed further here. It is also possible to have a combination of the two representations.
The analysis of AR and MA processes are thoroughly described in Wei (1990).

In an AR representation, the value of X at time t is dependent on the values of its own
past, plus a random variable. An AR process of order r (AR(r)) of a time series with zero
mean can be written as

X(t) = π1X(t − 1) + · · ·+ πrX(t − r) + ε(t), (23)

where π1, . . . , πr are weights, and ε(t) is a zero mean Gaussian white noise process. If a
process with mean value different from zero is desired, this can be added afterwards. The
weights can be related to the autocorrelations ρj and partial autocorrelations φjj.

In addition to the mean and variance, a stationary time series is also characterized by
the autocorrelation function (ACF) and the partial autocorrelation function (PACF). The
ACF measures the correlation between X(t) and X(t+ j) and can be estimated from data
by

ρ̂j =

∑n−j
i=1 (xi − x̄)(xi+j − x̄)
∑n

i=1(xi − x̄)2
. (24)

The PACF measures the correlation between X(t) and X(t + j) after their mutual linear
dependency on the intervening variables X(t + 1), . . . , X(t + j − 1) has been removed, and
is estimated by

φ̂j+1,j+1 =
ρ̂j+1 −

∑j
i=1 φ̂jiρ̂j+1−i

1 −
∑j

i=1 φ̂jiρ̂i

(25)

φ̂j+1,i = φ̂ji − φ̂j+1,j+1φ̂j,j+1−i, i = 1, . . . , j. (26)



Under the hypothesis that the underlying process is a white noise series, the variance of
φ̂jj can be approximated by

Var[φ̂jj] ≈
1

n
. (27)

The AR(1) process has the properties

ρj = ρj
1, j ≥ 1. (28)

φjj =

{

ρ1 = π1, j = 1,
0, j ≥ 2.

(29)

An AR(1) process has the Markov property

P(X(t + 1) = xt+1|X(0) = x0, . . . , X(t) = xt) = P(X(t + 1) = xt+1|X(t) = xt). (30)

Thus, the value of X(t) is completely determined by the knowledge of X(t − 1). If the
process can be written as an AR(1) process, then both simulations of the process and
calculation of statistics are simplified. Sobey (1996) indicated that an AR(1) process
agreed with wave height data from field measurements.

Consider a stochastic process of transformed successive wave heights. If the process can
be approximated by an AR(1) process, it can be written as

ΨH(t) = ρ1ΨH(t − 1) + ε(t); t = 1, 2, . . . , (31)

where {ε(t)} are independent Gaussian distributed variables with zero mean and variance
equal to (1 − ρ2

1)Var[ΨH ] = 1 − ρ2
1. The initial value can be selected as e.g. the mean

value, i.e., ΨH(0) = 0. Results presented later in this paper show that the AR(1) process
is a good approximation to the process of the transformed successive wave heights. A
likelihood ratio test can also be performed to test if the correlation coefficients are given
by Eq. (28). See Johnson and Wichern (1992) for further details on likelihood ratio tests.

Simulation of the transformed successive wave heights using Eq. (31) is fast and simple.
The normalized wave heights are found from the simulated process ΨH by inverting the
transformation. This gives

HN =

(

−1 − ρN

2
ln

[

1

2

(

1 − erf

[

1√
2
ΨN

H(h)

])])1/2

, (32)

when using the transformation in Eq. (17) with the Næss (1985) model as initial distribu-
tion, and

HW = α

(

− ln

[

1

2

(

1 − erf

[

1√
2
ΨW

H (h)

])])1/β

, (33)

when using the transformation in Eq. (19) with the Weibull distribution as initial distri-
bution.



When assuming an AR(1) model, the joint distribution of more than two successive wave
heights can be obtained by combining conditional bivariate distributions, e.g., the joint
pdf of three successive wave heights can be written as

fH1,H2,H3
(h1, h2, h3) = fH3|H2

(h3|h2)fH2|H1
(h2|h1)fH1

(h1). (34)

The conditional density functions are given by

fHi+1|Hi
(hi+1|hi) =

fHi,Hi+1
(hi, hi+1)

fHi
(hi)

; i = 1, 2, (35)

where the joint pdf is given in Eq. (14), and the marginal pdf is the Weibull pdf given by

fH(h) =
βhβ−1

αβ
exp

{

−
(

h

α

)β
}

. (36)

3 Joint distribution of successive wave periods

3.1 Background

Several distribution functions for the dimensionless wave period, t = τ/τ̄ , have been sug-
gested, where the choice of normalizing factor, τ̄ , varies. Bretschneider (1959) derived a
distribution for the wave period based on the distribution for the wave length. The wave
length, λw, was assumed to be Rayleigh distributed, which was supported by comparison
with data. Then by assuming that the wave length was proportional by the square of the
wave period, as suggested by the dispersion relationship for linear waves in deep water
(τ 2 = (2π/g)λw, where g is the acceleration of gravity), it followed that the square of the
wave period was Rayleigh distributed. The normalizing factor was given as the square-root
of the rms-value of τ 2, i.e., τ̄ 2 = ζ2 ≡ (τ 2)rms. In terms of the non-dimensional wave period
t = τ/Tm01, where Tm01 = 2πm0/m1 is the mean wave period, the pdf is given by

fT (t) = 4

(

Tm01

ζ

)4

t3 exp

{

−
(

Tm01

ζ

)4

t4

}

; t ≥ 0. (37)

Other probability distributions have also been proposed by Longuet-Higgins (1975, 1983)
and Cavanié et al. (1976). However, the shape of the wave period data is not captured by
any of the models. An example of typical wave period data is shown in Fig. 1 (a). More
results are also given in Wist (2003). This is data from the Draupner field, which will be
presented thoroughly later in this paper. The histogram of the data and the kernel density
estimate of the data are compared with the Bretschneider (1959) model. For the Draupner
field data, Tm01 = 9.09 s and ζ = 9.79 s.



The Nataf transformation can also be applied for modeling more than two successive wave
periods. A possible initial distribution is the generalized Gamma distribution. The gener-
alized Gamma distribution was first used by Ochi (1992) when modeling significant wave
heights in long-term statistics. The generalized Gamma pdf is given by

fT (t) =
c(t − γ)cλ−1

Γ(λ)νcλ
exp

{

−
(

t − γ

ν

)c}

, (38)

where λ and c are the shape coefficients, ν is the scale coefficient and γ is the location
coefficient. The physical meaning of t, i.e., the wave period is always positive, implies that
γ = 0. The other parameters are found from maximum likelihood estimation. For the
Draupner field data λ = 0.415, c = 6.231 and ν = 1.311, and the resulting pdf is included
in Fig. 1 (a).

The generalized Gamma distribution function can be written as

FT (t) = IΓ

[

λ,

(

t

ν

)c]

, (39)

where IΓ denotes the incomplete Gamma function given by

IΓ(λ, u) =
1

Γ(λ)

∫ u

0

e−xxλ−1 dx. (40)

Defining ΨG
T (t) = Φ−1(uT ) with UT = FT (t) from Eq. (39), it follows from Eq. (12) that

the transformation to Gaussian density function is given by

ΨG
T (t) =

√
2erf−1

{

2IΓ

[

λ,

(

t

ν

)c]

− 1

}

. (41)

This will be denoted the Nataf-Gamma transformation. The derivative of ΨG
T is given by

ΨG ′

T (t) =

√
2π c

Γ(λ)ν

(

t

ν

)c(λ− 1

c
)

exp

{

(

erf−1

[

2IΓ

(

λ,

(

t

ν

)c)

− 1

])2

−
(

t

ν

)c
}

. (42)

Figure 1 (b) shows the kernel density estimates of the transformed wave periods compared
with the standard Gaussian pdf. The figure shows that the transformation gives a poor
approximation to a Gaussian distribution. The peak value is located too far to the right,
and the shape of the density function does not resemble the Gaussian pdf. The difference
around the peak of the density function corresponds to the shape of the marginal density
function for the wave period. Unless an initial distribution that captures this feature is
used, this will probably always be reflected in the transformation. Thus, both the Nataf
transformation and other existing two dimensional distributions are not able to give a good
description of the data. Alternatively, one can try to fit an initial distribution that captures
the behavior of the data, or one can remove the smallest values from the data set and only
consider parts of the set.



Using the Nataf-Gamma transformation, the probability density function for successive
wave periods T = [T1, . . . , Tp]

T is given by

fT(t) =

∏p
i=1 ΨG′

T (ti)

(2π)p/2|Σ|1/2
exp

{

−1

2
ΨG

T (t)TΣ−1ΨG
T (t)

}

, (43)

where the covariance matrix, Σ, is given by

Σ =











1 ρG,12 · · · ρG,1p

ρG,12 1 · · · ρG,2p
...
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...

ρG,1p · · · 1











, (44)

and ρG,ij is the correlation coefficient between ΨG
T (ti) and ΨG

T (tj).

Similarly to the process of transformed successive wave heights, the process of transformed
successive wave periods can be approximated by an AR(1) model, as described in section
2.3. Results presented later in this paper show that the AR(1) model is a good approxima-
tion. Thus, the joint distribution of more than two successive wave periods can be obtained
by combining conditional bivariate distributions, e.g., the joint pdf of three successive wave
periods can be written as

fT1,T2,T3
(t1, t2, t3) = fT3|T2

(t3|t2)fT2|T1
(t2|t1)fT1

(t1). (45)

The conditional density functions are given similarly as for the wave heights in Eq. (35),
where the joint pdf is given in Eq. (43) with p = 2, and the marginal pdf is given by Eq.
(38).

3.2 Successive wave periods for large wave heights

Usually, the most critical situations will occur when the wave height is large. That means
that it is of interest to study the probability distributions for the wave period given that
the corresponding wave height exceeds a given value, e.g., hrms or the significant wave
height, Hm0 = 4

√
m0, where the latter is of most practical interest. There exist several

joint distributions of wave height and wave period.

Longuet-Higgins (1975) applied a narrow-band approximation to linear theory of Gaussian
noise to obtain the joint pdf of the envelope amplitude and the time derivative of the
envelope phase. The joint density function of the dimensionless wave height, H, and
dimensionless wave period, T , was obtained from transformation of variables. The integral
of this density function is only equal to one if negative values of the wave period is included.
A new joint density function was presented by Longuet-Higgins (1983), where it was taken
into account that the wave period is always positive.



The conditional pdf of T given that H exceeds h̃ is found by integration and is given by

fT |H(t|h > h̃) =
2
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(46)

for the Longuet-Higgins (1975) model, and

fT |H(t|h > h̃) =
4
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(47)

for the Longuet-Higgins (1983) model, where CL is a normalizing constant, and ε2 is the
spectral bandwidth parameter given by

ε2 =

√

m0m2

m2
1

− 1. (48)

Tayfun (1993) presented a joint pdf of wave height and wave period that was valid for large
wave heights, given by

fH,T (h, t) = CTh

(

1 +
1 − κ2

a

32κah2

)

exp

{

−1

2

[

4h4

1 + κa
+

(

t − µt|h

σt|h

)2
]}

, (49)

where

µt|h = 1 + ε2
2(1 + ε2

2)
−3/2 (50)

σt|h =
2ε2√

8h(1 + ε2
2)

, (51)

and CT is a normalizing factor. The parameter κa is related to the correlation coefficient,
ρa, between two successive linear wave amplitudes, and the relationship is equal to Eq. (6)
when replacing κh with κa and ρh with ρa. The model is valid for h > µh = the mean wave
height. The conditional pdf given that h > h̃ must be calculated numerically.

In the Tayfun (1993) model, the distribution for the wave period conditioned on a given
value of the wave height was approximated by a Gaussian distribution. Results presented
later in this paper show that a Gaussian distribution is a good approximation also when
conditioning on the wave height being larger than a given value. Thus, a transformation



of the data is not necessary. The joint pdf of p successive wave periods T = [T1, . . . , Tp]
T ,

given the corresponding wave heights exceeding the level h̃, is then given by the multivariate
Gaussian pdf

fT|H(t|h > h̃) =
1

(2π)p/2|Σt|h̃|1/2
exp

{

−1

2
(t − µt|h̃)

TΣ−1

t|h̃
(t − µt|h̃)

}

, (52)

where µt|h̃ = [µt|h̃,1, . . . , µt|h̃,p]
T is the mean value of the wave periods given the threshold

value h̃, and

Σt|h̃ =
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. (53)

where Cov[Ti, Tj|h̃] = ρijσt|h̃,iσt|h̃,j.

The process of successive wave periods could be approximated by an AR(1) model, which
has the Markov property. The Markov property will then also apply for the model of
successive wave periods with corresponding large wave heights.

4 Results and discussion

4.1 Data description

Field data from the Draupner field and the Japan Sea, and laboratory data from HR
Wallingford will be used for comparison with the theoretical models. Numerical simulations
are also made for the different cases for comparison.

Time series were measured at the Draupner platform in the Central North Sea in the period
from 31st of December 1994 to 20th of January 1995. Figure 2 shows the location of the
platform. In the same time period wind measurements were taken at the Sleipner field,
which is located approximately 70 km Northwest of the Draupner platform. It is assumed
that the wind conditions at the two locations are similar. The measured wind directions
show that half of the data represent wind from the North, and the other half represent
wind from the South. No information regarding the directional spreading of the waves is
available for the data. Sunde (1995) gives a description of the meteorological conditions
for January 1, 1995. A discussion of the data can also be found in Brodtkorb et al. (2000),
Wist et al. (2002) and Wist (2003).

The data were measured by a down-looking laser sensor mounted on the Draupner jacket
platform, and the waves are not expected to be seriously influenced by the structure of



the platform. However, the finite water depth of 70 m does affect some waves, but overall
the effect is considered to be insignificant. Thus the data can be considered to be taken
as representing deep water waves. Measurements are done during 20 minutes in 3 hours
intervals, with a sampling frequency of 2.1333 Hz.

Analysis of the 48 individual time series show a similar statistical behavior. The values for
Hm0 vary between 6 m and 8 m, the zero-upcrossing period, Tm02 = 2π

√

m0/m2, varies
between 7.8 s and 9.1 s, and the peak frequency, ωp, varies between 0.47 rad/s and 0.64
rad/s. Thus, the data are considered as one single time series with a total record length
of 15 hours and 53 minutes, including about 6300 individual zero-crossing waves. Figure 3
(a) shows the spectral density for this time series, where the dotted line indicates the peak
frequency. The spectrum for the field data corresponds to a JONSWAP spectrum with
peakedness parameter γJ ≈ 1.9, and the JONSWAP spectrum is shown in the same figure,
with a broken line. The descriptive statistics of the data are given in Table 1, where Tp is
the peak period.

The Japan Sea field data were obtained from measurements of the surface at the Poseidon
platform, situated 3 km off Yura. Figure 4 is a map of the Japan Sea. In order to investigate
statistical properties of a relatively heavy sea state, a 4 hour time series measured 17th of
December 1987 is considered. Three intervals containing some spurious data are removed
from the data set leaving a time series of 3 hours and 51 minutes, which contains 1496
zero-upcrossing waves. The data were measured with an ultrasonic wave gauge situated at
the sea floor, and the sampling frequency is 1 Hz. A cubic spline is used to interpolate the
data set before further analysis. The water depth is 42 m, so a finite water depth effect
is expected. Figure 3 (b) shows the spectral density for the time series. The dotted line
indicates the peak frequency. A JONSWAP spectrum with peakedness parameter γJ = 1
is shown in the same figure as the broken line. The JONSWAP spectrum tends to zero for
small frequencies as opposed to the spectral density for the field data. The energy in the

Table 1: Descriptive statistics of the Draupner field data, the Japan Sea field data and the
laboratory data.

Draupner data Japan data Lab. data

Hm0 [m] 6.76 6.88 8.87

Tm02 [s] 8.37 8.55 10.35

Tm01 [s] 9.09 9.45 10.76

Tp [s] 11.23 11.70 11.87

ε2 [-] 0.425 0.470 0.283



lowest part of the spectrum corresponds to the difference frequency effect, and this effect
increases as the water depth decreases. Table 1 shows the descriptive statistics for the time
series. The measured values indicate that this sea state is quite similar to the sea state for
the Draupner field data. Some other aspects of the data are given in Wist (2003).

In 1997 a series of experiments in the UK Coastal Research Facility (UKCRF) at HR
Wallingford were made. It should be noted that the present models cover the wave con-
ditions at a water depth with a given constant value, and not conditions over a changing
water depth. Thus, no shoaling effects are included. One should also note that the results
from laboratory experiments can be influenced by effects in a closed basin, such as reflec-
tion from the edges, water flowing back from the shore or standing waves in the basin.
A thorough description of the UKCRF is given in Simons et al. (1995). The basin is 36
meters wide and has a maximum water depth of 80 cm. Long-crested (2D) as well as
short-crested (3D) waves were generated according to a given peak period, a significant
wave height and a wave spectrum. The water depth was constant for a length of 8.36
meters after the wave generator, and then the beach rised at a slope ratio of 1:20. Seven
wave probes measuring the surface elevation were located at different water depths along
the tank. Figure 5 shows the experimental setup.

In this paper only measurements made at water depth d = 78 cm are analyzed. This
represents relatively deep water. Similar analysis at the water depth d = 80 cm, and at
d = 41 cm and d = 31 cm, representing intermediate water depths, are given in Wist
(2003). Only long-crested (2D) waves are considered. Other aspects of data collected
during the same experiments are given in Memos (2002). A time series of irregular waves
was generated from a JONSWAP spectrum with spectral parameter γJ = 3. The nominal
peak period was Tp = 1.2 s, and the nominal significant wave height was Hm0 = 9 cm. In
full scale, typically 1:100, this corresponds to a sea state with Tp = 12 s, and Hm0 = 9 m.
The following results will be presented in full scale 1:100. The sampling frequency was 25
Hz with a sampling interval of 1020 s, corresponding to 2 hours 50 minutes in full scale.
Table 1 shows the descriptive statistics of the full scale time series. The spectral density
is shown in Fig. 3 (c).

Numerical simulations using second order wave theory in Marthinsen and Winterstein
(1992) are made for the different cases for comparison. For each case 10 simulations,
with length equal to the length of the corresponding time series of the field data or the
laboratory data, were made with identical input parameters in order to examine the vari-
ation in the results. The mean values of the simulated data are in good agreement with
the corresponding values of the field data and the laboratory data. See Wist (2003) for
further comparison of the wave parameters and the wave spectra between the numerical
simulations and the field data and the laboratory data.



4.2 Successive wave heights

Table 2 shows the calculated parameters for the wave height models for the field data and
the laboratory data. The parameter κ2

h is based on the values of the correlation coefficient
ρh,12 given in Table 3.

The normalized wave height data are compared with the Rayleigh distribution in Fig. 6
in terms of the probability of exceedance. The Næss (1985) model and a two parameter
Weibull distribution are also included in the figure. The figure shows that the Weibull
distribution agrees best with the data in the range h ≈ 0.5 − 2, where the largest con-
centration of data points is located. For the larger wave heights the Næss (1985) model
appear to be in good agreement with the data. The simulated data agree well with the
field data and the laboratory data.

Figure 7 shows kernel density estimates of the transformed wave heights, both by using the
Weibull distribution, ΨW

H , and the Næss (1985) model, ΨN
H , as initial distributions. The

transformations will in the following be referred to as the Nataf-Weibull model and the
Nataf-Næss model, respectively. The kernel density estimates are compared with the stan-
dard Gaussian pdf for both the field data and the laboratory data. The figures show that
both transformations yield an approximate standard Gaussian distribution. The Nataf-
Weibull model agrees best with the standard Gaussian distribution, while the Nataf-Næss
model is slightly skewed to the left.

The correlation coefficients of the transformed wave heights are shown in Table 3. Note
that the Nataf-Weibull model and the Nataf-Næss model give almost identical results.
The results show that the dependency between the transformed wave heights decreases
rapidly. The correlation coefficients of the normalized wave heights are also included for
comparison. They are quite similar to the correlation coefficients of the transformed wave
heights. Both the field data and the laboratory data show a similar behavior.

Table 2: Parameters for the wave height models.

Draupner data Japan data Lab. data

hrms [m] 4.78 4.87 6.27

ρN [-] -0.689 -0.630 -0.808

κ2
h [-] 0.436 0.343 0.543

α [-] 0.978 0.969 0.985

β [-] 2.039 2.071 1.985



Figure 8 (a) shows a contour plot of the two-dimensional Nataf-Weibull model and Nataf-
Næss model based on the parameters from the Draupner data. The distributions are com-
pared with the two-dimensional Rayleigh distribution (Eq. (4)), and the two-dimensional
Næss model (Eq. (7)). The shape of the Nataf models are somewhat different from the
Rayleigh distribution and the Næss model. For larger values of h the Nataf models have
an almost circular shape, while the Næss model and the Rayleigh distribution have a more
elliptic shape. Around the peaks, the distributions are quite similar. Along the diagonal
(h1 = h2), the Nataf-Weibull model is close to the Rayleigh distribution for small values
of h, but follows the Næss model for larger values of h. Outside the diagonal, the Nataf-
Weibull model is closest to the Rayleigh distribution for all values of h. Along the diagonal
the Nataf-Næss is close to the Næss model for small values of h, but it decreases more
rapidly than the other models for larger values of h. The Japan data and the laboratory
data produce similar results, which are shown in Figs. 9 (a) and 10 (a).

The Nataf models are compared with the kernel density estimate of the Draupner data
in Fig. 8 (b). A kernel density estimate of one of the simulated time series is included
for comparison. The models agree quite well with the field data and the simulated data.
Compared with the other models in Fig. 8 (a), the Nataf models with their circular
shape give a better prediction of the data outside the diagonal. None of the distributions
predict the peak of the data correctly, but the Nataf-Weibull model gives a slightly better
prediction of the peak than the Nataf-Næss model. Overall, the Nataf-Weibull model gives
the best agreement with the data. The corresponding results for the Japan data and the
laboratory data are shown in Figs. 9 (b) and 10 (b). Overall, also for these data the

Table 3: Correlation coefficients between ΨN
H(h1) and ΨN

H(hi) and between ΨW
H (h1) and

ΨW
H (hi), and correlation coefficients of the normalized wave heights ρh,1i, i = 2, 3, 4.

ρN,12 0.389 ρW,12 0.388 ρh,12 0.411

Draupner data ρN,13 0.116 ρW,13 0.116 ρh,13 0.126

ρN,14 0.058 ρW,14 0.058 ρh,14 0.058

ρN,12 0.294 ρW,12 0.294 ρh,12 0.321

Japan data ρN,13 0.079 ρW,13 0.078 ρh,13 0.077

ρN,14 0.026 ρW,14 0.026 ρh,14 0.022

ρN,12 0.486 ρW,12 0.485 ρh,12 0.516

Lab. data ρN,13 0.153 ρW,13 0.153 ρh,13 0.170

ρN,14 0.074 ρW,14 0.074 ρh,14 0.079



Nataf-Weibull model gives the best agreement. In the following, only the Nataf-Weibull
model will be considered.

Figure 11 shows a paired plot of the transformed wave heights ΨW
H between (a) h1 and h2

and (b) h1 and h3 for the Draupner data. The solid lines are contour plots of a standard
Gaussian distribution. The figure shows that the dependency structure is quite similar to
the one for a standard Gaussian distribution, and thus indicates that the transformation
correctly takes care of the dependency structure. The results for the Nataf-Næss model
are quite similar. Figure 12 shows the results for the Japan data and the laboratory data,
which also agree well with the standard Gaussian distribution.

The sample ACF of the transformed normalized wave heights ΨW
H from the different data

sets have been calculated, and the results are shown in Fig. 13. The ACF decreases
approximately exponentially for all cases. Figure 14 shows the sample PACF of ΨW

H from
the different data sets. The PACF has one spike at j = 1, while the values for j ≥ 2
are so small that they can be regarded as noise. This indicates that the process is an
AR(1) process for both the field data and the laboratory data. A likelihood ratio test
of the correlation coefficients of three successive wave heights following Eq. (28) resulted
in an observed statistic −2 ln Λobs = 6.62 for the Draupner data from a sample size of
n = 2189 triplets of wave height observations. When the sample size is large, the statistic is
approximately chi-squared distributed with two degrees of freedom. From tables χ2

0.036,2 =
6.65, which means that the hypothesis would not be rejected at 3.6% significance level.
The result of the likelihood ratio test is summarized in Table 4 together with the results
from the Japan data and the laboratory data. This indicates that an AR(1) model is a
good approximation for both the field data and the laboratory data. However, one should
notice that the number of triplets from the Japan data and the laboratory data is quite
small.

Simulations of transformed wave heights were made using the correlation coefficient ρ1 =
ρW,12 = 0.388 from the Draupner data (see Table 3). Figure 15 (a) shows the probability of
exceedance of the normalized wave heights from the Draupner data and the wave heights
from the simulated AR(1) model, found by Eq. (33). The two-parameter Weibull distribu-

Table 4: Likelihood ratio test of the transformed wave heights.

Draupner data Japan data Lab. data

n 2189 518 319

−2 ln Λobs 6.65 6.22 3.34

significance level 3.6% 4.4% 18.8%



tion and the Næss (1985) distribution are included for comparison. The figure shows good
agreement between the Draupner data and the simulated data from the AR(1) model.

Figure 15 (b) shows a contour plot of the two-dimensional kernel density estimate of the
Draupner data and the simulated data from the AR(1) model. The simulated data compare
well with the Draupner data, which indicates that the AR(1) model retains the dependency
structure.

Similarily, simulations of transformated wave heights were made using the correlation co-
efficient ρ1 = ρW,12 from the Japan data and the laboratory data given in Table 3. The
results are given in Fig. 16. The simulated data from the AR(1) model agree quite well
with the field data and the laboratory data.

Figure 17 shows the Nataf-Weibull model in Eq. (21) in terms of probability of exceedance
for p = 1, 2, 3. The three-dimensional distribution based on the AR(1) model (Eq. (34))
is also included. The results are compared with data from the Draupner field. From the
figure it is clear that the probability of p successive wave heights exceeding a value h
decreases when p increases. The Nataf-Weibull model agrees quite well with the data for
all values of p shown in the figure. The three-dimensional Nataf-Weibull model and the
three-dimensional distribution based on the AR(1) model are almost identical.

The corresponding results for the Japan data and the laboratory data are shown in Figs.
18 (a) and (b), respectively. The figures show similar results as for the Draupner data.
One should note that the length of the time series of the laboratory data is quite short in
order to make a reliable three-dimensional kernel density estimate. However, the result is
included for comparison.

By using the Nataf transformation, the probability distribution for two and three successive
wave heights can be modeled by a transformed multivariate Gaussian distribution. The
transformed Gaussian distribution can also be applied for more than three successive wave
heights, but then the dependency structure should be further examined by e.g. paired
plots.

The process of successive wave heights can be approximated by an AR(1) model. This
gives two favorable results. First, the model has the Markov property, which means that
only a two-dimensional distribution is needed when calculating the conditional statistical
properties. Joint distributions can then be constructed by combining bivariate conditional
distributions, as exemplified in Eq. (34) for the three-dimensional distribution. Second,
the simulation of successive wave heights can be done from Eqs. (31) and (33) (or Eq.
(32)). This is a simple and fast method, if the time series of the complete surface elevation
is not required.



4.3 Successive wave periods for large wave heights

First, results will be shown to justify the approximation of an AR(1) model to the process
of transformed successive wave periods. The sample ACF of the transformed normalized
wave periods ΨG

T from the different data sets have been calculated, and the results are
shown in Fig. 19. The ACF decreases approximately exponentially for all cases. Figure
20 shows the sample PACF of ΨG

T from the different data sets. The PACF has one spike
at j = 1, while the values for j ≥ 2 are so small that they can be regarded as noise.

The results of the likelihood ratio test of the correlation coefficients of three successive
wave periods following Eq. (28) are given in Table 5. However, one should notice that
the number of triplets from the Japan data and the laboratory data is quite small. The
likelihood ratio test together with Figs. 19 and 20 indicate that an AR(1) model is a
good approximation for both the field data and the laboratory data. This means that the
Markov property in Eq. (30) applies for all wave periods, and thus for the wave periods
where the corresponding wave heights are larger than a given threshold, e.g., larger than
hrms. Consequently, the distribution for the wave period given the previous wave period
will be independent of the wave periods prior to the previous wave period, also when
considering wave periods with corresponding large wave heights.

Next, only wave periods with corresponding wave heights exceeding a given threshold will
be considered.

Figure 21 (a) shows a histogram of the normalized wave periods from the Draupner data
where the corresponding normalized wave height is larger than hrms = 1, and the kernel
density estimate of the data. The data are compared with the Longuet-Higgins (1975,
1983) models (Eqs. (46) and (47)) and the Tayfun (1993) model (Eq. (49)). The first two
models do not give a good prediction of the wave periods. The density functions are shifted
towards lower values of t, and the peak value is also underestimated. The latter model
gives a better estimate of the wave periods. However, this model also underestimates the
peak value of the kernel density function.

Table 5: Likelihood ratio test of the transformed wave periods.

Draupner data Japan data Lab. data

n 2208 521 319

−2 ln Λobs 3.17 1.65 6.38

significance level 20.5% 43.7% 4.1%



The shape of the data in Fig. 21 (a) indicates that a Gaussian density function would give
a good description of the data. Figure 21 (b) shows the data compared with a Gaussian
density function with mean value and standard deviation calculated from the data, which
are given in Table 6 for p = 1. The Gaussian density function agrees well with the data.

The histograms and kernel density estimates of the normalized wave periods from the
Japan data and the laboratory data where the corresponding normalized wave height is
larger than hrms = 1 are shown in Fig. 22 (a) and (b), respectively. A Gaussian pdf with
mean value and standard deviation given in Table 6 for p = 1 is also included. The figures
show that the Gaussian pdf agree well with the data, while the other densities do not give
a good estimation of the data.

In order to compare the multivariate theory with the data, pairs and triplets of successive
wave periods were formed conditioned on that the corresponding wave height was larger
than hrms = 1. The mean value and standard deviation are shown in Table 6 for p = 2 and
p = 3, respectively, and n is the number of pairs and triplets that were found. In addition,
the correlation coefficients, ρ = [ρ12, . . . , ρ1p]

T , between the successive wave periods are
given. If the normalized significant wave height of

√
2 was selected as h̃, the number n

would be much smaller. One should note that the number of data cases available for p = 2
and p = 3 is small for both the Japan data and the laboratory data, but they are included
for comparison.

Table 6: Calculated parameters for the p-dimensional Gaussian distribution with h̃ = 1.

µt|h̃ σt|h̃ ρ n

p = 1 1.14 0.18 2424

Draupner p = 2 [1.18, 1.19]T [0.17, 0.17]T 0.245 1360

p = 3 [1.18, 1.23, 1.19]T [0.17, 0.16, 0.16]T [0.287, 0.150]T 768

p = 1 1.15 0.18 555

Japan p = 2 [1.21, 1.19]T [0.16, 0.17]T 0.091 279

p = 3 [1.19, 1.24, 1.18]T [0.16, 0.14, 0.17]T [0.143, -0.050]T 149

p = 1 1.05 0.11 347

Lab. p = 2 [1.09, 1.08]T [0.09, 0.09]T -0.052 201

p = 3 [1.08, 1.10, 1.08]T [0.08, 0.08, 0.10]T [0, -0.027]T 116



Figure 23 (a) shows a contour plot of the bivariate Gaussian distribution in Eq. (52)
with p = 2 and h̃ = 1, compared with the kernel density estimate of the Draupner data.
The figure shows fairly good correspondence between the model and the data. In order
to verify that the multivariate Gaussian distribution can be used for modeling successive
wave periods, the dependency structure should be examined. Figure 23 (b) and (c) show
a paired plot of the wave periods t1 and t2, and t1 and t3, respectively. The figure shows
that the correlation structure is correctly modeled by the bivariate Gaussian distribution.

The corresponding results for the Japan data and the laboratory data are shown in Figs.
24 and 25, respectively. Note that the outer contour lines of the kernel density estimates
are based on very few data points. The behavior around the peak value of the kernel
density estimates, where most of the data are located, are well described by the bivariate
Gaussian distribution.

Thus, the probability distribution for two and three successive wave periods given that
the corresponding wave heights exceeded a critical level, e.g., hrms, can be modeled by a
multivariate Gaussian distribution. The multivariate Gaussian distribution can also be
applied for more than three wave periods with corresponding large wave heights, but then
the dependency structure should be further examined.

When estimating e.g. resonance phenomena, a quantity of interest is the probability that
a wave period is in an interval [t̃1, t̃2] given that the previous wave period was in the same
interval. This has been studied in e.g. Myrhaug and Slaattelid (1999), as marine systems
often are exposed to such waves. However, dangerous situations occur in high waves, so
the quantity of interest should be conditioned on the corresponding wave heights exceeding
a given threshold. Thus, the present results should represent a useful tool to assess the
probability of occurrence of resonance phenomena at sea.

Figure 26 (a) shows the probability that a wave period is in an interval [t̃1, t̃2] given that
the previous wave period was in the same interval, and given that the two corresponding
wave heights exceeded hrms. This is shown as a function of x = (t̃1+ t̃2)/2. Here t̃1 = x−0.1
and t̃2 = x + 0.1. Simulated data and field data from the Draupner field are included, and
the model agrees quite well with the data except for larger values of x for the simulated
data. The simulated data show fairly good agreement with the field data. Figure 26 (b)
shows the variation in the simulated data, where the confidence intervals are given by
±2Var[y]1/2, where y is a vector of the 10 simulation points. The confidence intervals cover
the field data for most of the smaller values of x, but there is larger difference between the
field data and the simulations for large values of x.

Figures 27 (a) and (b) show the results for the Japan data and the laboratory data, respec-
tively. The Gaussian model agrees well with the field data and the laboratory data. Here
the field data and laboratory data have a larger peak than the simulated data. However,
due to the large variation in the simulated data, the confidence intervals cover the field
data and the laboratory data, as well as the Gaussian model, for almost all values of x.



Figure 28 shows the probability of a wave period being in an interval [t̃1, t̃2] given that
the two previous wave periods were in the same interval, as a function of x = (t̃1 + t̃2)/2.
All corresponding wave heights exceed hrms. The results are quite similar to the results in
Figs. 26 and 27. This supports the hypothesis that the process of successive wave periods
can be approximated by an AR(1) model. Then it follows from the Markov property that

fT3 | T2,T1,H3,H2,H1
(t3 | t2, t1, h3 > 1, h2 > 1, h1 > 1)

= fT3 | T2,H3,H2
(t3 | t2, h3 > 1, h2 > 1).

(54)

Thus, joint distributions of successive wave periods with large wave heights can be con-
structed by combining bivariate conditional distributions, similarly to Eq. (45). The
conditional density functions are given similarly as for the wave heights in Eq. (35), where
the joint pdf and marginal pdf are given in Eq. (52) with p = 2 and p = 1, respectively.

For practical purposes, it is of more interest to study the wave periods for wave heights
exceeding the significant wave height. The calculated parameters from the Draupner field
data when constructing pairs and triplets of wave periods conditioned on the corresponding
wave heights exceeding Hm0 are shown in Table 7. Compared to the values in Table 6,
where the corresponding wave heights exceeded hrms, the difference in the parameters for
the Gaussian distribution is small, but the number n has decreased significantly. Thus,
in order to compare with data, especially if two or three successive wave periods are
considered, a long time series is needed, as mentioned earlier. When considering three
successive waves with corresponding wave heights exceeding Hm0, the time series of the
Draupner field data, which was nearly 16 hours, only resulted in 80 data cases. The
corresponding numbers of data cases for three successive wave periods for the Japan data
and the laboratory data are too small; thus these data are not included in the analysis.

Figure 29 (a) shows the probability that a wave period is in an interval [t̃1, t̃2] of size 0.2
given that the previous wave period were in the same interval, and given that the two
corresponding wave heights exceeded the normalized value of Hm0, i.e.,

√
2. The results

show fairly good agreement between the Draupner data and the model. The confidence
intervals of the simulations are included in (b). The confidence intervals cover the field

Table 7: Calculated parameters for the p-dimensional Gaussian distribution with h̃ =
√

2
(normalized value of Hm0), from the Draupner field data.

µt|h̃ σt|h̃ ρ n

p = 1 1.15 0.15 798

p = 2 [1.21, 1.21]T [0.15, 0.13]T 0.217 251

p = 3 [1.20, 1.26, 1.21]T [0.15, 0.14, 0.11]T [0.361, 0.196]T 80



data for smaller values of x, but there is larger difference between the field data and the
simulations for large values of x.

5 Conclusions

The existing wave height models are applicable when modeling only two successive wave
heights. In this paper a Gaussian copula, which is often referred to as the Nataf model,
is used for modeling three successive wave heights. The difficulty is to find the initial dis-
tribution for which the transformation is approximately Gaussian. Both the Næss (1985)
model and a two-parameter Weibull distribution have been used in the transformation,
where the latter was in best agreement with the data. However, the parameters in the
Weibull distribution must be estimated for each data set. The transformed multivariate
Gaussian distribution can in theory be applied for modeling more than three successive
wave heights, but then the dependency structure should be examined in order to validate
that the correlation between the wave heights is correctly taken care of during the trans-
formation. The results show that the Nataf model is more sensitive to variation in the data
set than the existing models. Thus, the parameter estimation is crucial for the behavior
of the distribution.

Results have shown that the Nataf transformation of successive wave heights can be ap-
proximated by a first order autoregressive model. This gives two major advantages. First,
the time series has the Markov property, i.e., the distribution of the wave height given
the previous wave height is independent of the wave heights prior to the previous wave
height. Joint distributions can then be constructed by combining bivariate conditional
distributions. Second, the simulation of successive wave heights can be done directly by
simulating a series of transformed wave heights and then find the wave heights by inverting
the transformation. This is a simple and fast simulation technique, which is useful when
the time series of the complete surface elevation is not needed.

Several models exist for modeling a single wave period. None of them capture the shape of
the pdf of the data, but the Bretschneider (1959) model agrees quite well with the data for
large wave periods. The Nataf transformation can also be used when modeling more than
two successive wave periods. The shape of the pdf of the data, however, makes it difficult
to select an initial distribution so that the transformation is approximately Gaussian. A
generalized Gamma distribution has been used here as initial distribution. The model gives
satisfactory results compared with the existing models.

When considering successive wave periods for large waves, the probability density function
for the wave periods can be approximated by a Gaussian density function. This means that
a transformation is not necessary, and three successive wave periods with corresponding
large wave heights can be modeled by the three-dimensional Gaussian distribution. The



multivariate Gaussian distribution can also be applied for more than three wave periods
with corresponding large wave heights, but then the dependency structure should be further
examined. When comparing with data, the number of data cases decreases rapidly both if
the selected level of the corresponding wave height increases and if the number of successive
periods of interest increases. Thus, a long time series is needed in order to obtain enough
data cases.
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(2002). Wave height distribution in mixed sea states. Journal of Offshore Mechanics
and Arctic Engineering 124, 34–40.

Rychlik, I., P. Johannesson, and M. R. Leadbetter (1997). Modelling and
statistical analysis of ocean-wave data using transformed Gaussian process. Marine
Structures 10, 13–47.

Schweizer, B. (1991). Thirty years of copulas. In Advances in probability distributions
with given marginals, Rome, Italy, pp. 13–50.

Simons, R. R., R. J. Whitehouse, R. D. MacIver, J. Pearson, P. B. Sayers,

Y. Zhao, and A. R. Channell (1995). Evaluation of the UK Coastal Research
Facility. In Coastal dynamics ’95 : proceedings of the International Conference on
Coastal Research in Terms of Large Scale Experiments, Gdansk, Poland, pp. 161–172.

Sobey, R. J. (1996). Correlation between individual waves in a real sea state. Coastal
Engineering 27, 223–242.

Sunde, A. (1995). Kjempebølger i Nordsjøen. Vær og klima 18 (1), 17–23. In Norwegian.

Tayfun, M. A. (1993). Joint distributions of large wave heights and associated periods.
Journal of Waterway, Port, Coastal, and Ocean Engineering 119 (3), 261–273.

Vinje, T. (1989). The statistical distribution of wave heights in a random seaway.
Applied Ocean Research 11 (3), 143–152.

Wei, W. W. S. (1990). Time series analysis: Univariate and multivariate methods.
Addison-Wesley Publishing Company, Redwood City, California.

Wist, H. T. (2003). Statistical properties of successive ocean wave parameters. Dr.ing.
thesis, Norwegian University of Science and Technology, Faculty of Engineering Sci-
ence and Technology, Trondheim, Norway.

Wist, H. T., D. Myrhaug, and H. Rue (2002). Joint distributions of successive wave
crest heights and successive wave trough depths for second-order nonlinear waves.
Journal of Ship Research 46 (3), 175–185.



0 0.5 1 1.5 2
0

0.5

1

1.5

2

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

Bretschneider (1959)
Generalized Gamma
KDE data

PSfrag replacements

t

(a)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

PSfrag replacements

ΨG
T (t)

(b)

Figure 1: (a) A histogram of the Draupner data compared with pdfs. (b) Pdf of transformed
wave period data; KDE of ΨG

T . standard Gaussian density function.
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Figure 2: Map of the Central North Sea with the Draupner platform at 57.7◦N, 2.6◦E, and the
Sleipner platform at 58.4◦N, 1.9◦E.
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Figure 3: The spectral density of field data (solid), peak frequency of field data (dotted). (a)
Draupner data, ωp = 0.56; JONSWAP spectrum with γJ = 1.9 (broken). (b) Japan data,
ωp = 0.54; JONSWAP spectrum with γJ = 1 (broken).(c) Laboratory data, ωp = 0.53.
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Figure 4: Map of the Japan Sea. The Poseidon platform is situated 3 km off Yura.
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Figure 6: Probability of exceedance for an individual wave (P(H > h)); (a) Draupner data; (b)
Japan data; (c) Laboratory data. The normalized significant wave height equal to

√
2 is indicated

by the vertical dotted lines.
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Figure 7: Pdf of transformed wave height data; kernel density estimate of ΨN
H , · kernel

density estimate of ΨW
H , standard Gaussian density function. (a) Draupner data; (b) Japan

data; (c) Laboratory data.
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Figure 8: Contour plot of the two-dimensional pdfs for the Draupner data. The Nataf models
are compared with (a) the Rayleigh distribution and the Næss model; and (b) the kernel density
estimate of the field data and one simulated time series. Percent levels the given contour lines
enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9.
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Figure 9: Contour plot of the two-dimensional probability density functions for the Japan data.
The Nataf models are compared with (a) the Rayleigh distribution and the Næss model; and (b)
the kernel density estimate of the field data and one simulated time series. Percent levels the
given contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9.

0 1 2 3 4
0

1

2

3

4
Nataf − Weibull
Nataf − Næss
Næss
Rayleigh

PSfrag replacements

h1

h
2

(a)

0 1 2 3 4
0

1

2

3

4
Nataf − Weibull
Nataf − Næss
KDE − data
KDE − sim

PSfrag replacements

h1

h
2

(b)

Figure 10: Contour plot of the two-dimensional probability density functions for the laboratory
data. The Nataf models are compared with (a) the Rayleigh distribution and the Næss model;
and (b) the kernel density estimate of the field data and one simulated time series. Percent levels
the given contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9.
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Figure 11: Paired plot of the transformed wave height ΨW
H for the Draupner data between (a)

h1 and h2, (b) h1 and h3, compared with a contour plot of a standard Gaussian distribution.
Percent levels the given contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9.
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Figure 12: Paired plot of the transformed wave height ΨW
H between (a) h1 and h2, (b) h1 and h3,

for the Japan data; and between (c) h1 and h2, (d) h1 and h3 for the laboratory data, compared
with a contour plot of a standard Gaussian distribution. Percent levels the given contour lines
enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9.
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Figure 13: Sample autocorrelation function of ΨW
H from (a) Draupner data; (b) Japan data; (c)

Laboratory data.
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Figure 14: Sample partial autocorrelation function of ΨW
H from (a) Draupner data; (b) Japan

data; (c) Laboratory data. The dotted line indicates ±2(Var[φ̂jj])
1/2.
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Figure 15: (a) Probability of exceedance of normalized wave heights, and (b) contour plot of the
two-dimensional kernel density estimates for the Draupner data. Percent levels the given contour
lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9.
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Figure 16: Probability of exceedance of normalized wave heights for (a) Japan data; (c) Labora-
tory data. Contour plot of the two-dimensional kernel density estimates for (b) Japan data; (d)
Laboratory data. Percent levels the given contour lines enclose are 10, 30, 50, 70, 90, 95, 99 and
99.9.
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Figure 17: Probability of exceedance for normalized wave heights for the Draupner data.
P(H1 > h): Nataf-Weibull model; × data; P(H1 > h,H2 > h): Nataf-Weibull model;
� data; P(H1 > h,H2 > h,H3 > h): · Nataf-Weibull model; · • ·· AR(1) model; 4 data. The
dotted line indicates the normalized significant wave height of

√
2.
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Figure 18: Probability of exceedance for normalized wave heights for (a) Japan data, (b) Labora-
tory data. P(H1 > h): Nataf-Weibull model; × data; P(H1 > h,H2 > h): Nataf-Weibull
model; � data; P(H1 > h,H2 > h,H3 > h): · Nataf-Weibull model; · • ·· AR(1) model;
4 data. The dotted line indicates the normalized significant wave height of

√
2.
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Figure 19: Sample autocorrelation function of ΨG
T from (a) Draupner data; (b) Japan data; (c)

Laboratory data.
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Figure 20: Sample partial autocorrelation function of ΨG
T from (a) Draupner data; (b) Japan

data; (c) Laboratory data. The dotted line indicates ±2(Var[φ̂jj])
1/2.



0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

PSfrag replacements

t

(a)

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

PSfrag replacements

t

(b)

Figure 21: Pdf of wave periods where the corresponding wave height is larger than hrms, i.e.,
h > 1; (a) kernel density estimate of Draupner data, · Longuet-Higgins (1975), · · · Longuet-
Higgins (1983), Tayfun (1993). (b) kernel density estimate of Draupner data, · • ·· Gaussian
density function (µt|h̃ = 1.14, σt|h̃ = 0.18).
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Figure 22: Pdf of wave periods where the corresponding wave height is larger than hrms, i.e.,
h > 1; kernel density estimate of data, · Longuet-Higgins (1975), · · · Longuet-Higgins
(1983), Tayfun (1993). · • ·· Gaussian density function (a) Japan data; (b) Laboratory data.
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Figure 23: Contour plot of two successive wave periods, given that the corresponding wave
heights are larger than hrms = 1, modeled by the bivariate Gaussian probability density function
and compared with kernel density estimate of Draupner data. Percent levels the given contour
lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9. Paired plot between (b) t1 and t2, and (c) t1
and t3.
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Figure 24: Contour plot of two successive wave periods, given that the corresponding wave
heights are larger than hrms = 1, modeled by the bivariate Gaussian probability density function
and compared with kernel density estimate of Japan data. Percent levels the given contour lines
enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9. Paired plot between (b) t1 and t2, and (c) t1 and
t3.
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Figure 25: Contour plot of two successive wave periods, given that the corresponding wave
heights are larger than hrms = 1, modeled by the bivariate Gaussian probability density function
and compared with kernel density estimate of Laboratory data. Percent levels the given contour
lines enclose are 10, 30, 50, 70, 90, 95, 99 and 99.9. Paired plot between (b) t1 and t2, and (c) t1
and t3.
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Figure 26: The probability that a wave period is in an interval [t̃1, t̃2] given that the previous
wave period was in the same interval, where t̃1 = x−0.1 and t̃2 = x+0.1, and given that the two
corresponding wave heights exceeded hrms. Gaussian model; � Draupner data; × simulated
data. (a) Data and mean values of simulations. (b) Simulations including confidence intervals.
(P = P(t̃1 < T2 < t̃2 | t̃1 < T1 < t̃2, H1 > 1, H2 > 1)).
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Figure 27: The probability that a wave period is in an interval [t̃1, t̃2] given that the previous
wave period was in the same interval, where t̃1 = x − 0.1 and t̃2 = x + 0.1, and given that the
two corresponding wave heights exceeded hrms. Gaussian model; � data; × mean values of
simulated data with confidence intervals. (a) Japan data. (b) Laboratory data.
(P = P(t̃1 < T2 < t̃2 | t̃1 < T1 < t̃2, H1 > 1, H2 > 1)).
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Figure 28: The probability that a wave period is in an interval [t̃1, t̃2] given that the two previous
wave periods were in the same interval, where t̃1 = x − 0.1 and t̃2 = x + 0.1, and given that the
three corresponding wave heights exceeded hrms. Gaussian model; � data; × mean values of
simulated data with confidence intervals. (a) Draupner data. (b) Japan data. (c) Laboratory
data.
(P = P(t̃1 < T3 < t̃2 | t̃1 < T2 < t̃2, t̃1 < T1 < t̃2, H1 > 1, H2 > 1, H3 > 1)).
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Figure 29: The probability that a wave period is in an interval [t̃1, t̃2] given that the previous
wave period was in the same interval, where t̃1 = x−0.1 and t̃2 = x+0.1, and given that the two
corresponding wave heights exceeded Hm0. Gaussian model; � Draupner data; × simulated
data. (a) Data and mean values of simulations. (b) Simulations including confidence intervals.
(P = P(t̃1 < T2 < t̃2 | t̃1 < T1 < t̃2, H1 >

√
2, H2 >

√
2)).


