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Abstract

Numerical efficient methods for sampling and evaluation of Gaussian Markov Random
Fields (GMRFs) are used for making inference from Bayesian animal models (also known
as additive genetic models, that are versions of general linear models). For single-trait
animal models an approximation to the posterior distribution of variance components and
the heritability can be found without using Markov chain Monte Carlo (MCMC) methods.
For the multiple-trait animal model a two-block Gibbs sampler can be used, also for large
datasets.

The above methodology is successfully used to study the genetic architecture of mor-
phological traits in a house sparrow meta-population. The pedigree consists of 3572 birds
and there are data for seven traits, i.e. the Bayesian animal model has more that 25000
variables. The results provide strong indications of possibilities for, but also constraints
on micro-evolution.
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1 Introduction

Quantitative genetics is the study of quantitative characters. The theory is based on the
assumption that the characters are determined by a large number of genes as well as by
different environmental effects. Important pioneer work done by Karl Pearson on regression
and Ronald Fisher on analysis of variance (ANOVA) were motivated by the need for esti-
mating quantitative genetic parameters. An important quantitative genetic parameter is the
heritability of a trait; how much of the phenotypic (observed traits) variance in a population
can be explained by different genes. See e.g. Lynch and Walsh (1998) for an introduction to
quantitative genetics. The key assumption in the model we use, the animal model , is that
animal i’s trait, yi (e.g. the length of an elephant’s trunk) can be divided into a genetic part
(or inherited part), ui, and an environmental part εi. The value of ui is referred to as the
breeding value of individual i. To calculate individual breeding values one need data from
related animals. For decades calculation of breeding values have been standard in plant and
animal breeding programs, for breeding animals or plants with desired properties. For do-
mestic populations this has been a success; beef cattle give more meat and diary cows more
milk, see e.g. Simm (1998).

Until recently the required data have not been available at any large scale for wild pop-
ulations. Though, with easier genotyping methods, it is today achievable to decide family
structure also for natural populations, see e.g. Kruuk (2004) and references therein.

Both in plant and animal breeding and in evolutionary biology it is often of interest to
consider several traits simultaneously. For example in plant and animal breeding, selection
for multiple traits are often desired, e.g. yield and quality of wheat. This requires knowledge
about the additive genetic variances and correlations between traits. The additive genetic
covariance matrix is also of interest to understand evolution because it contains information
about evolutionary trajectories of several traits; Roff (1997), Lande and Arnold (1983), and
about possible bottlenecks under natural selections, Lynch and Walsh (1998). A finding of
several studies of wild populations is that they do not respond to natural selection as expected,
Kruuk et al. (2001). A possible reason is that only single traits were considered; Kruuk et al.
(2002), Jensen et al. (2006a).

In this paper we take a Bayesian approach to analyse the additive genetic structure of
a house sparrow population using the animal model. To our knowledge a Bayesian animal
model has not earlier been used for a wild population, though suggested in Kruuk (2004). In
animal breeding a Bayesian approach is well established, see e.g. Sorensen and Gianola (2002)
or Blasco (2001). Inference has to be done by Markov Chain Monte Carlo (MCMC) methods
and it is often necessary to consider tens of thousands of variables. Making inference is
therefore computationally expensive. Traditionally Gibbs samplers have been used, Sorensen
and Gianola (2002).

The breeding values for the individuals in a population are Gaussian with a dependency
given by the family structure, i.e. by the corresponding pedigree. A pedigree can be viewed
as a directed acyclic graph (DAG); each individual is a node, and there are edges from parents
to offsprings. From a DAG the conditional independence graph can be found by moralising
the DAG; ’unmarried’ parents are ’married’ (an edge is inserted between them), and the
direction of the edges are removed, see Figure 1 for an illustration. A multivariate Gaussian
model with a conditional independence structure is known as a Gaussian Markov random field
(GMRF) model, where the Markov property refer to the conditional independence structure.
We will see that the animal model is a GMRF model, and a multiple trait animal model is a



multivariate Gaussian Markov random field (MGMRF) model.
Computationally efficient sampling and evaluation methods are available for GMRFs and

MGMRFs, Rue and Held (2005). In this paper we utilise the computational benefits of
GMRFs for the animal model. For a multiple trait animal model we set up a two-block Gibbs
sampler, and we are also able to make inference for models with constraints on breeding
values or group level effects. For the single-trait animal models we are able to calculate
the joint posterior probability density for the genetic and environmental variances on a grid,
which gives us almost exact posterior distribution for the heritability without doing MCMC.
Because of the computational efficiency, we are able to do these analyses for large pedigrees
and many traits.

In Section 2 the data are introduced. The animal model is fully specified in Section 3.
Section 4 contains a review of relevant GMRF theory. In Section 5 the inference methodology
is set up. The data are analysed, and to some extent interpreted in Section 6. Section 7 ends
the paper with a conclusion.

2 Data

In this study we analyse data from an insular meta population of a small Passerine bird, the
house sparrow (Passer domesticus). From 1993 the entire population of house sparrows has
been monitored on five islands off the coast of Helgeland, Northern Norway. On these islands
house sparrows live near human settlements, and mostly nest inside barns of dairy farms.
During the breeding season nests are thoroughly searched for, and nestlings are ringed and a
blood sample is taken before fledging.

In addition, adult and fledged juveniles (birds born the same summer) are captured with
mist nets during the summer. A large porportion (> 70%) of the adult birds present on each
island a given year are marked. House sparrows not registered as nestlings are ringed and
a blood sample is taken at first capture. When captured, several morphological traits are
measured for both adult males and adult females; tarsus length (’foot length’), wing length,
bill depth, bill height and body mass. The males have a black throat badge. The feathers on
a region of their throat have black bases. Most of these feathers also have black tips, which
makes up the visible badge. The other black based fathers have gray tips. In this study both
the total badge size (area with black feather bases) and visible badge size (area with black
tips) are registered. Hence, we have five morphological traits for females and seven for males.
However, for some of the birds the record is not full. For all registered birds, also their sex,
hatch year and hatch island are known.

The blood samples are used to determine genetic parenthood, see Jensen et al. (2003,
2004), and hence we get a pedigree for the birds on the study islands. We have used data
from 1993-2002. There are 3572 birds in the pedigree. For 53% both parents are known, for
27% only one parent and 14% have neither any known parents nor children. For 824 house
sparrows we have records of one or more adult traits as well as sex, hatch year and hatch
island. We use adjusted one-year old traits (as described in Jensen et al. (2006a), most of the
traits change during life, e.g. the badges generally get larger). The data are standardised for
each trait. Most of the birds stay on the island they are born: Of the birds in our dataset
about 6% migrated from one study island to another, see also Altwegg et al. (2000) and Tufto
et al. (2005).

For a more thorough description of the field work and study area, see Altwegg et al. (2000),



Ringsby et al. (1999, 2002), Saether et al. (1999) and Jensen et al. (2004).

3 The Animal Model

The animal model is a general linear mixed model, and it is also known as the additive genetic
model. Good references are Lynch and Walsh (1998) or for a Bayesian approach (from an
animal breeding point of view) Sorensen and Gianola (2002).

Let yi denote the trait value(s) for bird i. If only one trait is considered yi is a scalar,
while in a multiple traits situation yi is a vector of length the number of traits, say of length
m. One then assumes that the actual trait value for an animal i is the result of group level
effects βf,l(i), genetic effect ui and environmental effect εi;

yi =

nf
∑

f=1

βf,l(i) + ui + εi (1)

Group level effects account for different levels l = 1 . . . Lnf
in nf different groups, and where

individual i has level l(i). E.g. in the house sparrow males are for some traits generally larger
than females, and sex is a natural group effect with two levels. Other group levels in natural
populations can be e.g. year of birth and location. In a classical approach these effects would
be treated as fixed effects. In a Bayesian setting there are no such thing as fixed effects, as all
effects are treated as random effects. The genetic effect is the part determined by genes, i.e.
the inherited part. Both the genetic and environmental effect are given zero mean Gaussian
priors; ui ∼ N(0,Σu) and εi ∼ N(0,Σε), where Σu is the genetic covariance matrix (size
m × m) and Σε is the environmental covariance matrix (size m × m). We give both these
matrices the conjugated inverted Wishart distribution as prior.

In the pedigree there are often many birds without any observed trait value. Let n be
the number of birds in the pedigree, and denote the set of birds with (at least one) observed
trait value(s) I ⊆ {1, 2, . . . , n} and the number of birds with observed trait |I| = N . Let
y = (yi)i∈I , a vector of all traits of birds with trait data, u = (u1, u2, . . . , un), a vector of all
breeding values for all the birds in the pedigree, and ε = (εi)i∈I all the environmental effects
for the birds with trait data. The full model then reads;

y = Xβ + Wu + ε (2)

where X and W are known incidence matrices. The environmental effects are assumed inde-
pendent between birds; ε ∼ N(0, I ⊗ Σε) with I the identity matrix of size (N × N) and ⊗
the Kronecker product. I.e. the environmental effects can be interpreted as residuals. The
breeding values are assumed to have a dependency structure corresponding to how the birds
are related; u ∼ N(0, A ⊗ Σu), where A is a n × n matrix known as the relationship matrix.
Element (i, j) of A is two times the coefficient of coancastry between bird i and bird j, see e.g.
Malecot (1969). In calculations only A−1 is needed, and its non-zero structure is found from
moralising the pedigree. The non-zero values can be calculated according to Quaas (1976).

If there are more than one group level effect, there is an identification problem. We solve
this problem by constraining the effect of the levels to sum to zero for all but one fixed effect;
∑L

l=1 βl = 0. In addition, a breeding value is a property that is relative to the population, and
therefore we also constrain the breeding values for each trait t to sum to zero;

∑n
i=1 uit = 0.

We write these constraints as Cββ = 0 and Cuu = 0 where 0 denotes a vector of zeros.



The variables of interest are typically the covariance matrixes Σu and Σε and functions of
these. In particular, the heritability for each trait t is of interest;

h2
t =

Σu,tt

Σu,tt + Σε,tt
. (3)

Here Σtt refers to element (t, t) of matrix Σ. Also individual breeding values or trends in
breeding values can be of interest.

For the birds with observed adult traits, the record is not necessarily full. We use the
notation y = {yobs,ymiss}. As the females do not have badges, we treat female badges as
missing observations.

Hence, the posterior distributions we want to evaluate are; the posterior of the breeding
values and genetic and environmental covariance matrices π(Σu,Σε,u,β|yobs), the posterior
of the covariances matrices π(Σu,Σε|yobs) and/or the posterior of the heritabilities π(h2

t |yobs).

4 Gaussian Markov Random Fields

The parameter estimating methodology introduced in Section 5 is made possible for problems
of our size by computationally efficient sampling and evaluation algorithms for GMRFs. In
this section we give a short introduction to GMRFs and their properties relevant for this
work. For a thorough introduction to GMRFs and its application, see Rue and Held (2005).

GMRF models are multivariate Gaussian models with a Markov property, and are also
known as conditionally autoregressive (CAR) models as introduced by Besag (1974, 1975).
The Markov property refers to a conditional independence structure, often visualised with
a conditional independence graph. Let G = (V, E) be a graph with n nodes (or vertexes);
V = {1, 2, . . . , n} and edges E = {(i, j)} with i, j ∈ V. Then x is a GMRF with respect
to G if and only if there is no edge only between nodes corresponding to variables that are
conditionally independent. Let x−ij denote all variables but xi and xj; x−ij = x\{xi, xj}. If
there is no edge between node i and j, then xi and xj are conditionally independent; {i, j} 6∈
E ⇒ xi ⊥ xj|x−ij. In our setting we can think of each node as a house sparrow, and the edges
are obtained by moralising their pedigree, see Figure 1. Therefore, each bird is conditionally
dependent only on its parents, its offspring and the other parent(s) of its offspring. The
Markov structure is reflected in the non-zero pattern of the precision matrix Q = Σ−1: Only
off-diagonal elements that correspond to conditionally dependent variables (two nodes with
edges between) are non-zero. It is this sparseness of Q that imposes computational benefits
for sampling and evaluation of GMRFs. The computationally expensive parts of both these
operations are calculation of Q’s Cholesky factor L, Q = LT L (L is lower triangular). In
most cases a sparse precision matrix impose a sparse Cholesky factor, fewer elements have
to be calculated, and the computations are orders cheaper then for a full Q. While the
computational complexity of Cholesky decomposition is O(n3) for a full matrix, it is O(n)
for a GMRF on a one-dimensional graph (i.e. a times series structure) and O(n3/2) for a
GMRF on a two-dimensional graph, Rue and Held (2005, Ch. 2.5.). Our pedigree-based
graph is between one- and two-dimensional. A sample from N(0, Q−1) can be obtained
by solving LT x = z for x with z a vector of independent standard Gaussian samples and
where L is Q’s Cholesky factor. To evaluate the probability density function of a GMRF the
determinant of Q is needed, and det(Q) =

∏n
i=1 lii, where lii is element (i, i) of L. There are

also other useful computationally achievable possibilities for GMRFs: Let x = (xT
A,xT

B) be



a n-dimensional GMRF with respect to a 2-dimensional graph. We are able to sample from

and evaluate conditional distributions, π(xA|xB), with computational complexity O(n
3/2
A )

where nA = dim(xA), Rue and Held (2005, Ch. 2.3.2.). We can sample and evaluate also
with deterministic constraints, i.e. from π(x|Cx = a), where C is a known matrixes of size
(n × k), a a vector of length k and π(x) a GMRF, Rue and Held (2005, Ch. 2.3.3.). The
extra complexity due to the constraint is O(k3), e.g. almost no extra cost for small k (i.e.
few constraints).

In our case each node is a house sparrow, and the corresponding variable its breeding value.
But each bird has seven traits, and hence seven breeding values. Marginally for each bird, its
breeding values are multivariate Gaussian without a Markov structure. Therefore each node
contains not only one variable, but a vector of variables. This is known as a multivariate
GMRF (MGMRF) with respect to the pedigree-based graph G. Since a MGMRF itself is a
GMRF (with respect to another graph) all properties for GMRFs are also valid for MGMRFs.

For all GMRF sampling and evaluation routines, we have used the library GMRFLib, Rue
and Follestad (2002).

5 Parameter estimation

5.1 A two-blocks Gibbs sampler

To make inference from the multiple-trait animal model we use a Gibbs sampler to obtain
samples from π(u,β,ymiss,Σu,Σε|yobs). Traditionally single-site (or nearly single-site) Gibbs
samplers have been used, which can give serious mixing problems, see Sorensen and Gianola
(2002, Ch. 13.5). Well known remedies for mixing problems are blocking; Liu et al. (1994),
Liu (1994) and reparametrisation; Gelfand et al. (1995). We will use a Gibbs sampler with
only two blocks; Σu and Σε in one block and all remaining variables (breeding values u, level
variables β and missing data ymiss) in the other block. A similar approach is empirically
explored and found more successful than reparametrisation for a single-trait animal model
with a small synthetic dataset in Garcia-Cortes and Sorensen (1996).

Let x = (u,β,ymiss) and write the constraints as Cx = 0. Our Gibbs sampler is found
in Algorithm 1.

Algorithm 1 Two blocks Gibbs sampler

• Initialise x = x0.

• for i = 1 : niter (niter is the number of iterations)

– (Σi
u,Σi

ε) ∼ π(Σu,Σε|x
i,yobs)

– xi ∼ π(x|Σi
u,Σi

ε,yobs, Cx = 0)

• Return (Σ1
u,Σ2

u, . . . ,Σniter
u ), (Σ1

ε ,Σ
2
ε , . . . ,Σ

niter
ε ) and (x1,x2, . . . ,xniter).

In Appendix 1 we show that π(x|Σu,Σε,yobs, Cx = 0) is a MGMRF with constraints, and
can be sampled from and evaluated using efficient algorithms for GMRFs. Without constraints
on x, π(Σu,Σε|x,yobs) = π(Σu|x,yobs)π(Σε|x,yobs) where both factors are known inverted
Wishart distributions (see e.g. Schafer (1997)). The constraints disturb this conjungacy



slightly. Therefore, we do a Metropolis-Hastings (M-H) step when updating (Σu,Σε). As
proposal distribution we use the full conditional distribution for (Σu,Σε) without constraints
on x. The M-H step requires evaluation of π(Σu,Σε|x,yobs) up to a normalisation constant.
We are able to meet this requirement, see Appendix 2.

5.2 Exact posterior for the single-trait model

In Appendix 1 and 2 we show that it is possible to evaluate both π(x,Σu,Σε|yobs) and
π(x|Σu,Σε,yobs) up to a normalisation constant that do not depend on (Σu,Σε). Hence we
are able to evaluate the unnormalised posterior π(Σu,Σε|yobs) using

π(Σu,Σε|yobs) =
π(Σu,Σε,x

∗|yobs)

π(x∗|Σu,Σε,yobs)
(4)

for any value of x∗ (e.g. a sample from π(x|Σu,Σε,yobs)).
In the animal model with one trait the covariance matrices Σu and Σε reduce to two scalars;

the variances σ2
u and σ2

ε , respectively. The posterior π(σ2
u, σ2

ε |yobs) is only two-dimensional,
and it is feasible to evaluate π(σ2

u, σ2
ε |yobs) on a grid of (σ2

u, σ2
ε ) using (4). This gives us a

unnormalised discretisation of π(σ2
u, σ2

ε |yobs) on a lattice which is straightforward to normalise.
We denote this discretisation πd(σ

2
u, σ2

ε |yobs).
Furthermore, we can use πd(σ

2
u, σ2

ε |yobs) to calculate an approximation to the posterior of
the heritability (3); πa(h

2|yobs) ≈ π(h2|yobs). The details of these calculations are given in
Appendix 3. How crude the approximation πa(h

2|yobs) is, depends on the discretisation of
(σ2

u, σ2
ε ).

6 Results

We have used the methodology from Section 5 to analyse the data introduced in Section 2
with the animal model described in Section 3. As prior parameters for Σu and Σε we have
used inverted Wishart distributions Σ ∼ W (V, ν) with parameters ν = (number of traits + 1)
and V the identity matrix. This corresponds to flat priors on all heritabilities and genetic and
environmental correlations. Hatch year and hatch island are used as group levels for all traits,
and sex for all traits except the badge measures. For our standardised data we have made
inference from both the multivariate animal model using the two-blocks Gibbs sampler, and
from the seven single-trait animal models using our ability to calculate posterior distributions
without doing MCMC.

The approximated posterior πd(σ
2
u, σ2

ε |yobs) for the single-trait models for bill length and
visible badge size are given in Figure 2 (based on a regular 200 × 200 grid covering variances
from 0.005 to 1.0). Not surprisingly, we find that there is a negative correlation between the
posterior estimates of σ2

u and σ2
ε : The phenotypic variance (the variance in the trait data) not

explained by level effects has to be explained either by the environmental or by the genetic
variance. The posterior heritabilities for the seven single-trait models are plotted in Figure
3 together with the histograms visualising the posterior heritabilities from the multiple-trait
model. The posterior distributions of the heritabilities for tarsus length, wing length, bill
depth and bill length all have mean around 0.5 and are quite symmetric. Body mass, total
badge and visible badge have a mean around 0.3 and left-skewed posteriors (the modes are
left of 0.3 and the right tails are heavy). At the end of this section we discuss the differences
in posterior distributions between single and multiple-trait models.



In Figure 4 marginal posterior densities for genetic and environmental correlations are
plotted. We see that most of the distributions are wide, especially the genetic correlations
involving the badge measures. The badges have lower heritability than the other traits (except
body-mass), and there are many missing observations (as females do not have a badge).
Hence, there is less information about these genetic correlations in the data, as the posterior
distributions reflect. All environmental correlations are either close to zero or positive. The
environmental correlations between tarsus length and all other traits but the badge measures
are clearly positive (95% of the posteriors are above 0), as well as the environmental correlation
between the badges. None of the genetic correlations are clearly negative, but the genetic
correlations between tarsus length and body mass and visible badge size , between wing length
and bill length and body mass, and between bill depth and bill length are clearly positive.

From the evolutionary biologists point of view, it is of interest to know if there has been
any evolutionary changes and to identify possible causes for these changes. The posterior
mean of the breeding values for bill depth for birds in the cohorts (with hatch year) 1993-
2002 are plotted in Figure 5. There is an increasing trend in the average breeding value
of cohorts with time. This trend indicates that micro-evolution is occurring, and is further
examined in a separate paper; Jensen et al. (2006b).

The two-block Gibbs sampler ran for 200000 iterations after a burn-in of 30000 iterations,
and we have tested the convergence with trace plots and estimated auto-correlation functions
(ACFs) for some selected variables, see Figure 6. We find that the auto-correlation is large
for all hyper-parameters (parameters in Σu and Σε), especially those with a wide posterior
distribution. Variables in u and β on the other side have very small auto-correlation (note
the different scales for ACFs in Figure 6). Hence the hyper-parameters (Σu and Σε) and
functions of them mix slower than the field variables (here β and u), a result also reported
by others; Diggle et al. (2003), Steinsland and Rue (2005).

Comparing the posterior distributions from the multiple-trait model with those from the
single trait models in Figure 4, we see that the distributions roughly agrees. Interestingly,
going from the single to the multiple-trait model, the posterior for tarsus length gets a bit
wider (i.e. more uncertain), for the bill depth quite a bit wider, for bill length the mode shifts
slightly to the right, and the distribution gets narrower. For body mass and the two badge
measures the multiple-trait model posteriors are more skewed than the single-trait posteriors.
An exploration can be found in Figure 7, which shows plots of posteriors for the genetic
variance of the badge measures and the genetic correlation between the badges. From the
left-hand plot we find that larger genetic variance can be justified for the visible badge if there
are strong genetic correlation between the badges (genetic correlation 0 corresponds to the
single trait model). Hence, also the marginal posterior distribution for the genetic variance
is wider than for the single-trait model, as seen in right-hand plot in Figure 7.

7 Discussion

In this paper we have combined the animal model with recent developments in efficient sam-
pling and evaluation of GMRFs. This results in a robust two-block Gibbs sampler for the
multiple-trait animal model. For the single-trait animal model, we are able to calculate pos-
teriors without doing MCMC. We have analysed a dataset with 3572 individuals with seven
traits, i.e. a model with more than 25000 variables. With todays computers we are able
to deal with larger models. There are also good opportunities to use parallel computers or



PC-clusters to sample and evaluate GMRFs, see Steinsland (2003). Parallel computing can
be used to decrease the computation time or to increase the possible problem size. For a
single-trait model we will be able to handle a pedigree with more than 1000000 animals. This
makes our method very useful also for animal breeders that may have large datasets.

Bayesian animal models have, as far as we know, never earlier been used for natural
populations. Evolutionary biologists have other goals for their analysis than animal breeders.
They want to observe, explain and predict natural selection, while animal breeders want to
impose selection to obtain evolutionary changes of commercial interest. In addition, important
system conditions (e.g. weather conditions and number of predators) can not be controlled
in natural systems, and this gives extra uncertainty to the models of evolutionary biologists.
Furthermore, uncertainty about parameter estimates has in general not been considered in
further analysis. For example, it is today common to estimate response to selection (which is
a function of Σu and Σε) without giving any uncertainty for this estimate. Using a Bayesian
approach it is straightforward to assess this uncertainty.

Based on this paper there are several interesting directions for further research. The
animal model can be extended to also include dominance effects, genotype×environment
effects and repeated records. We have reported a few biologically interesting results here,
these and others are now being further examine from a evolutionary biologists point of view.
Next, we want to extend the Bayesian approach to other analyses connected with the animal
model (e.g. response to selection). Further, in our dataset there are trait data on birds that
are left out because we do not know hatch island and hatch year (especially from the first
years of the study). By modelling also the covariates (as done in King et al. (2005)) we would
be able to utilise this information. To identify environmental factors that can explain the
large spatial and temporal changes in phenotype and/or genotype are also biologically very
interesting. This might be obtained by combining the methodology from this paper with
Bayesian model choice and reversible jump MCMC.
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A Appendix

A.1 Derivation of π(u, β, ymiss|Σu, Σε, yobs, Cuu = 0, Cββ = 0)

We start considering the unconstrained case and by finding the conditional distribution
π(u,β,y|Σu,Σε) by

π(u,β,y|Σu,Σε) ∝ π(y|u,β,Σu,Σε)π(u|Σu)π(β)

∝ exp(−
1

2
(y − (Xβ + Wu))T (I ⊗ Σε)

−1(y − (Xβ + Wu))) ·

exp(−
1

2
uT (A ⊗ Σu)−1u) · exp(βT Σ−1

β
β)

where I is a generic notation for an identity matrix with appropriate dimension. From here
it is easy to show that (u,β,y)|Σu,Σε ∼ N(0, Q−1) with precision matrix (only lower half
given)

Q =





A−1 ⊗ Σ−1
u + W T (I ⊗ Σ−1

ε )W

−XT (I ⊗ Σ−1
ε )W Σ−1

β + XT (I ⊗ Σ−1
ε )X

−(I ⊗ Σ−1
ε )W −(I ⊗ Σ−1

ε )X I ⊗ Σ−1
ε



 .

Q is a sparse matrix which is block diagonal with some other non-zero blocks. The off-diagonal
non-zero blocks are given by A−1 as well as non-zero blocks for corresponding elements in y,
u and β.

Further, let x = (u,β,ymiss), and partition Q between x and yobs;

x,yobs|Σu,Σε ∼ N(0,

[

Qxx Qxo

Qox Qoo

]−1

) (5)

The conditional distribution of our interest, π(x|Σu,Σε,yobs), is then known to be Gaussian
with expected value Q−1

xx Qxo and precision matrix Qxx; Rue and Held (2005, Ch. 2.2.3.).
Hence, π(x|Σu,Σε,yobs) is also a MGMRF. The constraints can be written as Cx = 0, and
the distribution of our interest is π(x|Σu,Σε,yobs, Cx = 0). This distribution can be sampled
from and evaluated as described in Section 4.

A.2 Evaluation of π(Σu, Σε|x, yobs)

We know that

π(Σu,Σε|x,yobs) ∝ π(u,β,ymiss|Σu,Σε,yobs)π(Σu)π(Σε)

The priors of Σu and Σε are straightforward to evaluate. According to Rue and Held (2005,
Ch. 2.3.), also π(x|Σu,Σε,yobs, Cx = 0) can be calculated up to a normalisation constant not
dependent on Σu and Σε. The computational demanding part of this evaluation is Cholesky
decomposition of Qxx in (5), which is already done while sampling x.



A.3 Calculation of πd(σ
2
u, σ

2
ε |yobs) and πa(h

2|yobs)

The approximations are based on a lattice on the domain of (σ2
u, σ2

ε ): The posterior of (σ2
u, σ2

ε )
is only considered for a set of equal spaced values of σ2

u ∈ {σ2
u1, σ

2
u2, . . . , σ

2
uN} and σ2

ε ∈
{σ2

ε1, σ
2
ε2, . . . , σ

2
εM}. For these values the approximated posterior is given as

πd(σ
2
ui, σ

2
εj|yobs) =

π(σ2
ui, σ

2
εj |yobs)

∑M
k=1

∑N
l=1 π(σ2

uk, σ
2
εl|yobs)

where π(σ2
u, σ2

ε |yobs) is the posterior probability density function which can be calculated up
to a normalisation factor using (4). Hence, the ratio between two probability masses in πd

equals the corresponding ratio of the exact probability densities;

πd(σ
2
ui, σ

2
εj |yobs)

πd(σ
2
uk, σ

2
εk|yobs)

=
π(σ2

ui, σ
2
εj|yobs)

π(σ2
uk, σ

2
εk|yobs)

.

The approximation πd(σ
2
u, σ2

ε |yobs) can be viewed as a lattice of probability masses. El-
ement (i, j) corresponds to a specific set of parameter values, (σ2

ui, σ
2
εj), and hence to a her-

itability h2(i, j) = σ2
ui/(σ

2
ui + σ2

εj). To find an approximation to π(h2|yobs) we consider a

discretisation h2
0 < h2

1 < . . . h2
nh with h2

0 = 0 and h2
nh = 1. We construct a discretised

approximation πd(h
2|yobs) ≈ π(h2|yobs) based on πd(σ

2
ui, σ

2
εj|yobs): For each element (i, j)

the probability mass πd(σ
2
ui, σε2j |yobs) is divided between the discretised heritabilities closest

to h2(i, j), i.e. between h2
k and h2

k+1 with k such that h2
k ≤ h2(i, j) ≤ h2

k+1. A fraction

(1 −
h2(i,j)−h2

k

h2
k+1

−h2
k

) · πd(σ
2
ui, σε2j|yobs) is dedicated to πd(h

2
k|yobs) the remaining to πd(h

2
k+1|yobs).

A continuous approximation πa(h
2|yobs) ≈ π(h2|yobs) is made by a linear interpolation of the

probability masses of πd(h
2|yobs) followed by a normalisation.
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Figure 1: Left: The pedigree / DAG for the breeding values of seven birds. Bird 1 and 2 are
the parents of bird 4, and bird 2 and 3 the parents of bird 5. Bird 7 has only one known
parent; bird 5. Right: The conditional independence graph found by moralising the pedigree
on the left.
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Figure 2: Joint posterior distribution for the variance components from the single-trait models,
πd(σ

2
u, σ2

ε |yobs), for bill depth (left) and visible badge size (right).

0 0.5 1
0

1

2

3

4

5

Tarsus length

0 0.5 1
0

1

2

3

4

5

Wing length

0 0.5 1
0

1

2

3

4

5

Bill depth

0 0.5 1
0

1

2

3

4

5

Bill length

0 0.5 1
0

1

2

3

4

5

Body mass

0 0.5 1
0

1

2

3

4

5

Total badge size

0 0.5 1
0

1

2

3

4

5

Visible badge size

Figure 3: Posterior heritability for seven morphological traits in house sparrows from the
multiple-trait model (histograms) and single-trait models (solid lines).



−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

−1 0 1
0

5

Tarsus length

Wing length

Bill depth

Bill length

Body mass

Total badge size

Visible badge size

Figure 4: Posterior genetic (above the diagonal) and environmental (below the diagonal)
correlations between morphological traits in house sparrows. Mean (∗), 5% quantile (<) and
95% quantile (>) marked.

1993 94 95 96 97 98 99 2000 01 02

−0.2

0

0.2

0.4

Cohort

B
ill

 d
ep

th

Figure 5: Posterior mean (∗) and 90% credibility interval for average bill depth breeding values
for house sparrow cohorts that hatched in years 1993-2002.
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Figure 6: Trace-plots (left) and estimated autocorrelation functions (ACFs, right) for (from
the top and downwards) the genetic variance of visible badge size, genetic correlation between
bill length and visible badge size, the heritability of bill length, group level effect for hatch year
1993 of bill length and mean breeding values for bill length in year 1993.
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Figure 7: Left: The joint posterior distribution of the genetic variance of the visible badge and
the genetic correlation between the badges. Right: The marginal posterior for the genetic and
environmental variance for visible badge with single trait model (solid lines) and multiple-trait
model (dotted lines).


