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Abstract

We suggest to use all proposed states in a Metropolis–Hastings algorithm to estimate

mean values. The traditional approach is to use only the accepted states. We propose to

estimate the mean with a weighted mean of both accepted and rejected states. The amount

of computation necessary to obtain the weights is proportional to the number of Metropolis–

Hastings realisations. We identify sufficient conditions for the weighted mean to form an

unbiased estimator. In simulation experiments the new estimator gives up to 33% lower

estimation variance compared to the traditional estimator.

When both accepted and rejected states can be used to estimate mean values it becomes

more attractive to run Metropolis–Hastings algorithms with several proposals in each iter-

ation. Even if at most one of the proposals can be accepted, they can now all be used to

estimate mean values. We generalise the Metropolis–Hastings scheme to this situation by

defining a Markov chain for the joint distribution for the state vector and the potential new

states. This framework allows moves that are not time reversible and the use of antithetic

variables in the proposal distribution. Moreover, when the number of potential new states in

each iteration is large, the resulting algorithm is ideally suited for parallel computation. In a

simulation example with 128 proposals in each iteration, the variance of the new estimator is

up to 76% lower than the variance of the traditional estimator.

Key words: Markov chain Monte Carlo, Metropolis–Hastings algorithm, multiple proposals, re-
jected states, weighted mean.

1 Introduction

Suppose we want to estimate the mean, µ, of a function f(x) when x is distributed according
to a target distribution π(·). If x is of high dimension and π(·) is sufficiently complex, the only
viable alternative for this is to use Markov chain Monte Carlo (MCMC). The Metropolis–Hastings
(Metropolis et al., 1953; Hastings, 1970) scheme is the most commonly used MCMC algorithm.
Letting x denote the current state of the Markov chain, each iteration of the Metropolis–Hastings
algorithm consists of two steps. First, a potential new state y is proposed from a proposal distri-
bution. Second, y is accepted with a certain probability, otherwise the old state x is retained. The
traditional estimator for µ is the empirical mean of f(x), after having discarded a ”burn-in” pe-
riod. Thus, only accepted proposals are used in the estimation. Intuitively this appears as a waste
of information and one would expect smaller estimation variance by using all proposed states. In
Casella and Robert (1996) and Robert and Casella (1999) this is the background for developing an
improved Rao-Blackwellised version of the traditional estimator. Simulation examples in Casella
and Robert (1996) demonstrate that significant reduction in estimation variance can be obtained.
However, the amount of computation necessary to compute the Rao-Blackwellised estimator is of
order N2, where N is the number of Metropolis–Hastings iterations. Measured in computation
time the Rao-Blackwellised estimator is therefore inferior to the traditional estimator when N is
large.

In this paper we define an estimator for µ by taking a weighted mean of both accepted and
rejected states. We identify sufficient conditions on the weights for the estimator to be unbiased.
In contrast to the Rao-Blackwellised estimator, computation time for our new estimator is or order
N . In particular, the traditional estimator is one element in our new class of unbiased estimators.

1



When all proposed states can be used to estimate mean values it becomes more interesting to
consider also algorithms where several potential new states are proposed in each iteration. These
are ideally suited for parallel computation and even if at most one of the proposals can be accepted,
they can now all be used to estimate µ. Metropolis–Hastings algorithms with several proposals in
each iteration are discussed in Liu et al. (2000) and Qin and Liu (2001). To get the full advantage
of the idea we define a Markov chain for the joint distribution for the state vector of interest, x,
and the proposals. The resulting scheme allows moves that are not time reversible. Moreover, the
use of antithetic variables can easily be included in the proposal distributions.

This paper is organised as follows. In Section 2 we define the joint Markov chain for the state
vector of interest and the potential new states. This set-up leaves two quantities to be specified:
the proposal distribution and the acceptance probabilities. In Sections 3 and 4 we discuss each of
these aspects. In Section 5 we define the new estimator for µ and show it to be unbiased. Section
6 presents simulation examples and, finally, Section 7 provides conclusions.

2 MCMC with multiple proposals in each iteration

In this section we discuss how multiple proposals can be used to define a Markov chain with a
given stationary distribution. Our set-up is a generalisation of the standard Metropolis–Hastings
algorithm with one proposal in each iteration, see Smith and Roberts (1993) and Dellaportas and
Roberts (2003) for nice introductions.

For definiteness, assume the target distribution to be continuous on <n and let π(·) de-
note its density. Let m ≥ 1 be the number of proposals to be used in each iteration. To
define the algorithm we use an integer valued stochastic variable κ ∈ {0, 1, . . . , m} and a set
of stochastic vectors y0, y1, . . . , ym ∈ <n. We also use the notations y = (y0, y1, . . . , ym) and
y−j = (y0, . . . , yj−1, yj+1, . . . , ym). Let κ have a uniform (marginal) distribution and let pκ(y)
denote the conditional distribution for y given κ, i.e. the joint distribution for κ and y is

p(y, κ) =
1

m + 1
pκ(y). (1)

Let pκ(y) be given from π(·) by

pκ(y) = π(yκ)qκ(y−κ|yκ), (2)

where qk(·|yk), k = 0, 1, . . . , m is a set of ”proposal” densities, i.e. for each k ∈ {0, 1, . . . , m}
and yk ∈ <n, qk(·|yk) is a probability density function for y−k ∈ <nm. The proposal densities
can be chosen quite freely, but we require sampling from the qk(·|yk)’s to be easy. Note that, by
construction, yκ is distributed according to our target distribution.

We define a Markov chain with invariant distribution p(·, ·) by alternating between two types
of updates: (i) substitute current values of y−κ by new values sampled from qκ(·|yκ); and (ii)
substitute the current value of κ by a new value sampled according to a (m+1)×(m+1) transition
matrix P(y) = [Pk,l(y)]mk,l=0, i.e. if the current value of κ is k, the probability for the new value
to be l is Pk,l(y). As indicated in the notation, the transition matrix P(y) is a function of y. Step
(i) above is a Gibbs step (Chib and Greenberg, 1995) for y−κ and is clearly invariant with respect
to p(·, ·). For step (ii) to be invariant with respect to p(·, ·) one must have

pl(y) =
m∑

k=0

pk(y)Pk,l(y) for l ∈ {0, 1, . . . , m} and y ∈ <n(m+1). (3)

In addition one must of course have that P(y) is really a transition matrix for all y, i.e.

Pk,l(y) ≥ 0 for k, l ∈ {0, 1, . . . , m} and y ∈ <n(m+1), and (4)

m∑

l=0

Pk,l(y) = 1 for k ∈ {0, 1, . . . , m} and y ∈ <n(m+1). (5)
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When m = 1, equation (3) is equivalent to detailed balance,

pk(y)Pk,l(y) = pl(y)Pl,k(y) for k, l ∈ {0, 1, . . . , m} and y ∈ <n(m+1), (6)

whereas for m > 1 detailed balance is more restrictive than (3).
Step (i) above is the proposal step. The components of the new y−κ should be considered as

potential new states for yκ. Step (ii) is the acceptance/rejection step. A change in κ corresponds
to an acceptance, whereas an unchanged value for κ means that all proposals are rejected.

It remains to specify two important components of the Markov chain. The first is the choice
of proposal distribution qk(·|yk). This is always an important issue in a Metropolis–Hastings
algorithm and many possibilities for m = 1 are discussed in the MCMC literature, see discussions
and references in Gamerman (1997), Chen et al. (2000) and Liu (2001). The case of several
proposals in each iteration has got much less attention, but Liu et al. (2000) give some suggestions.
We discuss this topic in Section 3. The second component that remains to be specified is the choice
of transition matrix P(y). For m = 1, Peskun (1973) shows that one particular choice is optimal
in asymptotic variance, so in most of the MCMC literature this choice is essentially a non-existing
topic. For m > 1 the result in Peskun (1973) is still relevant, but does not produce a single optimal
choice for P(y). We discuss this further in Section 4.

MCMC is used as an instrument to estimate the mean of one or several functions with respect
to the target distribution. Assume our mean of interest is

µ = Eπ{f(x)} =

∫
f(x)π(x)dx, (7)

where f(·) is some scalar valued function. Let {(yi
0, y

i
1, . . . , y

i
m, κi)}N

i=1 denote the simulated values
from the above Markov chain, where the superscript specifies iteration number (after having
discarded a burn-in period). Then yi

κi , i = 1, . . . , N are samples from the target distribution and
the traditional MCMC estimator for µ is

µ̂ =
1

N

N∑

i=1

f(yi
κi). (8)

Thus, to estimate µ the yi
κi ’s are given weight one and all the remaining yi

j ’s are assigned weight

zero. Considering that the target density at all yi
j ’s are already computed in the Markov chain,

this appears to be sub-optimal. One would expect improved estimators by assigning non-zero
weights to all yi

j ’s. The challenge is to choose weights that give an unbiased estimator. We pursue
this idea in Section 5.

3 Proposal distribution qk(·|yk)

In this section we discuss two proposal distributions for m ≥ 1. Both of our suggestions simplify
to a random walk proposal for m = 1. Moreover, both alternatives are Metropolis-type proposals
in that for any y ∈ <n(m+1), qk(y−k|yk) = q0(y−0|y0) for all k = 1, . . . , m.

We specify qk(·|yk) by giving a corresponding algorithm for simulating y−k for given k and yk.

Proposal alternative 1 (P1) Generate y−k by (i) sampling ϕ ∼ N(yk, 1
2σ2I), and thereafter

(ii) sampling yj ∼ N(ϕ, 1
2σ2I) independently for j = 0, . . . , k − 1, k + 1, . . . , m.

Here N(µ, Σ) denotes a multivariate Gaussian distribution with mean vector µ and covariance
matrix Σ, I is the identity matrix and σ2 is a parameter to be specified. The resulting dependence
structure between the yj ’s is illustrated in Figure 1(a). Note that for m = 1 this reduces to the
common Gaussian random walk proposal.

Our second proposal distribution is a minor modification of the first. In P1 the different xj−ϕ’s
are independent. Now we in stead assume them all to have equal lengths and let their directions
be maximally spread. We give the proposal for m = 2 and n ≥ 2, but the idea can easily be
generalised to other values of m ≤ n. Letting y = (y0, y1, y2) and ỹ = (ỹ0, ỹ1, ỹ2) denote the old
and new values, respectively, Figure 1(b) illustrates the following choice of qk(·|yk).
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Figure 1: (a) Conditional independence structures in P1 for m = 7. (b) Illustration of qk(·|yk) for
Proposal alternative P2.

Proposal alternative 2 (P2) Generate y−k by first (i) sampling u1, u2 ∼ Unif(Sn−1) indepen-
dently, and set v1 = u1 and v2 = {u2 − u1(u

T
1 u2)}/ ‖ u2 − u1(u

T
1 u2) ‖. Thereby v1 and v2

are orthogonal and of unit lengths. Next, (ii) draw L ∼ N(0, σ2

3 ), (iii) set ỹk = yk and (iv) let

ỹ−k and ϕ ∈ <n be defined from the three relations ỹ1 = ϕ + Lv1, ỹ2 = ϕ − L
2 v1 +

√
3L
2 v2 and

ỹ3 = ϕ − L
2 v1 −

√
3L
2 v2.

Here Unif(Sn−1) denotes a uniform density on the unit hyper-sphere. We use the factor 1
3 in the

variance for L to obtain ỹi − ỹj ∼ N(0, σ2) for i 6= j.

4 Transition matrix P(y)

As discussed in Section 2, the choice of transition matrix P(y) is typically taken as granted when
m = 1. For m > 1 the situation is less clear. In this section we discuss three strategies for its
choice. The simplest alternative is the following.

Transition alternative 1 (T1) Set

Pk,l(y) =
pl(y)∑m

j=0 pj(y)
. (9)

It is easily verified that this choice fulfils requirements (3), (4) and (5). It also fulfils detailed
balance, equation (6). For m = 1 this corresponds to Barker’s (1965) acceptance probability,
which is known to be sub-optimal in asymptotic variance (Peskun, 1973). This turns out to be
true also for m > 1, as the above P(y) can be Peskun improved by the following property.

Theorem 1 For an (m + 1) × (m + 1) matrix Q = [Qk,l]
m
k,l=0 and an (m + 1) vector π =

[π0, π1, . . . , πm]T assume

πkQk,l = πlQl,k for k, l ∈ {0, 1, . . . , m}. (10)

For some u ∈ < and a set A ⊆ {0, 1, . . . , m}, define the (m + 1)× (m + 1) matrix Q̃ = [Q̃k,l]
m
k,l=0

from Q by
Q̃k,l = Qk,l if k 6∈ A or l 6∈ A, (11)

Q̃k,l = uQk,l if k, l ∈ A and k 6= l, and (12)

Q̃k,k = 1 −
∑

l6=k

Q̃k,l for k ∈ A. (13)

Then (10) holds also when Q is replaced by Q̃.
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The proof is immediate. Our second transition matrix alternative is obtained be starting with the
P(y) defined in T1 and then use the above theorem repeatedly until at most one diagonal element
is non-zero. In the following, |A| denotes the number of elements in the set A.

Transition alternative 2 (T2) Let P(y) by defined via the following process.

1. Set πk = pk(y)/
∑m

j=0 pj(y) for k = 0, 1, . . . , m.

2. Set t = 0 and let P0(y) be the transition matrix defined in (9).

3. Set At = {k : P t
k,k(y) > 0, k = 0, 1, . . . , m}.

4. If |At| ≤ 1, set P(y) = Pt(y) and stop the process.

5. Set

ut = min
k∈At

(
1 −

∑
l6∈At Pt

k,l(y)
∑

l∈At\{k} Pt
k,l(y)

)
. (14)

6. Let P
t+1(y) be defined from (11), (12) and (13) by substituting in these equations P

t(y) for

Q, Pt+1(y) for Q̃, ut for u, and At for A.

7. Assign t = t + 1 and goto 3.

One should note that the choice of ut in (14) ensures that all elements in P(y) are non-negative.
For m = 1 the above process gives

Pk,l(y) = min

{
1,

pl(y)

pk(y)

}
for k 6= l, (15)

which we can recognise as the Peskun optimal Metropolis–Hastings acceptance probability. The
above process defines all elements in P(y). When simulating the Markov chain one of course only
needs the elements in row κ. These can easily be computed without computing the whole matrix
P(y). This is computationally important if m is large.

In both of the above strategies for choosing P(y), the resulting transition matrices depend
on y only through the pk(y)’s. This does not necessarily need to be the case. One may for
example want to assign high probabilities to transitions that correspond to large changes in yκ.
Let d(k, l, yk, yl) ≥ 0 be a function that somehow measure the difference between yk and yl. The
d(·, ·, ·, ·) may, but need not, define a metric on <n. One may then let P(y) be the solution of the
following linear programming problem.

Transition alternative 3 (T3) Let P(y) be the matrix that minimises

m∑

k=0

m∑

l=0

d(k, l, yk, yl)Pk,l(y), (16)

under constraints (3), (4) and (5).

This is of course only a viable alternative when m is not too large, as otherwise the computational
cost of solving the minimisation problem will dominate the computation time. When m = 1 and
d(k, l, yk, yl) is strictly positive for k 6= l and equal to zero for k = l, this strategy also produces the
Peskun optimal Metropolis–Hastings acceptance probability. In contrast to T1 and T2, this last
approach may, for m > 1, generate transition matrices that do not fulfil detail balance condition.

5



5 Using all proposed states to estimate mean values

Assume we want to estimate µ, defined in (7). As in Section 2, let {yi, κi}N
i=1, where y

i =
(yi

0, y
i
1, . . . , y

i
m), denote the simulated Markov chain after having discarded a burn-in period. As

an alternative estimator to (8), consider

µ? =
1

N

N∑

i=1

{
m∑

l=0

wκi,l(y
i)f(yi

l )

}
, (17)

where w(y) = [wk,l(y)]mk,l=0 is a weight matrix function. The following theorem gives sufficient
conditions for µ? to be an unbiased estimator for µ.

Theorem 2 Let µ and µ? be given by equations (7) and (17) respectively and let {yi, κi}N
i=1 be

a series of (possibly dependent) samples from p(·, ·), where p(·, ·) is defined by equations (1) and
(2). For all y ∈ <n(m+1), assume

pl(y) =

m∑

k=0

pk(y)wk,l(y) for l ∈ {0, 1, . . . , m}, and (18)

m∑

l=0

wk,l(y) = 1 for k ∈ {0, 1, . . . , m}. (19)

Then E{µ?} = µ.

See Appendix A for a proof. One should note that requirements (18) and (19) are identical to (3)
and (5) for P(y). Thus, the three strategies for choosing P(y) discussed in Section 4 can just as
well be used for w(y). However, the elements of w(y) are not probabilities and thereby do not
need to be non-negative. This gives extra freedom in the choice of w(y). For example, it is easily
verified that

wk,l(y) =
c pl(y)∑m

j=0 pj(y)
for k 6= l, and (20)

wk,k(y) = 1 −
∑

l6=k

wk,l(y) (21)

fulfil the requirements of the above theorem for any c ∈ <n. In simulation experiments we have
found this to produce good results. In the rest of the paper we therefore restrict the attention to
this choice of w(y). However, we do not claim it to be optimal in any sense. One should note
that µ? is a generalisation of µ̂, as µ? = µ̂ for c = 0. As µ? is a linear function of c, one can easily
express Var(µ?) as a function of c and the covariance structure of the simulated Markov chain.
Inserting (20) and (21) in (17) we get

µ? =
1

N

N∑

i=1

{
g1(y

i, κi) + cg2(y
i, κi)

}
, (22)

where

g1(y, κ) = f(yκ) and g2(y, κ) =

∑
l6=κ pl(y){f(yl) − f(yκ)}

∑m

l=0 pl(y)
. (23)

Defining the covariance functions

γij(h) = Cov
{
gi(y

i, κi), gj(y
i+h, κi+h)

}
for i, j = 1, 2 (24)

we get, for large N ,

Var(µ?) ≈
1

N

{ ∞∑

h=−∞
γ11(h) + 2c

∞∑

h=−∞
γ12(h) + c2

∞∑

h=−∞
γ22(h)

}
. (25)
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An optimal value for c can thus be found by minimising this expression. This gives

copt = −

∑∞
h=−∞ γ12(h)∑∞
h=−∞ γ22(h)

. (26)

The relative reduction in estimation variance by using c = copt in stead of c = 0 is

Var(µ?|c = 0) − Var(µ?|c = copt)

Var(µ?|c = 0)
=

{∑∞
h=−∞ γ12(h)

}2

{∑∞
h=−∞ γ11(h)

}
·
{∑∞

h=−∞ γ22(h)
} . (27)

By estimating the covariance functions one gets estimates for copt and corresponding variance
reduction. However, if the same Markov chain run is used first to estimate copt and thereafter
to compute µ? for c = ĉopt, the resulting µ? is not unbiased. A better alternative is to do two
independent Markov chain runs, runs A and B say. One may then estimate copt from each of the
runs, getting ĉA

opt
and ĉB

opt
, and thereafter computing µ?

A from run A with c = ĉB
opt

and µ?
B from

run B with c = ĉA
opt

. Then both µ?
A and µ?

B are unbiased estimators for µ, and so is 1
2 (µ?

A + µ?
B).

6 Simulation examples

To quantify the possible gain by using the strategies discussed above we present two simulation
exercises. For simplicity we use multivariate Gaussian densities for the target density π(·). We
vary the number of proposals m, the proposal distribution qk(·|yk), and the transition kernel
P(y). For each case we simulate the Markov chain and use this to estimate copt, the corresponding
estimation variance, Var(µ?|c = copt), and the relative variance reduction by using c = copt in
stead of c = 0. To estimate these quantities we substitute the infinite sums in (25), (26) and (27)
by corresponding finite sums over empirical covariance functions. For each covariance function we
choose a lag cut-off value equal to the first lag where the empirical covariance is less than 0.005
times the lag zero covariance. Even if other and better procedures for estimating these infinite
sums exist (Priestley, 1981; Geyer, 1992; Green and Han, 1992), this crude estimation procedure
gives satisfactory results in our examples.

6.1 Example 1

Let π(·) be a five dimensional Gaussian distribution with zero mean and identity covariance matrix.
We estimate the mean of two functions, f1(x) = x1 and f2(x) = x2

1, where x1 denotes the first
component of the vector x. Of course, the true mean values are µ1 = Eπ{f1(x)} = 0 and
µ2 = Eπ{f2(x)} = 1. To simulate from π(·) we combine P1 from Section 3 and T2 from Section 4.
We run the algorithm for all combinations of σ2 = (0.1t)2; t = 1, . . . , 30 and m = 2t; t = 0, 1, . . . , 7.
The results of summarised in Figure 2. The left and right columns give estimation results for µ1

and µ2, respectively. The plots in the upper row show estimated relative variance reduction,
equation (27), as function of proposal standard deviation σ. The eight curves are, from bottom
to top, for m = 2t; t = 0, 1, . . . , 7. Thus, for any fixed σ the gain of using c = copt increases
uniformly with m. For m = 1, the maximum gains are 26% and 33% for estimating µ1 and µ2,
respectively. For m = 128, the improvements get as high as 64% and 76%. The second row in
the figure shows estimated values for copt as function of σ. The curves are, from top to bottom
for large σ, for m = 2t; t = 0, 1, . . . , 7. In the third row we plot, for each value of m, the value
of σ that gave the smallest estimated value for Var(µ?) using c = 0 (dashed curve) and c = copt

(solid curve). We see that the optimal value for σ increases with m. Moreover, the optimal value
for σ is somewhat larger for c = copt than for c = 0. Note that for m = 1 the optimal value for σ
follows from the results in Roberts et al. (1997). Finally, the two lower rows of Figure 2 show how
the estimation variances varies with m. For each value of m we choose the best value for σ2 and
plot estimated values for NVar(µ?) (fourth row) and NmVar(µ?) (fifth row). The upper (dashed)
curves are for c = 0 and the lower (solid) curves for c = copt. In an ideal parallel implementation
of the algorithm, where computation time per iteration is the same for all values of m, the plots
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Figure 2: Summary of estimation results for Example 1. The left and right columns contain results
for f1(x) = x1 and f2(x) = x2

1, respectively. First row: As a function of σ, estimated relative
variance reduction by using c = copt in stead of c = 0. From bottom to top, the eight curves are
for m = 2t; t = 0, 1, . . . , 7. Second row: As a function of σ, estimated value for copt. From top
down (for large values of σ), the eight curves are for m = 2t; t = 0, 1, . . . , 7. Third row: Estimated
optimal values for σ as function of m. The upper (dashed) curves are for c = 0, the lower (solid)
curves for c = copt. Forth row: Estimated NVar(µ?) as function of m. The upper (dashed) curves
are for c = 0, the lower (solid) curves for c = copt. Fifth row: Estimated NmVar(µ?) as function
of m. The upper (dashed) curves are for c = 0, the lower (solid) curves for c = copt.
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NVar(µ?
1)

c = 0

T2 T3
P1 10.381 9.871
P2 10.312 9.775

c = copt

T2 T3
P1 6.971 6.929
P2 6.881 6.870

NVar(µ?
2)

T2 T3
P1 13.918 13.311
P2 13.941 13.195

T2 T3
P1 8.421 8.425
P2 8.356 8.333

Table 1: Summary of estimation results for Example 2. The left and right columns contains
results for f1(x) = x1 and f2(x) = x2

1, respectively. Estimated values for NVar(µ?) are given for
the combinations (P1,T2), (P1,T3), (P2,T2) and (P2,T3) for c = 0 and c = copt.

in the fourth row give the gain in estimation variance of using m > 1. For example, by using
m = 128 and c = copt the estimation variance when estimating µ2 is approximately reduced with
a factor 25 = 32 relative to using m = 1 and c = 0. Of course, such a gain is not achievable in
practice. First, sampling from P(y) is not suited for parallelisation. Second, parallelisation comes
with an extra cost associated with communication between processors. With the computationally
very cheap target distribution π(·) we are using in this example the gain from parallelisation
would probably be quite limited, but with a computationally more expensive target density this
would change. For a sequential implementation of the algorithm, where the computation time per
iteration is approximately proportional to m, one should consider NmVar(µ?) as function of m.
This is shown in the lower row in Figure 2. As one would anticipate, the best alternative is then
to use m = 1.

6.2 Example 2

Again we let π(·) be a five dimensional Gaussian distribution with zero mean and identity co-
variance matrix and focus on the two functions f1(x) = x1 and f2(x) = x2

1. We use m = 2 and
get four different simulations algorithms by combining either of P1 and P2 with either of T2 and
T3. For T3 we use d(k, l, yk, yl) = 1 if k 6= l and d(k, l, yk, yl) = 0 otherwise. For example, with
p0(y) = 0.4, p1(y) = 0.35 and p2(y) = 0.25 this gives

P(y) =




0 0.5508 0.4492
0.7990 0 0.2010
0.4814 0.5186 0


 . (28)

This matrix can be compared with what one gets in this case by using T2 in stead,

P(y) =




0.0833 0.5833 0.3333
0.6667 0 0.3333
0.5333 0.4667 0


 . (29)

With the d(·, ·, ·, ·) used here, it follows easily that a diagonal element in P(y) produced from T3
will always be smaller of equal to the corresponding diagonal element in the matrix generated
by T2. However, as illustrated in the above example there will not necessarily exist any Peskun
ordering (Mira, 2001) of the two transition matrices.

For each of the four combinations (P1,T2), (P1,T3), (P2,T2) and (P2,T3) we again simulate
for σ2 = (0.1t)2; t = 1, . . . , 30. In each case we estimate NVar(µ?) for c = 0 and for c = copt.
In Table 1 we report the minimum (over different values of the proposal variance σ2) estimated
NVar(µ?). For c = 0 we see that T3 gives lower estimation variances than T2. The same tendency
seems to be present for c = copt, but now the differences are much smaller. For most cases the
estimated variance for P2 is also lower than the corresponding number for P1. However, the
largest difference in estimation variance is clearly between c = 0 and c = copt.
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7 Closing Remarks

In this paper we suggest to use all Metropolis–Hastings proposals to estimate mean values. We
give sufficient conditions on the weights for the estimators to be unbiased and demonstrates in
simulation examples that significant reduction in estimation variance can be achieved. With the
possibility of using also rejected proposals for estimation it becomes more interesting to consider
algorithms with many proposals in each iteration. In this paper we therefore also include a
thorough discussion of this topic and extend the framework previously given for this.

In Section 3 we define two possible generalisations of the random walk proposal to a situation
with multiple proposals in each iteration. An interesting problem is how to generalise other
frequently used proposal strategies (for m = 1) to the multiple proposal case. For example,
what is the natural generalisation of the Langevin–Metropolis–Hastings scheme (Grenander and
Miller, 1994; Phillips and Smith, 1994; Roberts and Tweedie, 1996; Roberts and Rosenthal, 1998)
to the multiple proposal case? Or what about the independent proposal Metropolis–Hastings
algorithm? The “obvious” possibility for the latter is just to produce many independent proposals
from the same proposal distribution, but we expect a better alternative is to generate dependent,
negatively correlated, proposals. Our Proposal alternative P2 is one example of how antithetic
variables can be used in the proposal generation when m > 1. Even if the gain from this was quite
limited in our second simulation example, we expect the use of antithetic variables to prove more
fruitful in other cases.

Also the choice of transition matrix P(y) is important for the performance of an algorithm.
We have discussed some possibilities, but we expect there are other and better choices. Last, but
not least, the choice of weight matrix w(y) is important. Our simple choice in (20) and (21) give
good results in the simulation examples. However, it is not optimal in any sense we suspect better
alternatives can be found. One should also remember that the requirements in Theorem 2 are not
necessary, just sufficient, conditions for µ? to be unbiased.
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A Proof of Theorem 2

To prove Theorem 2 we need to show

Ep

{
m∑

l=0

wκ,l(y)f(yl)

}
=

m∑

k=0

∫ m∑

l=0

wk,l(y)f(yl)
1

m + 1
pk(y)dy = µ. (30)

Starting with the left hand side of this expression we get

Ep

{
m∑

l=0

wκ,l(y)f(yl)

}
=

1

m + 1

m∑

k=0

∫ ∑

l6=k

wk,l(y)f(yl)pk(y)dy

+
1

m + 1

m∑

k=0

∫ 
1 −

∑

l6=k

wk,l(y)



 f(yk)pk(y)dy

= µ +
1

m + 1

∫ m∑

k=0

∑

l6=k

wk,l(y)f(yl)pk(y)dy −
1

m + 1

∫ m∑

k=0

∑

l6=k

wk,l(y)f(yk)pk(y)dy

= µ +
1

m + 1

∫ m∑

k=0

∑

l6=k

wk,l(y)f(yl)pk(y)dy −
1

m + 1

∫ m∑

k=0

∑

l6=k

wl,k(y)f(yl)pl(y)dy,

where, to get the last expression, we have interchanged the summation indices k and l in the last
double sum. Thus, a sufficient condition for (30) to hold true is

∑

k 6=l

wk,l(y)pk(y) =
∑

k 6=l

wl,k(y)pl(y) (31)

for all l = 0, 1, . . . , m and y ∈ <n(m+1). This equation is however, using (19), equivalent to

pl(y){1 − wl,l(y)} =
∑

k 6=l

wk,l(y)pk(y) (32)

which in turn is equivalent to (18).
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