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Recursive computing for Markov random fields

Nial Friel∗ and H̊avard Rue†

August 29, 2005

Abstract

We present a recursive algorithm to compute a collection of normalising constants
which can be used in a straightforward manner to sample a realisation from a Markov
random field. Further we present important consequences of this result which renders
possible tasks such as maximising Markov random fields, computing marginal distribu-
tions, exact inference for certain loss functions and computing marginal likelihoods.

Some key words: Autologistic distribution; exact sampling; hidden Markov random
field; Ising model; normalising constant.

1 Introduction

Markov random fields (MRFs) play an important role in spatial statistics, for example, as
prior distributions in image analysis. Early developments in Markov chain Monte Carlo arose
from the need to sample from the Ising model, which is an important example of a Markov
random field. Markov random fields are difficult to handle however since exact calculation
of the normalisation constant is generally unavailable. Numerous approximate schemes have
been presented in the literature, see for example, Geyer and Thompson (1992), Gelman and
Meng (1998), Huang and Ogata (1999), Gu and Zhu (2001). More recently efficient schemes
have appeared which allow normalising constants to be evaluated exactly for MRFs defined
on relatively small lattices, most notably Bartolucci and Besag (2002) and Reeves and Pettitt
(2004).

In this paper we present an algorithm, inspired by the recursive algorithm in Reeves
and Pettitt (2004), which yields a collection of normalising constants, which can used in a
very straightforward way to allow direct sampling of the entire lattice. This new method
preserves the computational complexity of the algorithm presented by Reeves and Pettitt
(2004). We argue that this new result opens doors to many possibilities - computing marginal
distributions, exact inference for certain loss functions, computing modes of an MRF and
computing marginal likelihoods for hidden MRF models. Exact inference is possible for
binary lattices of relatively small size, with around 20 rows or columns, but we contend that
these results are natural building blocks for carrying out inference for large lattices.
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2 Markov random fields

Consider a random process x defined on a rectangular m × m′ lattice, with m ≤ m′, where
each lattice point takes values {−1, 1}. Define an index i ∈ {1, 2, . . . , n}, n = mm′, where
lattice points are ordered from top to bottom in each column and columns from left to right.
The autologistic model (Besag 1974) may be defined as

π(x|β) ∝ q(x|β) = exp(β0V0(x) + β1V1(x)), (1)

with normalising constant z(β). Here,

V0(x) =
n∑

i=1

xi and V1(x) =
∑
i∼j

xixj ,

where ‘i ∼ j’ mean that xj is one of the four directly adjacent neighbours of xi, and further
each neighbouring pair i, j enters the sum only once. The Ising model is a special case where
β0 takes the value 0. Many of the methods in the paper will also apply to the extended
model

π(x|β) ∝ exp(
∑

i

βixi +
∑
i∼j

βijxixj).

For ease of notation however we will concentrate on the case where the βi’s and βij ’s both
take constant values.

3 Generating samples from an MRF

Here we describe the means by which we may gather an exact sample from π(x|β), however
the same argument follows trivially if we condition on data y, where the likelihood of the
data π(y|x) preserves the Markov structure of x, for example if π(y|x) =

∏
i π(yi|xi).

3.1 Background

The Markov property allows the un-normalised distribution in (1) to be written in a factoris-
able form as

q(x|β) =
n∏

i=1

qi(xi|xi+1:n, β), (2)

where
qi(xi|xi+1:n, β) = exp(β0xi + β1xi(xi+1 + xm+i)) (3)

for all i, except when i corresponds to a lattice point on the last row, in which case,

qi(xi|xi+1:n, β) = exp(β0xi + β1xixm+i), (4)

and finally when i corresponds to a point in the last column, where

qi(xi|xi+1:n, β) = exp(β0xi + β1xixi+1). (5)

Throughout we use the notation xi:j to denote variables {xi, . . . , xj}.
It is always possible to write the joint distribution of x as

π(x|β) = π(xn|β)
n−1∏
i=1

π(xi|xi+1:n, β).
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The Markov property implies that the conditional probability of each point xi appearing on
the right hand side above, just depends on the next m points in increasing index order

π(xi|xi+1:n, β) = π(xi|xi+1:m+i, β),

except for points xi in the last column which just depend on the last n − i points. It is
possible to re-formulate this probability as

π(xi|xi+1:n, β) =
π(xi:n|β)

π(xi+1:n|β)
. (6)

Now,

π(xi:n|β) =
∑

x1:i−1

q(x|β)/z(β)

=
∑

x1:i−1

q(x1:i−1|xi:n, β)q(xi:n|β)/z(β)

= zi−1(β, xi:n)
n∏

j=i

qj(xj |xj+1:n)/z(β). (7)

Here we introduce notation for the normalising constant zi−1(β, xi:n) indicating that variables
x1:i−1 have been summed out of q(x1:i−1|xi:n, β). We now re-write (6) using (7) as

π(xi|xi+1:n, β) =
qi(xi|xi+1:n, β)zi(β, xi+1:n)

zi−1(β, xi:n)
. (8)

In addition the marginal distribution for xn can be written as,

π(xn) =
exp(β0xn)zn−1(β, xn)

z(β)
. (9)

Thus we see that to sample from the conditional distributions of xi|xi+1:n requires knowledge
of the corresponding normalising constants zi(β, xi+1:n). One of the main contributions of
this paper is to show how these normalising constants can be calculated in an efficient manner.

3.2 The recursive algorithm

We propose a two-pass algorithm for sampling a realisation x. In the first pass we compute
in turn each zi(β, xi+1:n), for i = 1, . . . , n − 1, in a recursive manner, eventually computing
z(β). The second pass then amounts to sampling each lattice value from the conditional
distributions in (8) and (9), using the normalising constants, zi’s calculated from the first
pass.

Consider the following recursive scheme, which shares some of the aspects of the algorithm
presented in Reeves and Pettitt (2004):

z1(β, x2:n) =
∑
x1

q1(x1|x2:n, β) (10)

and
zi(β, xi+1:n) =

∑
xi

qi(xi|xi+1:n, β)zi−1(β, xi:n) (11)
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for i = 2, n − m. Here note that qi is as defined in (3) for i = 1, 2, . . . , n − m, except when
lattice point xi corresponds to the last row of the lattice, when i = m, 2m, . . . , n − m, in
which case qi is as defined in (4). We complete the recursive scheme by computing

zi(β, xi+1:n) =
∑
xi

qi(xi|xi+1:n, β)zi−1(β, xi:n), (12)

for i = n − m + 1, . . . , n, where now qi follows (5). Note that zn is in fact the normalising
constant for the complete lattice.

Note that this recursive scheme differs from that presented in Reeves and Pettitt (2004),
principally in how the functions qi(·) in (3), (4) and (5) above, are defined. In fact this
algorithm could also be similarly extended to allow direct sampling however this possibility
is not explored by Reeves and Pettitt (2004). Figure 1 illustrates graphically elements of the
recursive scheme above.
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Figure 1: A 4 × 4 lattice where solid circles indicate nodes which appear in the summation
z6(β, x7:10) =

∑
x1:6

q(x1:6|β, x7:10) and empty circles indicate conditioned points. Interaction
terms from the V1 statistics are indicated with solid lines, while abundance terms from the
V0 statistic are indicated with solid circles. In addition functions qi(·) are highlighted for
corresponding lattice points xi.

The algorithm we propose can be thought of as a forward-backward algorithm. We first
move in increasing index order through the lattice points calculating normalising constants,
zi, and then, once these have been calculated, we move in decreasing index order sampling
each lattice point. Note that this algorithm can be naturally extended to MRFs with more
than two state values, for example to a Potts model with unordered state variables, with
obvious increased computational costs. In addition it is possible to extend the algorithm to
larger neighbourhoods. For example if a second-order neighbour structure is used, where also
diagonal interactions are included, then this would require computing normalising constants
of lattice points conditional on the next m + 1 values. In this case

qi(xi|xi+1:n, β) = exp(β0xi + β1xi(xi+1 + xm+i−1 + xm+i + xm+i+1))

with modifications for lattice points on the last row or column, see Figure 2.
The subsequent sections of this paper illustrate what is possible once exact sampling and

normalising constants zi, for i = 1, 2, . . . , n are available.
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Figure 2: A 4 × 4 lattice illustrating the lattice points involved in the normalising constant
z6(β, x7:11) =

∑
x1:6

q(x1:6|β, x7:11) for a second order neighbourhood. Again solid and empty
circles represent terms in the summation and conditioned points respectively. Solid circles
and straight lines represent abundance terms and interaction terms respectively.

4 Consequences and extensions of the methodology

4.1 Hidden Markov random fields

Suppose a MRF x with parameters β is corrupted by some observational noise process leaving
data y. Typically it is assumed that the data y conditional on x preserves the Markov
structure of x. The aim is to estimate all unknown quantities, see for example Friel, Pettitt,
Reeves and Wit (2005).

Consider the posterior marginal distribution for β. It holds that

π(β|y) =
π(x, β|y)
π(x|β, y)

,

for any realisation x. We can write this marginal distribution, up to proportionality constant,
as

π(β|y) ∝ π(y|x)π(x|β)π(β)
π(x|β, y)

, (13)

where the constant of proportionality is π(y), the marginal likelihood of the data. Note
however that every factor in the right-hand side of (13) is now available. In particular it is
possible to sample x from π(·|β) and then to compute π(x|β) and π(x|β, y). Thus (13) can
be used to estimate an unnormalised version of π(β|y), which can then be normalised using
numerical integration, provided the dimension of β is small. An estimate of the marginal
likelihood, π̂(y) obtains by integrating the right hand side of (13) with respect to β.

It is possible to check the error in estimating π̂(β|y) and π̂(y) at any value β∗ by re-using
equation (13) by defining

error(β∗) =
π(y|x)π(x|β∗)π(β∗)

π̂(β∗|y)π̂(y)π(x|β∗, y)
− 1.

Note that, for this extension, exact sampling is not strictly needed. The reader is referred to
Rue, Steinsland and Erland (2004) for an analysis of a similar approximation in the context
of Gaussian Markov random fields.

Of course, computing the marginal likelihood allows the possibility to compute posterior
model probabilities, which thus far for Markov random fields has received little attention
in the literature. However the reader is referred to Robert, Ryden and Titterington (2000),
where the number of latent states is a variable and the latent process is a Markov chain. We
believe that the methodology presented here is a promising area of future research.
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4.2 Computing marginal distributions

Recall from Section 3 that the recursive algorithm allows calculation of conditional proba-
bilities π(x1:i|xi+1:n, β). It follows then that it is possible to compute the joint distribution
π(xi+1:n|β) since it holds that

π(xi+1:n|β) =
π(x|β)

π(x1:i|xi+1:n, β)
, (14)

for any configuration x1:i. Consider now carrying out the forward pass in the recursive
algorithm, but moving in decreasing index order through the lattice, from i = n, n−1, . . . , 2.
This computes conditional probabilities π(xi+1:n|x1:i, β), and similarly to (14) allows joint
probabilities π(x1:i|β) to be evaluated. This now makes it is possible to compute joint
distributions

π(xi:m+i−1|β) =
π(x1:m+i−1|β)

π(x1:i−1|xi:n, β)
,

since all probabilities on the right hand side above can be evaluated. Now marginal distri-
butions of, for example, single lattice points xi are available by summing π(xi:m+i−1) over
xi+1:m+i−1. Indeed it is possible to calculate marginal distributions of π(xi, xj |β) and thus
E(xixj |β) for all pairs of neighbours i ∼ j.

Moreover, returning to the context of hidden Markov random fields, note that it is in
fact possible to estimate posterior marginals, for example,

π(xi, xj |y) =
∫

β
π(xi, xj |β, y)π(β|y) dβ,

since estimates of π(β|y) are available from (13). Numerical integration yields the estimate.

4.3 Computing the modal configuration of π(x|β, y)

Consider again the scenario presented in Section 4.1. Suppose that it was also of interest to
compute the posterior mode of π(x|β, y). An exact algorithm is addressed by Greig, Porteous
and Seheult (1989). This algorithm can be implemented for larger lattices, but it is restricted
to the case where the interaction parameters βij are all positive. The exact method which
we now present poses no such restrictions.

For brevity of notation we will describe an algorithm for calculating the mode of x|β.
However it will be seen to apply similarly if in addition we condition on y as would be the
case for a hidden MRF. Consider the following recursive scheme, which shares much of the
same flavour of that presented in Section 3. Define

f2(x2:n|β) = max
x1

q1(x1|x2:n, β) (15)

and
fi(xi:n|β) = max

xi−1
{fi−1(xi−1:n|β) qi−1(xi−1|xi:n, β)} , (16)

for i = 3, 4, . . . , n where in each case above, qi is as defined in equations (3), (4) and (5).
Notice that

fi(xi:n|β) = max
x1:i

q(x1:i|xi+1:n, β).

Note that for numerical stability it is preferable to work with log(qi), replacing products
above by sums. In effect these recursions give the probability of the modal configuration. A
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backward recursive step is needed to actually find the modal configuration, which we denote
by x̂:

x̂n = arg max
xn

fn(xn|β)

and
x̂i = arg max

xi
fi(xi|x̂i+1:n, β),

for i = n− 1, n− 2, . . . , 1. It is possible that expressions (15) and (16) do not yield a unique
maximum over xi, in which case a unique global maximum would not exist. Nevertheless
it is possible to record where such ties occur and sample uniformly over these values in the
backward step, with added computational costs ensuing.

4.4 Exact Bayesian inference for loss functions

It is well known that the posterior mean estimator corresponds to a mean squared loss
function. In terms of visual restoration of a hidden binary image x, this means that inference
is based on finding an image x which satisfies

arg min
z

Ex|y,βL(x, z),

where L(x, z) =
∑

i(xi−zi)2. In other words only error measured pointwise is accounted for,
resulting potentially in a loss of fidelity in the restored image. The maximum a posteriori
estimator corresponds to a zero-one loss function L(x, z) = 0, if x = z and 1 otherwise. In
both of these cases, spatial information modelled by the latent process x|β is not accounted
for in the loss function. See Rue (1995) for more details. However elements of the previous
methodologies can all be brought together to allow exact inference to be carried out for
improved loss functions.

Consider a loss function of the type

L(x, z) =
∑

i

(xi − zi)2 + λ
∑
i∼j

(xi − zi)(xj − zj), (17)

which accounts for the error at each lattice point, together with a penalty for the simultaneous
error at neighbouring lattice points. Following Section 4.2 it is clear that E(xi − zi) and
E(xi − zi)(xj − zj) can both be calculated as a function of z, where the expectation is with
respect to the distribution x|β, y. We outline this briefly. Define Mi = Exi and Mij = Exixj .
Then for the loss function in (17) the expected posterior loss appears as,

EL(x, z) =
∑

i

(Mii − 2ziMi + 1) + λ
∑
i∼j

(Mij − zjMi − ziMj + zizj).

The point to note is that each of Mi and Mij can be calculated exactly following the discuss
in Section 4.2. Further the algorithm described in Section 4.3 can be used to minimise the
expect loss, thus giving an exact optimal estimator for the given loss function.

Suppose now that we wish to find the optimal estimator for the joint distribution x|y
by maximising the corresponding expected loss. Here we can use ideas from Section 4.1. In
particular,

Ex|y(xi) =
∫

β
Ex|β,y(xi) π(β|y) dβ,

where following (13), we can estimate π(β|y) on the right hand side above. We can similarly
estimate Ex|y(xixj). Minimisation of the expected posterior loss follows as before giving an
approximate optimal estimator. All of the above extends easily to the case where the latent
process takes more than two colours.

8



5 An illustrative example

We consider a dataset consisting of measurements of soil phosphate content on a 16×16 grid
at 10 metre intervals at a location in Greece. The dataset can be found in Buck, Cavanagh
and Litton (1988) and was analysed in Besag, York and Mollié (1991).

We assume that the data y hides an underlying MRF, x. The aim here is to make
inference on the order of the hidden MRF, either a first or a second order Ising model, using
the methodology outlined in Section 4.1. Specifically we model the latent process x as

π(x|β) ∝ exp(β
∑
i∼j

xixj),

where, as before, the notation ∼ denotes that locations i and j are neighbours of each other.
We consider two possibilities:

Model k = 1: A first order neighbourhood where each point xi has as neighbours the four
nearest adjacent points.

Model k = 2: A 2nd order neighbourhood structure where in addition to the first order
neighbours, the four nearest diagonal points also belong to the neighbourhood.

Following Besag et al (1991) we assume that the y’s are conditionally independent given
the x’s and have normal distributions with mean µ(xi) and common variance ν. It of course
possible to also include µ as parameters in the analysis, but for ease of illustration we assume
µ(−1) = 4 and µ(1) = 4.5. In fact these are values also chosen by Besag et al (1991). Our
aim is now, following (13) to compute the right hand side of

π(β, ν|y, k) ∝ π(y|x, ν)π(x|β, k)π(β)π(ν)π(k)
π(x|β, ν, y, k)

(18)

for k = 1, 2. A diffuse zero mean Gaussian prior was specified for β and a diffuse gamma
prior for ν. The dataset contain 9 missing values, however it is entirely straightforward to
modify the algorithm to compute z(β, y, ν, k), the normalising constant for the distribution
π(x|β, ν, y, k) in (18).
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Figure 3: (a) Contour plot of un-normalised marginal distribution of log π(β, ν|y, k = 1) with
maximum value scaled to 0. (b) A normalised version of (a).
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Figure 4: (a) Contour plot of un-normalised marginal distribution of log π(β, ν|y, k = 2)
scaled so that maximum value equals 0 (b) A normalised version of (a).

The un-normalised distribution π(β, ν|y, k) was evaluated at equal spaced points 0.01
apart in the (β, ν)-plane. Contour plots of the log un-normalised marginal distribution
π(β, ν|y, k) and surface plots of π(β, ν|y, k) are presented in Figure 3 and Figure 4 for k = 1, 2
respectively. Both of these plots show that the posterior surface appears quite smooth and
that most of the posterior mass is concentrated on quite a small region in the (β, ν)-plane.
Maximum a posteriori parameters values were found at (0.46, 0.10) for model k = 1 and at
(0.21, 0.10) for k = 2. Numerical integration of the un-normalised distribution π(β, ν|y, k)
with respect to β and ν for k = 1, 2 yields the following marginal likelihoods estimates:
log π(y|k = 1) = −110.168 and log π(y|k = 2) = −114.075. Assuming both models are
equally weighted, a priori, yields posterior model probabilities, π(k = 1|y) = 0.98 and
π(k = 2|y) = 0.02.

6 Discussion

This article has explained how it is possible to sample exactly from an Markov random field,
using a recursive algorithm. Equally importantly we have shown that through knowledge of
conditional normalising constants, and indeed knowledge of the normalising constant itself
further exact inference and calculation is possible - computation of marginal distributions,
including marginals of all pairs of variables entering the joint distribution of the Markov ran-
dom field; exact calculation of the mode of the Markov random field; approximate inference
for the posterior marginal of β|y; exact Bayesian inference for loss functions.

All of the methods presented in this article are restricted to relatively small lattices with
the smaller dimension not greater than 20. This is important in its own right, but also as
natural building blocks for inference for larger sized datasets. For example, our sampling
algorithm could be embedded into a block-MCMC algorithm where each block is updated
exactly conditional on all the remaining sites, the normalising constant is approximated
similarly using a blocked version of pseudolikelihood, the marginal likelihood calculations is
implemented using the normalising constant approximation and where marginal distributions
for xi and (xi, xj) for i ∼ j are approximated using a small lattice around each site. Finally
the modal configuration could be approximated by successive maximisations of overlapping
blocks similar to blocked MCMC. More sophisticated approximations are indeed possible.
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