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Abstract

In this report we apply Integrated Nested Laplace approximation (INLA) to a series of multivariate
stochastic volatility models. These are a useful construct in financial time series analysis and can be
formulated as latent Gaussian Markov Random Field (GMRF) models. This popular class of models is
characterised by a GMRF as the second stage of the hierarchical structure and a vector of hyperparameters
as the third stage.

INLA is a new tool for fast, deterministic inference on latent GMRF models which provides very
accurate approximations to the posterior marginals of the model. We compare the performance of INLA
with that of some Markov Chain Monte Carlo (MCMC) algorithms run for a long time showing that the
approximations, despite being computed in only a fraction of time with respect to MCMC estimations, are
practically exact.

The INLA approach uses numerical schemes to integrate out the uncertainty with respect to the hy-
perparameters. In this report we cope with problems deriving from an increasing dimension of the hy-
perparameter vector. Moreover, we propose different approximations for the posterior marginals of the
hyperparameters of the model. We show also how Bayes factors can be efficiently approximated using the
INLA tools thus providing a base for model comparison.

1 Introduction

1.1 Stochastic volatility models

Financial time series, such as stock returns and exchange rates, present often a non stationary volatility.
Volatility is not directly observable in the financial markets, but presents some characteristics which are com-
monly seen in asset returns. For example, it shows clusters over time, that is there are period of high volatility
followed by periods of low volatility. Moreover, it is often stationary and evolves in time in a continuous
manner, that is volatility jumps are rare. A typical time series of financial data is represented in Figure 1.
The data are a time series of log-returns of pound-dollar daily exchange rates from October 1st, 1981 to June
28th,1985. In Figure 1 are clearly visible the time varying nature of the volatility and the presence of clusters,
for example in the right side of the plot.

The issue of modelling returns accounting for time varying volatility has been widely analysed in the literature.
A common model used for returns is defined as:

yt = σtεt, εt ∼ IID(0, 1) (1)

In (1), εt, t = 1, . . . is a series of uncorrelated standardised random variable often (but not necessarily)
assumed to be Gaussian, andσt is the time varying volatility. Model (1) could easily be generalised to allow
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Figure 1: Log-returns of Pound-dollar daily exchange rate from October 1st, 1981 to June 28th,1985.

for a non zero mean. Anyway, for asset returns the behaviour of the conditional mean is, usually, relatively
simple, in most cases it is just a constant. Hence, we consider only mean-centred series.

A popular way to look at volatility, is to consider it as a non observed random variable and model its squared
logarithm,ht = log σ2

t , as a linear stochastic process, for example an autoregressive model of order 1 (AR1),

ht = µ + φ(ht−1 − µ) + ηt, ηt ∼ N (0, 1/τη) (2)

These kind of models, named stochastic volatility (SV) models, were introduced among others by Taylor
(1986) and since then have received much attention. Compared to the other class of models for time varying
volatility in finance time series, the generalised auto regressive conditional heteroscedasticity (or GARCH)
models, SV models are more sophisticated and present some theoretical advantages. GARCH models treat
the volatility as a deterministic function of previous observation and past variances, so that the one step ahead
forecast is fully determined. The additional error term makes the SV models more flexible than the GARCH
ones, see for example Kim et al. (1998). Moreover SV models represent the natural discrete time versions
of the continuous time models upon which much of modern finance theory has been developed. SV models
allow for the excess positive kurtosis which is often observed in asset returns and for volatility clustering.
Conditions for stationarity of the volatility time series are also easily determined.

The main drawback of SV models is that they are difficult to estimate. Unlike GARCH models where the
covariance structure at timet is known given the information up to timet − 1, the conditional variance is
unobserved in SV models. Hence, SV models do not have a closed form for the likelihood function. Maximum
likelihood estimation is not possible and, therefore, they require a more statistically and computationally
demanding implementation. Another way to understand the difficulty in estimating SV models is to notice
that for each datayt the model uses two innovations,εt andηt, instead of just one as in the GARCH model.

Several estimation methods have been proposed for the SV models. They range from the less efficient gener-
alised methods of moments (Andersen and Sorensen, 1996), and quasi likelihood method (Harvey et al., 1994)
to more efficient methods such as simulated maximum likelihood (Danielsson, 1994) and Markov Chains
Monte Carlo (MCMC). Much attention has been devoted to the development of efficient MCMC algorithms
for SV models, e.g. Chib et al. (2002), and Shephard and Pitt (1997), since MCMC is considered one of the
most efficient estimation tools, see Andersen et al. (1999).
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1.2 Multivariate Stochastic Volatility Models

There are several reasons, both economical and econometric, why multivariate volatility models are impor-
tant. Financial assets are clearly correlated and the knowledge of such correlation structures is vital in many
financial application such as asset pricing, optimal portfolio risk management, and asset allocation. Compared
with their univariate counterpart, multivariate models for financial assets have to be able to capture some more
features than those mentioned in Section 1.1. Both returns assets and volatility can be cross-dependent. More-
over, volatility can spill over from one market to another so that the knowledge about one asset can help
predicting another one. This form of dependency is known as Granger causality.

Multivariate versions exist both for GARCH and SV models. Multivariate GARCH models enjoy a volu-
minous literature, see, for example Bauwens et al. (2006) for a review. Even though multivariate stochastic
volatility (MSV) models have a number of advantages over multivariate GARCH models, the literature on
MSV is more limited. This is due to the fact that MSV models pose a series of serious challenges in formula-
tion, estimation and testing. Not only, in fact, they suffer from the inherent problems of multivariate models,
such as the high dimensionality of parameter space and the required positive definiteness of covariance ma-
trices but, as for their univariate version, the likelihood has no closed form. There is, however, an increasing
interest in MSV models as showed, for example, by Vol. 25 of Econometric Review completely devoted to
these models.

1.3 Latent Gaussian Models and Approximate Inference

SV models, as in (1) and (2), and their multivariate counterpart, belong to the larger family of latent Gaussian
models. These are a very common construct in statistical analysis and assume a latent Gaussian fieldx =
{x1, . . . , xn} to be indirectly observed throughnd conditional independent datay. The covariance matrix
of the latent Gaussian field and, possibly, the likelihood are governed by a set of hyperparameters,θ =
{θ1, . . . , θM}. We use a Bayesian approach by considering the hyperparameters as random variables with
prior densityπ(θ). The goal of the inference is, in general, the posterior distribution

π(x, θ | y) ∝ π(θ) π(x | θ)
∏

t

π(yt | xt, θ).

This is used both for parameter estimation and for filtering or prediction of the latent field.

We are concerned with models where the latent Gaussian field admits conditional independence properties,
hence it is a Gaussian Markov random field (GMRF). MCMC is the standard tool for inference in such mod-
els. It is, however, not without serious drawbacks. The often large dimension of the latent field, the strong
correlation withinx and betweenx andθ, are all possible causes for slow convergence and poor mixing.
Block update strategies have been developed aiming to overcome such problems, see for example Knorr-Held
and Rue (2002) and Rue et al. (2004). Nevertheless in most cases MCMC algorithms remain very slow.

Rue and Martino (2006) and Rue et al. (2007) propose a deterministic alternative, named Integrated Nested
Laplace Approximation (INLA), to MCMC for inference on latent GMRF models. INLA allows fast and ac-
curate approximations to the posterior marginals forxt and posterior distribution forθ. In the INLA approach,
the posterior distribution of the hyperparameters is approximated as:

π̃(θ | y) ∝ π(x, θ|y)
π̃G(x|θ, y)

∣∣∣∣∣
x=x?(θ)

(3)

In (3), π̃G(x|θ, y) is a Gaussian approximation to the full conditional for the latent fieldx, andx?(θ) is the
modal value ofπ(x|θ, y). Posterior marginals for the hyperparametersπ̃(θm|y) can, in principle, be easily
fund via numerical integration of (3). This becomes more involving if the dimension ofθ is large, say above
4.
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For the posterior marginals of the latent field Rue et al. (2007) propose to use

π̃(xt | y) =
∑

k

π̃(xt | θk, y) × π̃(θk | y) × ∆k. (4)

where the sum is overθ with area-weights∆k, π̃(xt|y, θ) is an approximation to the density ofxt|y, θ and,
π̃(θk | y) is the approximation in (3). The dimensionality of the sum in (4) depends on the length of vectorθ.
The approximatioñπ(xt|y, θ) can either be the Gaussian marginal derived fromπG(x|y, θ) or an improved
version.

Using INLA it is also possible approximate the marginal likelihoodπ(y) as the normalising constant of (3):

π̃(y) =
∫

π(x, θ|y)
π̃G(x|θ, y)

∣∣∣∣∣
x=x?(θ)

dθ (5)

The marginal likelihood is a useful quantity for assessing statistical models, see e.g Clyde and George (2004)
and Kadane and Lazar (2004). Bayes factor is computed as the ratio ofπ(y) for two competing models,
therefore efficient computation of marginal likelihood becomes important in model choice.

The computations used in INLA are based on sparse matrix calculations which are much faster that dense
matrix ones. The main advantage of INLA over MCMC is computational: results can be obtained in seconds
and minutes instead of hours and days. Also, INLA can easily be parallelised and automated.

Rue and Martino (2006) and Rue et al. (2007) provide several examples of applications of INLA for various
GMRF models comparing it with long MCMC runs. Their conclusion is that INLA totally outperforms
MCMC for both accuracy and speed. Eidsvik et al. (2006) apply the same ideas to geostatistical models, using
a different computational approach based on fast discrete Fourier transform for block circulant matrices.

One of the examples used by Rue et al. (2007) to illustrate the performance of INLA is a univariate SV model
similar to the one in (1) and (2). In this report we apply INLA to estimate marginal posterior densities for some
multivariate SV models. We compare the INLA performance with that of some MCMC algorithms. The main
challenge with multidimensional models is the increasing dimension of the hyperparameter vectorθ. This,
in fact, makes the numerical integration procedures more costly. In this report we verify the CCD integration
scheme proposed in Rue et al. (2007) which reduces the cost of numerical integration and propose different
way to approximateπ(θm|θ). We also propose two different approximations for the marginal likelihood,
π(y), and use them as basis for model comparison.

1.4 Plan of the report

Section 2 presents the univariate and multivariate SV models we are interested in, and discusses the choice
of prior distributions forθ. Section 3 contains preliminaries about GMRF, the Gaussian approximation
πG(x|y, θ) to the full conditional ofx, and the approximation forπ(θ|y). Section 4 presents the INLA
approach to computẽπ(xt|y). Two approximations forπ(xt|y, θ) are described. In Section 4 we describe
how to approximate the marginal likelihoodπ(y), and how it can be used to compare models. Examples of
applications are presented in Section 6. The problem of approximating marginal posteriors for each hyper-
parameter̃π(θm|y), is discussed in Section 7. Section 8 explains how INLA can be applied to asymmetric
stochastic volatility models. We end with discussion in Section 9.

2 Model description and choice of the prior distribution

Most financial studies involve returns of assets instead of their prices. Campbell et al. (1997) give two main
reasons for using returns. First, for average investors, the return is a complete and scale free summary of
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the investment. Secondly, returns series are easier to handle than price series because the former have more
attractive statistical properties. In the literature, there are several definitions of assets returns. LetPt indicate
the price of the asset, or the exchange rate, at timet. The simplest return is called “simple gross return”, and
defined as

1 + Rt =
Pt

Pt−1

In this report we use the continuously compounded return, orlog-return defined as:

yt = log(1 + Rt) = log
Pt

Pt−1

Continuously compounded returns enjoys more tractable statistical properties than simple gross returns, see
for example Ruppert (2004).

In this section we describe some SV models (both univariate and multivariate) for log-returns and report some
considerations about parametrisation. Finally, we discuss the choice of the prior distribution forθ.

2.1 Univariate Models

Let the series of interest,y = {y1, . . . , yn}, be made up of a white noise process, with unit variance, multiplied
by a time dependent factorσt, the standard deviation. In a SV model the logarithm of the standard deviation,
ht = log(σt) is unobserved and modelled as a linear stochastic process. A simple, and often used, model for
h = {h1, . . . , hn} is an auto regressive process of order 1 (AR1). The model is then defined as:

yt = exp(ht/2)εt, t = 1, . . . , n, εt ∼ N (0, 1) (6a)

ht = µ + φ(ht−1 − µ) + ηt, t = 1, . . . , n, ηt ∼ N (0, 1/τ). (6b)

with |φ| < 1 to ensure stationarity of the process. The parameterφ is sometimes called the persistence
parameter. We impose a Gaussian prior to the mean parameter of the latent process,µ ∼ N (0, 1/τµ). Hence,
by computing the joint densityπ(h1, . . . , hn, µ), the mean parameter can be included in the latent field. We
prefer to include the meanµ in the latent field instead of in the vector of hyperparametersθ because this is
computationally more convenient.

An alternative parametrisation for the SV model in (6) is

yt = exp(ht/2)εt, t = 1, . . . , n, εt ∼ N (0, 1/κ∗). (7a)

ht = φ∗ht−1 + ηt, t = 1, . . . , n, ηt ∼ N (0, 1/τ∗). (7b)

with |φ∗| < 1 to ensure stationarity. This second parametrisation is used, for example in Durbin and Koopman
(2000) and Rue et al. (2007).

The two parametrisation are equivalent since we can writelog(κ∗) = −µ, so that the precision term in
the likelihood of model (7) corresponds to the mean term of the latent Gaussian files in model (6). The main
difference between the two lies in the number of hyperparameters. While model (6), has two hyperparameters,
(φ, τ), model (7) has three,(φ∗, τ∗, κ∗). If we use MCMC for inference no big advantage can derive from
choosing one or the other. On the other side, in the INLA approach model (6) is preferable since the parameter
space is of lower dimensionality. The difference in the hyperparameter space dimensionality between the two
parametrisation becomes bigger in the multivariate case. Hence, we parametrise multivariate models in a way
similar to (6).

The distribution ofεt in equations (6a) and (7a) does not necessarily have to be Gaussian. If extra kurtosis is
needed, we can choose, for example a Student-t distribution with unknown degree of freedomν. In such case,
the dimension of the hyperparameter space becomes 3 and 4 in model (6) and (7) respectively. Considerations
regarding the parametrisation hold in exactly the same way.
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2.2 Multivariate Models

We describe five different models for multivariate SV as introduced in Yu and Mayer (2006). We focus on the
bivariate case but all models presented are amenable to a multidimensional generalisation.

Let I denote the bidimensional unit matrix. Let the observed log-returns at timet, our data, be denoted by
yt = (yt1, yt2)T , for t = 1, . . . , n. Let εt = (εt1, εt2)T , ηt = (ηt1, ηt2)T , µt = (µt1, µt2)T andht =
(ht1, ht2)T . Moreover let

Φ =
(

φ11 φ12

φ21 φ22

)
, Σε =

(
1 ρε

ρε 1

)
,

Ση =
(

1/τη1 ρη/
√

τη1τη2

ρη/
√

τη1τη2 1/τη2

)
, Ωt =

(
exp(h1t/2) 0

0 exp(h2t/2)

)
,

In all model considered here we do not use a stationary distribution forht, rather we assumeh0 = µ.

Model 1 (Basic MSV)

This is the simplest generalisation of the univariate model in (6). It is equivalent to stacking two independent
univariate SV models together. The two series are then analysed independently from each other:

yt = Ωtεt, εt ∼ N (0, I)
ht = µ + diag(φ11, φ22)(ht−1 − µ) + ηt, ηt ∼ N (0, diag(1/τη1 , 1/τη2))

This model allows for leptokurtic returns distribution and volatility clustering. However, it does not allow for
correlations across returns or across volatility.

Model 2 (Constant correlation MSV)

yt = Ωtεt, εt ∼ N (0,Σε)
ht = µ + diag(φ11, φ22)(ht−1 − µ) + ηt, ηt ∼ N (0, diag(1/τη1 , 1/τη2))

This is similar to the multivariate ARCH model proposed by Bollerslev (1990). The returns are correlated
but no cross-correlation of the volatility is allowed.

Model 3 (MSV with Granger causality)

yt = Ωtεt, εt ∼ N (0,Σε)
ht = µ + Φ(ht−1 − µ) + ηt, ηt ∼ N (0, diag(1/τη1 , 1/τη2))

With φ12 = 0. This model was first proposed by Yu and Mayer (2006). It allows the second asset to be Granger
caused by the the volatility of the first asset. Volatilities are therefore cross-correlated. The correlation between
returns is due to both Granger causality and volatility clustering. The model allows alsoφ12 6= 0. In such case
a bilateral Granger causality between the two assets is allowed, we do not take this case into consideration.
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Model 4 (Generalised constant correlation MSV)

yt = Ωtεt, εt ∼ N (0,Σε)
ht = µ + diag(φ11, φ22)(ht−1 − µ) + ηt, ηt ∼ N (0,Ση)

This model was studied by Harvey et al. (1994) and Danielsson (1998) who used respectively the quasi likeli-
hood and the simulated maximum likelihood methods for estimation. Both returns and volatility are correlated.
Clearly, both model 3 and 4 can generate cross-dependence in the volatility, using two different generating
mechanisms. Which specification is more appropriate is an interesting question which goes beyond the scope
of this report.

Model 5 (Heavy-tailed MSV)

There is some evidence that financial data have heavier tails than those resulting from inserting conditional
heteroscedasticity in a Gaussian process. This extra kurtosis can be introduced by using a Student-t distribu-
tion instead of a Gaussian in the returns model. In a univariate context a Student-t distribution is used, for
example, in Chib et al. (2002) while in the multivariate SV context it was first used by Harvey et al. (1994) .

yt = Ωtεt, εt ∼ t(0,Σε, ν)
ht = µ + diag(φ11, φ22)(ht−1 − µ) + ηt, ηt ∼ N (0, diag(1/τη1 , 1/τη2))

In this model the volatilities are uncorrelated but cross-dependencies in the returns are allowed. It would have
been possible to use a different generalisation of the univariate Student-t distribution in a multivariate context,
that is assume each variable to be a Student-t with its own degree of freedom. However, according to Yu and
Mayer (2006) this model performs empirically worse that the one presented above.

2.3 Choice of prior distributions

In a Bayesian framework, the hyperparameters of the model are considered random variables and assigned a
prior distributionπ(θ). In this section we discuss prior choice for the hyperparameters of the bivariate models
presented in Section 2.2. The same considerations hold also for univariate models.

In all models considered we assume a Gaussian prior for the mean parameterµ so that, by computing the
joint density ofx = (h1, . . . ,hn, µ), it can be included in the latent field. The remaining hyperparame-
ters can be divided into two groups: parameters in the mean equation(ρε, ν) and in the variance equation
(φ11, φ12, φ22, ρη, τη1 , τη2).

For computational reasons, it is convenient, when applying INLA, that all hyperparameters are defined over
the whole real line. Hence, when the original parameters in the model are constrained, we consider a function
of them.

We start by defining priors for the hyperparameters in the variance equation. We want the volatility time series
to be stationary. This holds if the roots of diag(I −Φz) lie outside the unit circle. For theΦ matrix in Model
4 this corresponds to|φ11| < 1, |φ22| < 1 andφ21 ∈ R. We choose a Gaussian prior forφ21. As for the two
persistence parametersφ11 andφ22, we note that in a univariate AR1 model with persistence parameterφ > 0,
the autocorrelation decays likeφκ, whereκ > 0. Define the range of the time series as the distance where
the autocorrelation drops belowα = 0.05. That isκ = log α/ log φ. The range has a ”physical” meaning,
therefore it is usually easier to interpreter than other parameters. We define, hence, the range of our two time
series asκ1 = log α/ log φ11 andκ2 = log α/ log φ22 and assign each an exponential prior distribution.
A popular choice for the prior of the precision parametersτη1 andτη2 , is Gamma(a, b), with meana/b and
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variancea/b2. We choose a quite vague prior witha = 0.25 andb = 0.025.
The correlation parameterρη is constrained in the interval[−1, 1]. Consider the function

f(x) = logit

(
x + 1

2

)
; x ∈ [−1, 1]

which assumes values over the whole real line. We choose a Gaussian prior for parameterρ∗η = f(ρη)
with precision0.4. This choice of the precision corresponds, roughly, to a uniform prior in[−1, 1] for the
correlation parameterρη. A smaller value for the precision corresponds to a less vague prior forρη. In fact,
the distribution ofρη derived from a vague Gaussian prior onρ∗η assigns most of the probability mass to
values close to−1 or 1. A larger precision, on the other side, results in a prior forρη which assign most of the
probability mass to values closer to 0, see figure Figure 2.
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(a) Precision =0.2 (b) Precision= 0.4 (c) Precision= 0.8

Figure 2: Distribution ofρη derived from a Gaussian distribution onρ∗η with different values of the precision.

We treat the correlation in the mean equationρε in a similar way. Finally, for the degree of freedom for the
student-t distributionν, we considerν∗ = log(ν − 2) and assign a Gaussian prior toν∗.

All hyperparameters are assumed independent apriori. The prior distributions are listed below:

• ρ∗ε ∼ N (0, 0.4) whereρε = f(ρ∗ε )

• ν∗ ∼ N (0, 0.1) whereν∗ = log(ν − 2)

• κ∗
i ∼ exponential(0.5), whereκi = log α/ log φii andi = 1, 2 andα = 0.05

• φ∗
21 ∼ N (0, 0.01)

• ρ∗η ∼ N (0, 0.4) whereρη = f(ρ∗η)

• τηi ∼ Gamma(0.25, 0.025) for i = 1, 2

3 Gaussian Markov Random Fields

All models in Sections 2.2 and 2.1 can be thought of as different specifications of a general latent GMRF
model in three stages. The first stage is a likelihood model for the observables, a two dimensional Gaussian
or Student-t distribution. The data are independent conditional on some latent parameters, which in our case
consist in the volatility, and, possibly, some additional hyperparametersθ1. Let y = (yT

1 , . . . ,yT
nd

)T and
h = (hT

1 , . . . ,hT
n )T be two column vectors. Each element ofh andy is indexed by two numbersti where

t = 1, 2, . . . andi = {1, 2}; that is,t indicates time whilei indicates the different assets. For the univariate
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case the indexi is omitted. We assume that eachyt depends only on the corresponding bidimensional vector
ht in the latent field, so that we have:

π(y|h, θ1) =
∏

π(yt|ht, θ1) (8)

Note that we consider the whole vectoryt as one data point. We say, then, that we have a multivariate model
if yt has dimension greater than one and a univariate model in the other case.

The second stage is a model for the latent field. In the cases analysed here, this is a bivariate autoregressive
model of order 1 with an unknown mean and a covariance matrix depending on some hyperparametersθ2:

ht|ht−1, µ, θ2 ∼ N (µ + Φ(ht−1 − µ),Ση) t = 1, . . . , n

With x0 = µ. Note that it is possible to haven > nd. This is the case, for example, if we are interested in
predicting future value of the volatility. We assume a Gaussian prior for the mean termµ ∼ N (0,Σµ). The
mean termµ can then be included in the latent field by computing the density:

π(h, µ|θ1) = π(µ)
n∏

t=1

π(ht|ht−1, θ1) ∝ |Q|1/2 exp{−1
2
(hT , µT )Q(hT , µT )T } (9)

WhereQ is theN × N precision (inverse of the covariance) matrix. HereN = 2n + 2 is the length of the
latent vectorx = (hT , µT )

The third and last step of our latent Gaussian model is a prior distribution for the hyperparameter vector
θ = (θ1, θ2), π(θ).

The precision matrix in (9) is sparse, meaning that only few of its elements are non-zero. This is a typical
characteristic of GMRFs. There is in fact a one to one correspondence between the Markov properties of the
field x and the non-zero structure of the precision matrixQ, meaning that a off diagonal elementQij 6= 0 if
and only if the two random variablesxi andxj are conditional independent given the rest of the variables in
x. Great computational efficiency can be achieved by exploiting the sparseness ofQ. In particular, factorising
Q into its Cholesky triangleLLT can be done in a fast way. The Cholesky triangleL inherits the sparseness
of Q thanks to the global Markov property, thus only the non-null terms inL are computed. The nodes in
the GMRF can be reordered in such a way to minimise, or reduce, the number of non-null terms inL. The
Cholesky triangle is then the basis for solving linear equations involvingQ. For exampleQx = b is solved
by first solvingLv = b and theLT x = v. This is a typical way to produce random samples from a GMRF.
If z ∼ N (0, I) then the solution ofLT x = z has precision matrixQ. Also the log of the density in (9) can
easily be computed, for any configurationx, usingL sincelog |Q| =

∑
i log Lii.

If the GMRF is defined with additional linear constraints of the typeAx = e, whereA is ak × N matrix of
rankk ande is a vector of lengthk, it is possible to correct a samplex drawn from the unconstrained GMRF
in the following way:

xc = x − Q−1AT (AQ−1AT )−1(Ax − e). (10)

xc is then a sample from the constrained density. This method is convenient when the rank ofA is small.
In fact Q−1AT is computed by solvingk linear systems, one for each column ofAT . The additional cost
for k linear constraints isO(Nk2). This approach is commonly referred to as “conditioning by Kriging”,
see Cressie (1993) and Rue and Held (2005). For more details about sparse matrix computation see, for
example, Rue and Held (2005).

In the GMRF defined in (9) the covariance matrix is only implicitly known. Inverting the precision matrix can
be extremely costly due to its dimension. The sparseness ofQ comes to help again. To see this, we start with
LT x = z wherez ∼ N (0, I). Recall that the solutionx has precision matrixQ. Writing this out in detail,
we obtainLiixi = zi −

∑N
k=i+1 Lkixk for i = N, . . . , 1. Multiplying each side withxj j ≥ i, and taking
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expectation, we obtain

Σij = δij/L2
ii −

1
Lii

N∑
k=i+1

LkiΣkj , j ≥ i, i = N, . . . , 1, (11)

whereΣ (= Q−1) is the covariance matrix. ThusΣij can be computed from (11), letting the outer loopi
run fromN to 1 and the inner loopj from N to i. If we are only interested in the marginal variances, we
only need to computeΣij ’s for which Lji (or Lij) is not known to be zero. Marginal variances under linear
constraints can be computed in a similar way, see Rue and Martino (2006, Sec. 2) for more details.

All computations used by INLA for latent GMRF models are based on algorithms for sparse matrices. The
non-zero structure of the precision matrix in (9) is represented in Figure 3. The size of the bandwidth depends
on both the order of the AR model and on the size of vectorht. Considering highly multidimensional models
or high order AR models makes the precision matrix more dense and therefore the computations less efficient.

Figure 3: Non zero structure of the precision matrix for a bidimensional AR1 model with unknown mean

3.1 Gaussian Approximation

The core of the INLA approach is a Gaussian approximation to the full conditional of the latent field:

π(x|y, θ) ∝ exp

{
−1

2
xT Qx +

nd∑
t=1

gt(xt)

}
(12)

wherex = (hT , µT ) and gt(xt) = log π(yt|xt, θ1). The approximation, which we denoteπG(x|y, θ),
is computed by matching the mode ofπ(x|y, θ) and its curvature at the mode. The mode ofπ(x|y, θ) is

computed using an iterative procedure. Starting from an initial guessm(0) we expandgt(xt) aroundm(0)
t for

t = 1 . . . , nd

gt(xt) ≈ gt(m(0)) + bT
t xt − 1

2
xT

t Ctxt (13)

where

Ct = −
 ∂2gt(xt)

∂x2
t1

∂2gt(xt)
∂xt1∂xt2

∂2gt(xt)
∂xt1∂xt2

∂2gt(xt)
∂x2

t2


xt=m0

t
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and the2× 1 vectorbt is a function of the gradient ofgt(xt) evaluated atxt = m0
t . Let diag(C) indicate the

N × N matrix 
C1 0 . . . 0
0 C2 0 . . . 0
...
0 . . . Cn 0
0 . . . 0

 , (14)

that is, diag(C) is a band matrix with bandwidth2. For univariate models diag(C) reduces to a diagonal
matrix. Moreover, letbT = (bT

1 , bT
2 , . . . ,0). We obtain a Gaussian approximation with precisionQ+diag(C)

and mean given by the solution of(Q + diag(C))m(1) = b. The process is repeated until it converges to
a Gaussian distribution with precisionQG = Q + diag(C) and meanµG. Both the precision matrix and
the mean value of the Gaussian approximation depend of the value of the hyperparametersθ. Algorithm 1
displays a naive version of the procedure. In practice some more care has to be put into building the stopping
criteria in order to avoid the optimiser to fail. The costly part of Algorithm 1 is solving the linear system in

Algorithm 1 Computing the Gaussian approximationπG(x|y, θ)

1: Given a value forθ and an initial guessm(0)

2: iter = 0, diff = 10
3: while diff > α do
4: for t = 1 to n do
5: Computebt andCt using (13)
6: end for
7: Solve(Q + diag(C))m(1) = b
8: Computediff = a distance measure betweenm(0) andm(1)

9: Setm(0) = m(1)

10: end while
11: Return xG = m(0) andQG = (Q + diag(C))

line 7. This operation can be efficiently performed using sparse matrix computations. Note that, since each
yt depends only onxt, the Gaussian approximationπG(x|y, θ) preserves the Markov properties of the prior
distribution forx. This is convenient from a computational point of view.

3.2 Approximating the joint posterior of the hyperparametersπ(θ|y)

The joint posterior for the hyperparameters in the model,θ = (θ1, θ2), is

π(θ|y) =
π(y|x, θ)π(x|θ)π(θ)

π(y)π(x|θ, y)
∝ π(y|x, θ)π(x|θ)π(θ)

π(x|θ, y)
(15)

which is valid for any configurationx. INLA builds an approximation to the density in (15), for each value
of θ, by substituting the denominatorπ(x|θ, y) with the Gaussian approximationπG(x|θ, y) described in
Section 3.1, and computing the right hand side of (15) at the modal valueµG(θ). That is:

π̃(θ|y) ∝ π(y|x, θ)π(x|θ)π(θ)
πG(x|θ, y)

∣∣∣∣∣
x=µG(θ)

(16)

This expression is equivalent to Tierney and Kadane (1986)’s Laplace approximation of a marginal posterior
distribution. This suggests that the approximation error is relative and of orderO(n−3/2

d ) after renormalisa-
tion. However standard asymptotic assumption usually invoked for Laplace approximations are not verified
here, some considerations about the error rate for the approximation in (16) can be found in Rue et al. (2007).
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π̃(θ|y) can be used to solve three different tasks in the inference process. The main use ofπ̃(θ|y) is to
integrate out the uncertainty with respect toθ when computing approximations for the marginal posteriors
of the latent field̃π(xti|y) as in (4). Secondly,̃π(θ|y) is used to compute an approximation to the marginal
likelihood as in (5). Finally, sometimes we are also interested in marginal posteriors for the hyperparameters
π̃(θm|y). In this case we have to compute the integrals

π̃(θm|y) =
∫

π̃(θ|y)dθ−m m = 1, . . . , M (17)

whereθ−m indicates the vectorθ with elementm removed.

All these procedures involve numerical integration over a multidimensional domain and, with increasing di-
mension ofθ, computations become soon unfeasible. Even if we are able to locate the area with highest
density forπ̃(θ|y) and compute the integral on a grid consisting ind points in each direction, the cost of
computing the integral isO(dM ), whereM is the dimension ofθ, that is, the cost grows exponentially inM .

It turns out that solving the first two tasks is an easier problem. In fact, we only need to exploreπ̃(θ|y)
sufficiently to be able to select good evaluation points for the numerical integration in (4) and (5): only few
points, accurately selected, are enough to achieve satisfying accuracy in (4). With this we mean that the
resulting density approximation is indistinguishable from a density estimate obtained from a long MCMC
run. We describe this in Section 4.

On the other side, solving integral (17) is more involving. The shape ofπ̃(θm|y) can be quite irregular and
therefore we need more evaluation points to achieve satisfying precision. Moreover the integration needs to
be repeated possiblyM times. We return to this task in Section 7.

4 Approximating posterior marginals for the latent field

In this section we present INLA for computing approximations for marginal posteriors of the latent field
π(xti|y) with t = 1, 2, . . . andi = 1, 2. The general strategy is in Algorithm 2: first, select a set of configu-

Algorithm 2 INLA strategy for computing̃π(xti|y)
1: Select a setΘ = {θ1, . . . , θK}
2: for k = 1 to K do
3: Computẽπ(θk|y)
4: Computẽπ(xti|θk, y) as a function ofxti

5: end for
6: Computẽπ(xti|y)

∑
k π̃(xti|θk, y)π̃(θk|y)∆k as function ofxti, for all indexesti

rationsΘ = {θ1, . . . , θK} from the hyperparameters space. For eachθk ∈ Θ computeπ̃(θk|y) as in (16)
and an approximatioñπ(xti|θk, y) to the density ofxti|θk, y. Finally compute thẽπ(xti|y) via numerical
integration. Note that in Algorithm 2̃π(θk|y) is computed for fixed value ofθk and, therefore is a scalar,
while π̃(xti|θk, y) is the density distribution ofxti|θk, y.

For Algorithm 2 to be operative we should first solve two tasks:

1. how to select a (possibly small) set of pointsΘ = {θ1, . . . , θK}
2. how to build a good approximation toπ(xti|θk, y)

We discuss task 1 in Section 4.1 and task 2 in Section 4.2.
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4.1 Exploring π(θ|y)

To compute approximations to the density ofxti|y we need to integrate out the uncertainty with respect to
the hyperparametersθ ∈ RM using numerical integration as in (4). Rue et al. (2007) propose two different
ways to explore the domain of̃π(θ|y). The first consists in locating a grid over the area with higher density
and evaluatẽπ(θ|y) at each point of this grid. This method is quite accurate. It is also efficient when the
dimension ofθ is not too high, say less than 4. In cases, like those analysed in this report, where the number
of hyperparameters is higher, say between 4 and 11, they propose a different strategy which comes from
considering the integration problem as a design problem. This second approach reduces dramatically the
computational costs and, in our experience, still gives results which are sufficiently accurate for inference
purposes.

We describe the two strategies in Sections 4.1.1 and 4.1.2 respectively. Both strategies assumeπ(θ|y) to be
uni-modal. This is the case for most of the real case scenarios. In both cases it is necessary to find the mode of
π̃(θ|y), denoted asθ∗, and the negative Hessian at the modal configurationH > 0. The mode can be found
using a multidimensional optimisation algorithm. If the dimension ofθ is high, this operation can be costly,
but it has to be done only once. We compute the Hessian using finite differences. The inverse of the negative
HessianΣ = H−1 would be the covariance matrix if̃π(θ|y) were a Gaussian density.

4.1.1 Exploring π̃(θ|y) using a grid strategy

The idea is to construct aM dimensional grid of points which covers the region of the domain where the ma-
jority of the probability mass of̃π(θ|y) is located. To do this we start by computing the eigen-decomposition
Σ = V Λ1/2V T . Define the variablez, such that:

θ(z) = θ∗ + V Λ1/2z (18)

The variablez = (z1, . . . , zM ) is standardised and its components are mutually orthogonal. We explore
π̃(θ|y) using thez-parametrisation. We start at the mode,z = 0 and proceed along thez1 axes, in the
positive direction, using a step length ofδz. We computẽπ(θ(z)|y) at this new point and continue as long as

log π̃(θ(0)|y) − log π̃(θ(z)|y) < δπ (19)

whereδπ is a threshold value. Then, invert the direction and repeat. The same is done for each of theM
directions. Once we have located the region of highest probability density, we fill in the grid by exploring
all different combinations of the points on the axes. We include these new points only if (19) holds. The
procedure is described in Algorithm 3 where1i indicates a vector on lengthM whoseith element is 1 an all
others are 0.

Since the points are layed out on a regular grid, when computing (4) we can take all the area-weights∆k to
be equal.

Algorithm 3 has two tuning parameters, the step lengthδz and the thresholdδπ. In general, to obtain satisfying
results it is enough to setδz = 1 andδπ = 2.5. This means that, ifπ(θ|y) were Gaussian, we would select
5 points on each direction. The number of points to be computed using the grid strategy grows exponentially
with the dimensionM of the hyperparameters space. This feature makes the grid approach fast only for small
hyperparameter spaces.

4.1.2 Exploring π̃(θ|y) using a central composit design strategy

The idea explained in this section comes from considering the integration problem as a kind of response sur-
face problem: we want to lie out points in aM dimensional space in such a way to learn about the shape
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Algorithm 3 Exploringπ̃(θ|y) using a grid strategy

1: Computeθ∗ andΣ = H−1

2: ComputeΣ = V Λ1/2V T

3: for i in 1 : M do
4: Start at the mode,z = 0
5: for dir in {−1, 1} do
6: while log π̃(θ(0)|y) − log π̃(θ(z)|y) < δπ do
7: z = z + dir ∗ 1i

8: Computeθ(z) = θ∗ + V Λ1/2z
9: Computẽπ(θ(z)|y)

10: end while
11: end for
12: end for
13: Compute fill in points

of a response surface. We consider second order response surface and use the Box and Wilson (1951) cen-
tral composit design (CCD). A CCD contains an embedded factorial or fractional design with centre points
(design-points) plus an additional group of2M + 1 “circle” points which allow to estimate the curvature. All
the points in a CCD design lie on the surface of aM dimensional sphere with radius

√
M times an arbitrary

scalingσccd. There are always2M + 1 “circle” points. Out of them,2M are located along each axis at
distance±√

M σccd and one is located at the origin. Figure 4 illustrates the location of the points in a CCD
design forM = 2. The number of design-points corresponding to the possible different dimensionsM is

+

=

Figure 4: Location of points in a CCD design forM = 2. The squares are factorial points (design-points) and
the circles are the additional ”circle” points.

displayed in Table 1. In addition to those points, each design contains2M + 1 “circle” points. Sanchez and
Sanchez (2005) explain how to compute the locations of these points in theM dimensional space.

Dimension ofθ 2 3 4-5 6 7-8 9-11 12-17
Number of points 4 8 16 32 64 128 256

Table 1: Number of design-points in a CCD.

The points are located using thez parametrisation defined in (18). Moreover, in order to capture some of
the asymmetry possibly present in the domain ofπ̃(θ|y) we allow the scaling parameterσccd to vary, not
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only according to theM different axis but also according to the direction, positive or negative, of each axes.
This means that for each design we have2M scaling parameters,(σm+

ccd , σm−
ccd ), m = 1, . . . , M . To compute

these, we first note that in a Gaussian density, the drop in log density when we move from the mode to±2 the
standard deviation is−2. We compute our scaling parameters in such a way that this is approximately true for
all direction in our design.

To compute the integral (4) we still have to determine the value of the area weights∆k. In fact here they
cannot be considered all equal like in Section 4.1.1. To determine the weights we assume for simplicity that
θ|y is standard Gaussian. We require the integral of 1 to be 1 and the integral ofθT θ to beM . This two
conditions give the integration weights for the points on the sphere with radiusf0

√
M :

∆ =
[
(np − 1)

(
f2
0 − 1

) {
1.0 + exp

(
−Mf2

0

2

)}]−1

wheref0 > 1 is any constant. The integration weight for the central point is1 − (np − 1)∆ wherenp is the
total number of points in the design.

The CCD strategy reduces the accuracy of the numerical integral and, for small dimensions of the hyper-
parameter space the grid strategy is clearly preferable. Anyway, it often happens that when there are many
hyperparameters, the shape of the integrand is more regular and therefore simpler. This means that with in-
creasing dimension ofθ, the number of evaluations points does not, necessarily, have to increase exponentially
to obtain a sufficient accuracy of the integral. Strategies like the ’plug-in’ approach brings this idea to extreme
by using only the modal value to integrate overπ(θ|y). The ’plug-in’ solution will probably underestimate
the variance, but in many cases, still gives useful results. The CCD integration strategy lies somewhere in
between the accurate, but expensive, grid strategy and the fast, but possibly imprecise, ’plug-in’ strategy. It
allows to capture some of the variability in the hyperparameter space also when this is too wide to be explored
via the grid strategy.

4.2 Approximating π(xti|θk,y)

The next task is to build an approximation to the density ofxti|θk, y. It is clear that the quality of this appro-
ximation reflects into the quality of̃π(xti|y) whatever the integration strategy. We propose here two different
approximations: a Gaussian approximation and an improved approximation. Computing the Gaussian ap-
proximation,π̃G(xti|θk, y), implies almost no extra costs after we have computedπ̃(θk). It is, hence, an
extremely fast alternative. It can, however, present some errors due to the lack of skewness. The Gaussian
approximation is described in Section 4.2.1. A more accurate alternative is presented in Section 4.2.2. This
is a non-parametric approximation and, therefore, it can better capture the shape of the density ofxti|θk, y.
This improved approximation is more computationally demanding. The improved approximation is valuable
because it is more accurate, but also because it can serve as a validation for the Gaussian approximation. In
fact, if it is indistinguishable or very close the the Gaussian approximation, the latter is checked and con-
firmed without Monte Carlo sampling. A different strategy for assessing the approximation error based on the
effective number of parameters in the model is presented in Rue et al. (2007).

4.2.1 Gaussian approximation

The easiest way to approximateπ(xti|θk, y) is to use the marginal derived fromπG(x|θk, y) (Section 3.1).
When selecting the pointsθk and computing̃π(θk|y) we have already computeπG(x|θk, y), therefore we
know the mean vector, and the only element which remains to be computed is the vector of marginal variances.
This, as mentioned in Section 3 can be done efficiently thanks to the recursions described in Rue and Martino
(2006). Also, it makes practically no difference in terms of time, to compute one or allN marginal densities
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in the GMRF. The approximation is then

π̃G(xti|θk, y) = N (xti; µGti(θk), σ2
Gti

(θk)) (20)

whereσG(θk) is theN -dimensional vector of marginal variances.

Rue and Martino (2006) show that the approximation in (20) gives often accurate results, but, especially for
values ofθk located in extreme regions, there might be slight errors in the location and skewness. These
errors are detected by comparing the approximations with density estimates derived from very long MCMC
runs. Since these errors appear mainly in regions with low density forθ|y, they become much smaller after
integrating outθ. In fact, even ifπ̃(xti|y) is, in this case, a mixture of Gaussian it can represent precisely
also highly skewed densities. Errors using the Gaussian approximation might, anyway, still be detectable in
π̃(xti|y), see Rue and Martino (2006).

4.2.2 Improved approximation

The errors in the Gaussian approximation in Section 4.2.1 are due to the fact that we approximate a (possibly)
skewed distribution with a symmetric one. It is natural then, to think of an improved approximation which
allows for skewness to be present. The improved approximation described in this section follows the lines
of the Simplified Laplace approximation proposed in Rue et al. (2007), with some modifications necessary to
adapt it to the problems described in this report. The improved approximation assumes no parametric form of
the densityxti|θk, y, therefore it is able to capture skewness if present.

The starting point is the identity

π(xti|θ, y) =
π(x−ti, xti|θ, y)
π(x−ti|xti, θ, y)

∝ π(x, θ, y)
π(x−ti|xti, θ, y)

(21)

Where the suffix−ti indicates that the elementti in the vector has been removed. The idea, similar to the one
used in Section 3.2 to build̃π(θ|x), is to substitute the density in the denominator of the rightmost element in
equation (21) with a Gaussian approximation. The approximation then reads:

π̃I(xti|θk, y) ∝ π(x, θk, y)
π̃GG(x−ti|xti, θk, y)

∣∣∣∣∣
x−ti=x?

−ti(xti,θk)

(22)

wherex?
−ti(xti, θk) is the mode ofπ(x−ti|xti, θk). This again is equivalent to the Laplace approximation in

Tierney and Kadane (1986).

It has to be noted that the densitỹπGG(x−ti|xti, θk, y), in the denominator of (22), is different from the
conditional distribution,̃πG(x−ti|xti, θk, y), which can be derived from the Gaussian approximation in (3.1).
In fact, π̃G(x−ti|xti, θk, y) is computed through a rank 1 update from̃πG(x|θk, y). Its precision matrix is
constant with respect toxti and its mean is a linear function ofxti. On the other side,̃πGG(x−ti|xti, θk, y)
is computed by first locating the modex?

−ti(xti, θk) of x−ti|xti, θk, y and then expanding the log-likelihood
term around it, in much the same way as in Algorithm 1. The precision matrix inπ̃GG(x−ti|xti, θk, y) varies
with xti. The density in (22) is based on conditioning onxti and using Laplace approximation to cancel out
the remaining variablesx−ti. Hence, it is more accurate than the approximation in (20) which is based on
fitting a Gaussian as the joint distribution of all variablesx.

Unfortunately, having to locate the mode ofπ(x−ti|xti, θk, y) means that, for each value ofxti, we have to
factorise a(N − 1) × (N − 1) matrix more than once (see Algorithm 1). Moreover, there are, potentially,
N posterior densities for the latent field to be computed. It is clear, then, that the approximation in (22)
is far too computationally expensive to be convenient. Hence, we need to slightly modify (22) to make it
computationally feasible.
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The conditional mean EeπG
(x−ti|xti, θk, y) from π̃G(x−ti|xti, θk, y), and the conditional mode ofx−ti|xti, θk, y

would be coincident ifπ(x|y, θk) was Gaussian. This is of course not the case here, since the log likelihood
presents non quadratic terms. Anywayπ(x|θ, y) is not too far from a Gaussian, havingx|θ a Gaussian prior.
Moreover (22) is valid for any value ofx−ti and, though in a different context, Hsiao et al. (2004) show
that consideration for efficiency suggest that the value ofx−ti should be chosen in an area of high density
of x−ti|xti, θk, y but not necessarily at the modal value. We propose therefore to compute the quantity in
(22) at the conditional mean instead of the conditional mode. This entails large computational benefits. First
of all we avoid the optimisation step: the conditional mean can easily be computed for eachti, using (10)
wherex = µG andA = 1ti, a vector of zeros with 1 in positionti, ande is the value ofxti. Moreover, this
computation needs to be done only once for eachti, at xti = µGti + 1, say. Exploiting the linearity of the
conditional mean with respect toxti, we can, in fact, evaluate its numerical derivative as:

δti
E = EeπG

(x−ti|xti = µGti + 1, θk, y) − µG−ti

and, obtain its value at anyxti as:

EeπG
(x−ti|xti = xti, θk, y) = µG−ti

+ δti(xti − µGti)

There is also another advantage in considering the conditional mean instead of the conditional mode: the
conditional modex?

−ti(xti, θk) is a continuous function ofxti, but, since we compute it via numerical op-
timisation, this continuity might not hold in practice. The conditional mean, on the other side, is always a
continuous function ofxti.

Even if using the conditional mean avoids the optimisation step, the approximation in (22) is still too heavy to
be computed efficiently. The log denominator of (22) is in fact:

log π̃GG(x−ti|xti, y, θk)

∣∣∣∣∣
x−ti=EeπG

(x−ti|xti,θk,y)

∝
1
2 log |Q[−ti,−ti] + diag(C(xti, θk))| = f(xti)

(23)

whereQ is the prior precision matrix forx and the subscript[−ti,−ti] indicates that row and column cor-
responding to indexti have been deleted. The matrix diag(C(xti, θk)) is the band matrix derived from the
Taylor expansion of the log-likelihood at the conditional mean EeπG

(x−ti|xti, θk, y) in much the same way as
in Section 3.1. Computing the determinant in (23) means factorising a(N − 1) × (N − 1) matrix, and this
has to be done for each value ofxti.

In Rue et al. (2007), the authors propose to approximate (23) by a first order series expansion aroundxti =
µGti(θk). For the cases analysed in Rue et al. (2007) the matrix diag(C) defined in (14) is a diagonal matrix,
it is then possible to derive the exact expression for the first derivative off(xti), see Appendix for details. The
same is not possible for MSV models like those we are interested in this report. We can, anyway, compute the
numerical derivative of the quantity in (23)

δti
f =

f(xti + h) − f(xti)
h

Moreover,atxti = µGti the log determinant of(Q[−ti,−ti] + diag[C(µti, θk)]) can be computed at almost no
extra costs as

f(µGti) =
1
2

log |Q[−ti,−ti] + diag[C(µGti , θk)]| =
1
2

log |QG| + log σGti (24)

See Appendix for detail about how to derive (24). All elements at the right hand side of equation (24) have
already been computed while computingπ̃G(x|y, θk) andπ̃G(xt|y, θk). Using a linear approximation for the
log denominator of equation (22) makes it necessary to factorise a(N − 1) × (N − 1) matrix only once for
each of theN nodes in the latent field.
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The quantity in (22), modified as described above, has to be computed for different values ofxti and then
normalised in order to obtain a density. We select these points with the help of the mean and variance of the
Gaussian approximation (20), by choosing different values for the standardised variable

xs
ti =

xti − µGti(θk)
σGti(θk)

according to the corresponding choice of abscissas given by the Gauss-Hermite quadrature rule. To represent
the densitỹπI(xti|θk, y) we use

π̃I(xti|θk, y) ∝ N{xti; µGti(θk), σGti(θk)} × exp{cubic spline(xti)}
The cubic spline is fitted to the differencelog π̃I(xti|θk, y)− log π̃G(xti|θk, y) at the selected abscissa points.
The density is then normalised using quadrature integration.

5 Approximating marginal likelihood π(y)

Model comparison is an important part of any statistical analysis and a central pursuit of science in general.
In a Bayesian framework, one way to compare models is to use Bayes factors. Given a series of competing
modelsM1, . . . ,MK with assigned a prior probabilityπ(Mk) the Bayes factor for two of theK models is
defined as

B(i, j) =
π(Mi|y)π(Mi)
π(Mj |y)π(Mj)

If we choose the models to be apriori equiprobable,π(M1) = · · · = π(MK), then the Bayes factor reduces
to

B(i, j) =
π(y|Mi)
π(y|Mj)

Hence, we can compare models by comparing their marginal likelihoodπ(y|Mk). Jeffreys (1961) provide a
scale for the interpretation ofB(i, j) which we report in Table 2. In the following, to simplify the notation,

Strength of the evidence
logB(i, j) in favour ifMi

< 0 Negative (support forMj)
0 : 1.09 Barely worth mentioning

1.09 : 2.30 Substantial
2.30 : 3.40 Strong
3.40 : 4.60 Very strong

> 4.60 Decisive

Table 2: Jeffreys (1961)’s scale for the interpretation of the Bayes factor

we suppress the conditioning onMk if it is not strictly necessary. In the INLA framework an approximation
to the marginal likelihoodπ(y) can be computed as the normalising constant forπ̃(θ|y)

π̃(y) =
∫

π(x, θ, y)
π̃G(x|θ, y)

∣∣∣∣∣
x=x?(θ)

dθ

whereπ(x, θ, y) = π(y|x, θ)π(x|θ)π(θ). We propose two approximations toπ(y). The first one is based
on a Gaussian approximation of the density ofθ|y built by matching the mode and the curvature at the mode,
that is

π̃G(θ|y) = N (θ∗,Σ) (25)
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whereθ∗ is the mode andΣ = H−1 is the inverse of the negative Hessian matrix computed at the modal
configuration. The normalising constant, and so our approximation for the marginal likelihood, is then given
by

π̃1(y) = (2π)M/2|H|−1/2 (26)

whereM is the dimension ofθ. This approximation was proposed also by Kass and Vaidyatnatan (1992).

The second approximation is more precise but also more expensive to compute. It assumes no parametric form
of the density ofθ|y and uses the same integration scheme as in Section 4.1.1 to compute the normalising
constant. The approximation then reads

π̃2(y) =
∑

k

π̃G(x|y, θk)∆k (27)

This second approximation, allows to take into account departures from Gaussianity which are often encoun-
tered inπ(θ|y), and therefore gives more accurate results. Unluckily, as already explained in Section 4.1.1,
this integration scheme becomes unfeasible when the dimension ofθ grows. Anyway, as shown in the exam-
ples, there seems not to be a big difference in the model ranking obtained from the two approximations.

Note that, when computing an approximation to the marginal likelihoodπ(y), aiming to use it for model
comparison, it is important to include carefully all normalising constants which appear in the prior for both
the hyperparametersπ(θ) and the latent fieldπ(x|θ), and in the likelihood termπ(y|x, θ).

6 Examples of approximate inference for the latent field

In this section we apply INLA to estimate the univariate models in Section 2.1 and the five bivariate models
in Section 2.2. To assess the quality of the approximations, we compare them with density estimates obtained
from intensive MCMC runs.

Yu and Mayer (2006) propose to use the software package WinBUGS to implement a MCMC algorithm for
univariate and multivariate SV models. WinBUGS is an interactive Windows version of the BUGS program
for Bayesian analysis of complex statistical problems using MCMC techniques, see Spiegelhalter et al. (2003).
The BUGS (and WinBUGS) program provides an implementation of the Gibbs sampling algorithm, a specific
MCMC techniques that builds a Markov chain by sampling from all univariate full conditional distributions in
a cyclic way. WinBUGS uses a single site update scheme, therefore long runs are necessary since the mixing
might be poor due to the correlations within the latent fieldx and betweenx andθ. Anyway, since we want
to compare our approximation with the “true” posterior densities, we have run the MCMC algorithm for much
longer time than it is usually done for inference purposes. The reader is referred to Mayer and Yu (2000) for
a comprehensive introduction on using BUGS for fitting SV models.

6.1 Implementation Issues

Running the INLA procedures described in Section 4 so that they are optimised in term of computational
time requires a very carefully implementation in an appropriate language. Much speed can be gained from
writing the code in a carefully and smart way, for example by appropriately storing computations and us-
ing efficient routines for sparse matrix computation. Many of the algorithms described are efficiently im-
plemented in the open-source libraryGMRFLib. This library is written in C, and in addition to the INLA
routines, contains also several other routines for GMRF models. It is freely available at the web page
http://www.math.ntnu.no/ ∼hrue/GMRFLib/ and a brief introduction to it can be found in Rue
and Held (2005). Rue and Martino (2006) and Rue et al. (2007) make an intensive use of theGMRFLib-library
in the examples they present.
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Unfortunately theGMRFLib-library does not support multivariate models like those described in Section 2.2.
It was therefore necessary, for the multivariate examples in this report, to rewrite almost every algorithm
necessary for the implementation of INLA. For this purpose, we used the statistical package R (Ihaka and
Gentleman, 1996). The R language is less fit than C for the purpose, moreover, the code used for the examples
in this report, is far from being optimal with respect to computational efficiency and time. Hence, the exam-
ples reported here have to be considered as a proof of concept showing another application of approximate
inference using INLA. The reader is referred to Rue et al. (2007) for examples showing the gain, in terms of
computing time, which can be achieved using the INLA over MCMC.

6.2 Univariate Models

In this section we fit two univariate SV models, first to a simulated data set, and then to the pound-dollar
exchange rate data displayed in Figure 1.

Both models are define as in equations (6). In the first model (M1) we defineεt ∼ N (0, 1), while in the
second model (M2) εt ∼ tν . For each of the two data set, we fitM1 andM2 and check the quality of the
INLA approach. Then, we compare the two models using the approximated marginal likelihoodπ̃(y).

6.2.1 Simulated data set

We simulate 500 data from the following model

yt = exp(ht/2)εt, t = 1, . . . , n, εt ∼ t7. (28)

ht = 0.1 + 0.53(ht−1 − 0.1) + ηt, t = 1, . . . , n, ηt ∼ N (0, 1/2.3).

The simulated time series is displayed in Figure 5. Note that the Student-t distribution allows for quite extreme
values of the returns.
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Figure 5: Time series of returns simulated from model (28)

We first fitM1 to the simulated data. Following Algorithm 2, our first task is to locate a set of points in the
hyperparameters space,Θ = {θ1, . . . , θK}, where to computẽπ(θk|y) andπ̃(xt|θk, y). We do this using
both the grid and the CCD strategies. In the first case, the numberK of points to be computed is 22, while in
the second case it reduces to 9. For really low dimension of the hyperparameters space (as in this example)
there is no big computational difference in using one integration scheme or the other. Figure 6, panels (a) and
(b), show a contour plot of̃π(θ|y). Superimposed are the locations of the integration points when using a
grid strategy, panel (a), and a CCD strategy, panel (b). Figure 6(c) displays the results of the two integrations
strategies when computing the posterior marginalπ̃(xt|y). The density displayed is chosen to be the one
for which the two integration schemes gave the most different results. The difference between densities is

21



computed via a (symmetric) Kullback-Leibler measure. Even though the grid strategy uses more points than
the CCD strategy, and even thought the density ofπ(θ|y) is quite far from a Gaussian, the difference in the
results of the two integrations is almost unnoticeable.
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(a) Grid strategy (b) CCD strategy (c) integration results

Figure 6: M1, simulated data example. Configurationsθk used in the grid strategy (a) and in the CCD
strategy (b). In panel (c) is the result of the integration procedure using the grid (solid line) and the CCD
strategy (broken line)

We compare, the approximations forπ(xt|y) obtained using the Gaussian approximation and the improved
one, in Sections 4.2.1 and 4.2.2 respectively, to representπ(xt|θk, y). Figure 7, panels (a) and (b), show the
two approximations for one of the nodesht in the time series, and for the common meanµ respectively. The
nodeht showed was chosen to be the one for which the Gaussian and the improved approximation gave the
most different result. In the same figures is also displayed an histogram obtained from an intensive MCMC run
of modelM1 using WinBUGS. After a burn-in period, we have collected a MCMC samples of106 by keeping
every 20th simulated value in the chain. The Gaussian approximation appears to be shifted, especially when
considering the density ofπ(µ|y). The improved approximation, on the other hand, gives quite an accurate
result.
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Figure 7:M1, simulated data example: Gaussian approximation (broken line), improved approximation (solid
line) and MCMC density estimate (histogram).

22



We then fit modelM2 to the same simulated data. In this case the hyperparameters space has dimension 3.
The grid integration scheme requires 70 points while the CCD integration scheme only 15. Figure 8 shows
the results of the two integration procedures for one of the nodes in the latent field(h, µ). Also in this case,
the CCD integration scheme allows for a quite big computational gain without loosing in accuracy.
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Figure 8:M2, simulated data example: approximation ofπ(xt|y) computed via the grid integration strategy
(solid line) and the CCD integration strategy (broken line).

In Figure 9 the Gaussian and improved approximations for two nodesht andµ, are displayed and compared
with an histogram derived from a long MCMC sample obtained as before. Notice that there are differences
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Figure 9:M2, simulated data example: Gaussian approximation (broken line), improved approximation (solid
line) and MCMC density estimate (histogram).

between the MCMC based estimate and the improved approximation especially in the right tail of the density
for the common meanπ(µ|y) (Figure 9b). We believe that these differences are mostly due to MCMC error,
which despite the long run, is still present in the sample. WinBUGS uses a single site algorithm which can be
extremely slow and ”sticky” especially with heavy tailed data and strongly correlated variables in the latent
field.

To reinforce our believes we made two experiments. First, we have fixed the value of the hyperparameter vec-
tor θ to an arbitrary value. This makes the MCMC run faster. Moreover, quality of the INLA approximation
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for π(xt|y) depends directly on the quality of the approximation forπ(xt|y, θ). Figure 10 shows results for
the same two nodes displays in Figure 9. The hyperparameters value islog κ = 2, log τ = 0 andδ = 1. These
values are chosen in a quite extreme region of the posterior densityπ(θ|y) because in our experience (Rue
and Martino, 2006), it is in such areas that the approximation problem is more difficult. The Gaussian appro-
ximation appears to be slightly shifted with respect to the MCMC estimate while the improved approximation
gives an accurate result. The experiment was repeated for different values of the hyperparameters always with
the same result.
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Figure 10: Simulated data,M2 model with fixed hyperparameters: Gaussian approximation (broken line),
improved approximation (solid line) and MCMC density estimate (histogram).

In our second experiment the hyperparameter vectorθ is random but only the first 50 data of the simulated
time series are considered. Decreasing the number of data makes the MCMC algorithm run much faster and
mix better. On the other side, the approximation problems are easier when the number of data increases,
see Rue et al. (2007) for considerations about the asymptotic behaviour of INLA. Figure 11 shows the im-
proved approximation and the MCMC density estimate for the same nodes in Figure 9 when only 50 data are
considered. Here the approximations and the MCMC estimates agree almost perfectly.

Based on these results, we believe that, if we run the MCMC algorithm for the full data set for much longer
time, the histograms in Figure 9 would finally overlap with the improved approximations.

To conclude, we compareM1 andM2, using the approximated marginal likelihoodπ̃(y|Mk). We compute
two approximation for̃π(y|Mk) using both the Gaussian approximation forπ(θ|y) in (26) and numerical
integration in (27). Table 3 presents the logarithm ofπ̃(y|Mk). The marginal likelihood is largest for model

M1 : Gaus. returns M2 : Stud. return
model model

log π̃1(y|Mk) -209.1083 -206.1067
log π̃2(y|Mk) -208.8983 -206.3458

Table 3: Simulated data example: estimated value of the marginal likelihoodlog π(y|Mk) for i = 1, 2
computed via a Gaussian approximation ofπ(θ|y) and via numerical integration.

M2, which corresponds to the true model in (28). The difference in the logarithm of the marginal likelihood
between the two models is 3 if we consider the Gaussian approximation toπ(θ|y) in (27) and 2.4 if we
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Figure 11: Simulated data, modelM2 considering only 50 data: Gaussian approximation (broken line),
improved approximation (solid line) and MCMC density estimate (histogram).

computẽπ(y|Mk) numerically. This shows evidence that tails heavier than those of a Gaussian distribution
are needed to describe the returns process in this example.
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6.2.2 Pound-dollar exchange rate data set

Our second example for the univariate SV model consists in the Pound-dollar exchange rates plotted in Fig-
ure 1 .The same data set was analysed, among others, by Durbin and Koopman (1997) and Rue et al. (2007).

Consider modelM1 first. For the grid integration scheme 29 points are evaluated, while the CCD strategy
evaluates 9. Figure 12, shows contour plots ofπ̃(θ|y). and locations of the integration points when using a
grid strategy, panel (a), and a CCD strategy, panel (b). Figure 12(c) displays the results of the two integrations
when computing the posterior marginalπ̃(xt|y). This time the difference between the two densities is almost
undetectable. This is due to the fact that,compared to that in the previous example, the density ofπ(θ|y) is
more regular. Here by ”regular” we mean no too far from a Gaussian.
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Figure 12:M1, real data example: integration points needed to computeπ̃(xt|y). Panel (a) illustrates the grid
strategy and panel (b) the CCD strategy. In panel (c) is the result of integration procedure using the grid (solid
line) and the CCD strategy (broken line)

We proceed then to check the accuracy of the approximations forπ(xt|y). Figure 13, panels (a) and (b), show
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Figure 13:M1, real data example: Gaussian approximation (broken line) improved approximation (solid line)
and MCMC density estimate (histogram).

the two approximations for one of the nodesht in the time series, and for the common meanµ. The node
ht showed was chosen to be the one for which the Gaussian and the improved approximation gave the most
different result. In the same Figure is also an histogram obtained from a long (around106 iterations) MCMC
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run which represents the ”true” density. Again, the Gaussian approximation appears to be shifted, especially
when considering the approximation forπ(µ|y) while the improved approximation is practically perfect.

When fittingM2, the grid integration scheme requires 73 points while the CCD integration scheme only 15.
Figure 14 shows the results of the two integration procedures for one of the nodes in the latent field(h, µ).
The node is chosen to be the one for which two procedures gave the most different results.
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Figure 14:M2, real data example: approximation ofπ(xt|y) computed via the grid integration strategy (solid
line) and the CCD integration strategy (broken line).

In Figure 15 the Gaussian and improved approximation for one node in the time series and for the common
meanµ are displayed together with density estimations from a very long MCMC run. Again we see that while
the Gaussian approximation can present errors in location and skewness, the improved approximation gives
very accurate results.
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Figure 15:M2, real data example: Gaussian approximation (broken line) improved approximation (solid line)
and MCMC density estimate (histogram).

In order to compareM1 andM2, we compute the approximation for the marginal likelihoods using both
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a Gaussian approximation forπ(θ|y) and the numerical integration in (27). Table 4 presents the computed
approximations forlog π(y|Mk). The two approximations are very close to each other. The difference in log

M1: Gaus. returns M2:Stud. return
models model

log π̃1(y|Mk) -67.416 -69.150
log π̃2(y|Mk) -67.372 -68.949

Table 4: Real data example: estimated value oflog π(y|Mk) for the two univariate models fitted to the pound-
dollar exchange rate data. The estimated marginal likelihood is computed via a Gaussian approximation of
π(θ|y) and via numerical integration.

marginal likelihood, close to 1.7, offers a substantial evidence in favour of the Gaussian returns model. The
idea that extra kurtosis in not needed for this data set is reinforced if we look at the mode of the posterior
distributionπ̃(θ|y) for the two models. The modal value of the parameterν∗ in the Student-t model is 3.760,
this corresponds to a modal value for the degree of freedom of the Student-t distribution around 46. With such
high degree of freedom, a Student-t distribution is practically indistinguishable from a Gaussian. Moreover
the modes of the remaining two parameters, the rangeκ and the precisionτ practically coincide in the two
models, suggesting that a Gaussian distribution in the returns process well describes these data.
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6.3 Multivariate Models

In this section we fit the five bivariate models described in Section 2.2 to two financial time series.
The first data set consists in 300 data points simulated from Model 2 at page 7, with mean vector for the latent
field µ = (0.1,−0.2) and hyperparameters values:log κ1 = 3, log κ2 = 5, log τ1 = 2, log τ2 = 4, ρ∗ε = 1.
The simulated data are plotted in Figure 16.

The second data set consists in 519 weekly mean corrected log-returns of the Australian dollar and New
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Figure 16: Simulated bivariate time series.

Zeland dollar, both against the US dollar, from January 1994 to December 2003. The Australian and the
New Zeland economies are closely related to each other, hence we expect the dependence between the two
exchange rates to be strong. The two series are plotted in Figure 17 and indeed there appear to be strong
cross-dependence both in returns and volatility. The same data set is analysed also in Yu and Mayer (2006).
We analyse each of the five models separately and then compare them using the marginal likelihoodπ̃(y).
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Figure 17: Time series for Australian/US Dollar (upper) and New Zeland/US Dollar (lower) exchange rate
returns
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Computationally, the main difference between univariate and multivariate models is the increasing number of
hyperparameters which makes all numerical integrations more intensive. Here the CCD integration strategy
can really help reducing the computational burden. In Table 5 we have reported the number of evaluation
points, for all five bivariate models fitted to both data set, necessary to compute the integral in (4) using the
CCD and the grid strategy. The tuning parameters for the grid strategy are set toδz = 1 andδπ = 2.5 in all

N. of Simulated Data Real Data
hyperparam. GRID CCD GRID CCD

Model 1 4 124 25 101 25
Model 2 5 277 27 383 27
Model 3 6 774 45 882 45
Model 4 6 810 45 720 45
Model 5 6 619 45 688 45

Table 5: Number of integration points used to computeπ̃(xti|y) using the two integration strategies.

cases. These default values have proved to be usually accurate enough (Rue et al., 2007). Notice that, when
the dimension of the hyperparameters space increases, the CCD strategy can reduce the number of evaluation
points by a factor of 20. To check the accuracy of the CCD integration strategy we compare, for each model,
its result with the result obtained via the more computational intensive grid strategy.

MODEL Variance Equation Mean Equation
κ1 κ2 φ12 ρ∗η log τη1 log τη2 ρ∗ε ν∗

Model 1 1.926 2.164 - - 3.014 2.654 - -
(1.017) (0.760) - - (1.111) (0.945) - -

Model 2 1.821 2.061 - - 2.906 2.701 0.882 -
(1.125) (0.755) - - (1.203) (0.972) (0.118) -

Model 3 1.96 1.730 0.679 - 2.600 3.038 0.889 -
(0.907) (0.744) (0.529) - (1.056) (1.052) (0.119) -

Model 4 2.085 2.148 - 1.168 2.860 2.457 0.869 -
(0.976) (0.652) - (1.377) (1.115) (0.824) (0.120) -

Model 5 1.837 2.0258 - - 3.220 2.923 0.886 3.092
(1.073) (0.810) - - (1.065) (1.003) (0.121) (0.882)

Table 6: Modal values of̃π(θ|y) in the five bivariate models fitted to the simulated bivariate time series. In
parentheses is the standard deviation as estimated from the inverse of the negative Hessian matrix computed
at the mode.
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Variance Equation Mean Equation
log κ1 log κ2 φ12 ρ∗η log τη1 log τη2 ρ∗ε ν∗

Model 1 3.998 4.174 - - 3.188 2.700 - -
(0.333) (0.351) - - (0.449) (0.505) - -

Model 2 3.391 3.588 - - 3.792 2.803 1.993 -
(0.566) (0.631) - - (0.538) (0.731) (0.097) -

Model 3 3.902 1.750 0.828 - 3.916 2.260 1.940 -
(0.374) (0.576) (0.393) - (0.485) (0.648) (0.098) -

Model 4 3.360 2.960 - 2.610 3.264 1.805 1.945 -
(0.377) (0.4568) - (0.777) (0.513) (0.509) (0.097) -

Model 5 3.206 3.517 - - 3.840 2.844 1.991 3.535
(0.846) (0.707) - - (0.574) (0.795) (0.100) (0.942)

Table 7: Modal values of̃π(θ|y) in the five bivariate models fitted to the Australian/US and New Zeland/US
exchange rates. In parentheses is the standard deviation as estimated from the inverse of the negative Hessian
matrix computed at the mode.
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6.3.1 Model 1 (Basic MSV)

Model 1 is equivalent to stacking together two independent univariate models with Gaussian noise in the
returns equation. There is no correlation between volatilities nor between returns and no Granger causality is
allowed. The hyperparameters are four and consist in the two log precisions and the two log ranges for the
latent field. Table 6 refers to the simulated data set and reports the modal values of the hyperparameters and,
in parentheses, the standard deviations as estimated from assuming a Gaussian approximation forπ(θ|y) as
in equation (25). Table 7 reports the same quantities for the Australian/New Zeland data set.

We compare approximations forπ(xti|y) obtained using the grid and the CCD integration strategy. The results
are displayed in Figure 18. For each example we display the node for which the two integrations gave the
most different results. Even if the CCD strategy uses four times less evaluations points compared to the grid
strategy, the results are practically identical.
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Figure 18: Model 1. Results of the CCD (broken line) and grid (solid line) integration when computing
π̃(xti|y).

Figures 19 and 20 compare the Gaussian, the improved approximation and a density estimates obtained by
an intensive MCMC run of the posterior marginals for four nodes in the latent field. Figure 19 refers to the
simulated data set and Figure 20 to the real one. The nodes showed are two log-volatilitiesht1 andht2, and
the two common meansµ1 andµ2. In both cases while the Gaussian approximation presents a slight error in
locations, the improved approximation gives practically exact results.
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Figure 19: Simulated bivariate data set, Model 1. Gaussian approximation (broken line), improved approxi-
mation (solid line) and MCMC based density estimate (histogram).
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Figure 20: Australia/New Zeland data set, Model 1. Gaussian approximation (broken line), improved appro-
ximation (solid line) and MCMC based density estimate (histogram).
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6.3.2 Model 2 (Constant correlation MSV)

In Model 2 the returns are correlated. Hence, in addition to the four hyperparameters of Model 1 we also
have the correlation between returns. Tables 6 and 7 show the modal values of the hyperparameters and their
standard deviation as approximated from the inverse of the negative Hessian matrix ofπ̃(θ|y). The hyper-
parameterρ∗ε , which is a function of the correlations parametersρε (see Section 2.3), has, for the simulated
data, a modal value of 0.88, which is quite close to the real value of 1. The standard deviation, if we assume a
Gaussian approximation forπ(θ|y) as in (25), is 0.11. Although this is a very rough estimate of the posterior
marginal ofρ∗ε , it suggests that the value ofρ∗ε is significantly different from 0 and that the two returns time
series are indeed correlated. The same can be said about the Australia/New Zeland data set where the modal
value ofρ∗ε is 1.99 with a Gaussian standard deviation equal to 0.11.

Figure 21 compares the results of the two integration strategies. Again the nodes displayed are those where
the CCD integration performs worst. There is indeed a slight difference between the approximations in both
examples. Anyway, when compared to the natural scale of the densities, these differences appear to be quite
small. On the other side, the savings in computational time due to the use of the CCD strategy is relevant, see
Table 5.
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Figure 21: Model 2. Grid (solid line) and CCD (broken line) integration results.

Figures 22 and 23 show the Gaussian and the improved approximation for some nodes in the latent field for
the simulated and real data set respectively. In the same plots is also an histogram derived from an intensive
MCMC run. For the real data set, there is a slight disagreement between the improved approximation and the
MCMC estimate in the left tail of one of the distribution (Figure 23b). In the simulated case the approximations
are practically perfect.
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Figure 22: Simulated bivariate data set, Model 2. Gaussian approximation (broken line), improved approxi-
mation (solid line) and MCMC based density estimate (histogram).
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Figure 23: Australia/New Zeland data set, Model 2. Gaussian approximation (broken line) the improved
approximation (solid line) and a MCMC based density estimate (histogram) for 4 nodes in the latent field.
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6.3.3 Model 3 (MSV with Granger causality)

Model 3 adds one more hyperparameter by allowing the two latent time series to be interdependent. The
cross-correlation between the time series of log-volatilities is caused by the Granger causality expressed by
the non-zero value of the parameterφ21.

Consider first the simulate data set. Here, the posterior mode theφ21 is 0.679 and its standard deviation,
as derived from a Gaussian approximation toπ(θ|y), is 0.523, see Table 6 .This suggests that no Granger
causality is present between the latent fields. This corresponds to the true model we simulated the data from.

As for the Australia/New Zeland data set, the modal value ofφ21 is 0.828 and that its standard deviation, as
estimated from a Gaussian approximation ofπ(θ|y), is 0.39. This suggestφ21 being significantly different
from 0 and, in turns, that the volatility in Australian dollar Granger causes the volatility in the New Zeland
dollar. This is consistent with our expectations of the two economies to be strongly dependent. As a result
following the Granger causality, the posterior mode of the log-range in the volatility for the New Zeland dollar
is reduced from 3.58 to 1.75.
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Figure 24: Model 3. Grid (solid line) and CCD (broken line) integration results.

Figures 24 displays results obtained using the CCD and the grid strategies when approximatingπ(xti|y).
Again we notice that the CCD integration allows for a quite big reduction in computational costs (see Table 5)
with only a slight loss in terms of accuracy.

When comparing the Gaussian and the improved approximation with a MCMC based density estimate, Figures
25 and 26 for the simulated and the data respectively, there seems to be, in both cases a slight disagreement
between the improved approximation and the MCMC based estimate concerning the posterior density of
π(µ1|y) (Figures 25c and 26c). On one side this difference might depend on some MCMC error still present in
the sample. We have seen, in fact, that the single site algorithm implemented in the WinBUGS software mixes
very slowly. On the other side, when compared with the natural scale of the density, the small disagreement
in skewness would make no difference in practice.
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Figure 25: Simulated data set, Model 3. Gaussian approximation (broken line), improved approximation
(solid line) and MCMC based density estimate (histogram).
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Figure 26: Australia/New Zeland data set, Model 3. Gaussian approximation (broken line) the improved
approximation (solid line) and a MCMC based density estimate (histogram) for 4 nodes in the latent field.
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6.3.4 Model 4 (Generalised constant correlation MSV)

Model 4 allows for cross-correlation between the volatilities but, unlike Model 3 this dependency is caused by
correlations between the two processes and not by Granger causality. Hence, the hyperparameter space keeps
the same dimension butφ21 is substituted byρ∗η.

From Table 6 we can see that the estimated modal value ofρ∗η and the curvature of̃π(θ|y) at the mode, suggest
that the latent fields are uncorrelated for the simulation data example.

In the Australia/New Zeland case instead, the modal value ofπ(ρ∗η|y) is estimated to be 4.826 with a standard
deviations computed by approximatingπ(θ|y) with a six dimensional Gaussian distribution is 0.632, see
Table 7. This again suggests that the correlation between the two volatilities time series is non-zero.
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Figure 27: Model 4. Grid (solid line) and CCD (broken line) integration results.

Figure 27 show the approximations obtained by using the grid and the CCD integration scheme for both our
bivariate examples. Again we see that, despite the large computational saving, the results obtained via the
CCD integration are only slightly different from those obtained via the grid scheme.

When we tried to fit Model 4 to the two data set via WinBUGS we found out that the algorithm runs extremely
slowly for this model. When using only the first 30 data points WinBUGS takes around 36 seconds to perform
100 iteration. The time consumed grows to circa 78 seconds for 40 data points and to 140 seconds for 50
data points. To obtain a long enough sample for the complete data set would take an extremely long time.
Therefore no comparison with MCMC estimates is presented for this model.
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6.3.5 Model 5 (Heavy-tailed MSV)

The last model considered is equivalent to Model 2 concerning the equation for the latent volatility models
but uses a Student-t error instead of a Gaussian one in the equation for the returns. No cross-correlation in the
volatility process is allowed. The number of hyperparameters is then again six.
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Figure 28: Model 5. Grid (solid line) and CCD (broken line) integration results.

In both our examples the modal value ofδ∗ is over 3, with a standard deviation computed from the Gaussian
approximation ofπ(θ|y) close to 1. A value ofδ∗ close to 3 corresponds to a value for the degrees of freedom
close to 22. This suggests that the extra kurtosis is not necessary to describe any of the two data sets.

Figure 28 compares the approximations ofπ(xti|y) obtained by using the grid and the CCD strategy. As usual
the nodes showing the largest differences are reported. No significant differences can be detected despite the
fact that the CCD integration uses almost 20 times less evaluation points.

Figures 29 and 30 compare the Gaussian and the improved approximation with an histogram derived from
a long MCMC run. While the improved approximation agrees almost perfectly with the MCMC density
estimate in the simulated data example (Figure 29), in the Australia/New Zeland example there is a slight
disagreement between the two. This can be seen especially in the left tail of Figure 30b and in the location
and skewness of the density in Figure 30c.

As an experiment we have run the same model this time only taking into account the first 50 points in the
Australia/New Zeland data set, so that the MCMC algorithm would run faster. Again we have compared the
histogram resulting from such MCMC run with the Gaussian and improved approximation. The results are
displayed Figure 31. This time the improved approximation and the MCMC density estimates overlap almost
perfectly. Following the same argument as for the simulated data in Section 6.2, we believe that running the
MCMC algorithm long enough the approximation and the MCMC estimate would coincide also for the full
data set.
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Figure 29: Simulated data set, Model 5. Gaussian approximation (broken line), improved approximation
(solid line) and MCMC based density estimate (histogram).

43



−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(a) π(ht1|y)

−1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

(b) π(ht2|y)

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

0
1

2
3

4
5

(c) π(µ1|y)

−0.4 −0.2 0.0 0.2

0
1

2
3

(d) π(µ2|y)

Figure 30: Australia/New Zeland data set, Model 5. Gaussian approximation (broken line), improved appro-
ximation (solid line) and MCMC based density estimate (histogram).
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Figure 31: Australia/New Zeland data set, Model 5. Gaussian approximation (broken line), improved approxi-
mation (solid line) and MCMC based density estimate (histogram) when only the first 50 data are considered.
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6.4 Model comparison

In this section we compare the five bivariate models using the two approximations to the marginal likelihood
π(y|Mk) described in Section 5.

Table 8 reports the values oflog π̃(y|Mk), for all five models fitted to the simulated data set. In the same
table is also the ranking associated with each of the models.

log π̃1(y|Mk) log π̃2(y|Mk) Rank log π̃1(y|Mk)− log π̃2(y|Mk)−
maxk log π̃1(y|Mk) maxk log π̃2(y|Mk)

Model 1 -295.782 -296.4741 5 -24.802 -22.5181
Model 2 -270.980 -273.9560 1 0.000 0.0000
Model 3 -273.605 -277.8360 4 -2.625 -3.8800
Model 4 -271.247 -274.4130 2 -0.267 -0.4570
Model 5 -272.435 -275.5620 3 -1.455 -1.6060

Table 8: Simulated data set: approximated value forlog π(y|Mk) for the bivariate models computed via
Gaussian approximation ofπ(θ|y) and via numerical integration. In the third column is the ranking of the
models according to the value of the marginal likelihood. The last two columns are the relative values of the
marginal likelihood.

Although the Gaussian approximation of the marginal likelihoodπ(y|Mk) is a quite rough approximation
since it does not take into account any departure from a multivariate normal distribution, it gives the same
ranking as the more accurate approximation computed via numerical integration. When comparing models
what counts is not the absolute value ofπ(y|Mk), but rather the differences between the values ofπ(y|Mk)
relative to different models. We have computed(log π̃(y|Mk)−maxk log π̃(y|Mk)) for both approximations
and reported it in Table 8 to show that the discrepancy between the two approximations is larger when we look
at absolute values than when we look at the more interesting relative values.

The highest value of the marginal likelihood corresponds to Model 2, which is actually the model we simulated
the data from. According to the marginal likelihood criteria, Model 4 receives practically the same support
from the data as Model 2. The difference in log marginal likelihood between Model 2 and Model 1 is more
than 20 indicating that some kind of dependence between the two time series is definitely present.

log π̃1(y|Mk) log π̃2(y|Mk) Rank log π̃1(y|Mk)− log π̃2(y|Mk)−
maxk log π̃1(y|Mk) maxk log π̃2(y|Mk)

Model 1 -580.342 -585.131 5 -200.823 -198.045
Model 2 -385.995 -391.332 3 -6.476 -4.246
Model 3 -381.294 -388.942 2 -1.775 -1.856
Model 4 -379.519 -387.086 1 0.000 0.000
Model 5 -387.352 -392.612 4 -7.833 -5.526

Table 9: Australia/New Zeland data set: approximated value forlog π(y|Mk) for the bivariate models com-
puted via Gaussian approximation ofπ(θ|y) and via numerical integration. In the third column is the ranking
of the models according to the value of the marginal likelihood. The last two columns are the relative values
of the marginal likelihood.

Results regarding the Australia/New Zeland data set are in Table 9. The model ranked as best is Model 4 which
allows for correlations in both the returns and the volatilities. This agrees well with our prior idea that the
economies of Australia and New Zeland are closely related. The difference in log marginal likelihood between
Model 4 and Model 3, which is ranked as second best, is 1.8. Both these models imply interdependence in the
returns process and in the latent volatility one. The difference being only in the nature of such interdependence.
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The difference in log marginal likelihood between the best model (Model 4) and the two models which allow
interdependence only in the returns process (Models 2 and 5) is over 7. This implies very strong evidence
against these two models.

Finally, Model 1, which assumes total independence between the two time series can definitely be rejected, its
log marginal likelihood being more than 200 smaller that the one of Model 4.

Yu and Mayer (2006) fit all these five models, although with a different parametrisation, to the same data set.
They rank the models using the deviation information criteria (DIC) obtaining the same ranking as we do here.

7 Approximating posterior marginals for the hyperparameters π(θm|y)

In some cases one might be interested in investigating the marginal posterior distribution for the hyperparam-
eters of the model,π(θm|y) for m = 1, . . . , M . In Section 3.2 an approximation to the joint posteriorπ̃(θ|y),
is introduced. Moreover, in the examples in Section 6 we have seen that some information about the mar-
ginalsπ(θm|y) can be obtained by approximating the joint marginal for the hyperparametersπ(θ|y) with a
multivariate normal distribution with mean at the modal valueθ∗ of π̃(θ|y) and covariance matrix equal to the
inverse of the negative Hessian matrix ofπ̃(θ|y) computed atθ∗. This Gaussian approximation forπ(θm|y)
is quite rough, it does not take into account the skewness which often is present in the posterior density of
the hyperparameters. In some cases we might, therefore, be interested in a more accurate approximation of
π(θm|y).

Theoretically, giveñπ(θ|y) the integral

π̃(θm|y) =
∫

π̃(θ|y) dθ−m (29)

can be computed numerically, thus providing the required approximation. In practice though, as all numerical
integration problems, also this becomes more and more computational demanding with increasing dimension
of θ.

In our experience, there seems to be no real ”trick” to avoid the rather heavy computational procedures needed
for evaluating̃π(θm|y), which means that obtaining a precise approximation to the posterior marginals of the
hyperparameters will always result in a time-consuming process.

In the following, we present different strategies to evaluate the integral in (29). Both strategies in Sections 7.1
and 7.2 give quite accurate results but require extra computations with respect to those used to approximate
π(xit|y). The strategies in Section 7.3 instead, are intended to provide an approximation, not necessarily very
accurate but still useful, by using quantities already computed when computingπ(xit|y).

7.1 Numerical integration via regular grid

For not too high dimension ofθ, it is possible to evaluatẽπ(θ|y) on a regular grid and then use the resulting
values to numerically compute the integral in (29). In order to locate the area of highest probability density we
can use a strategy similar to that described in Algorithm 3 with two modifications. First the negative Hessian
H is replaced by its diagonal. This because the rotation of the axis due toV in equation (18) is inconvenient
when summing out the variablesθ−m. Using only the diagonal ofH suppresses the rotation but maintains
the scaling. Second, in order to obtain a regular grid of points we include all the fill in configurations whether
or not condition (19) is fulfilled.

After having computed the value of̃π(θ|y) for all points on the grid, by summing out the variablesθ−m, we
obtain, for each dimensionM , a series of points{θ1

m, . . . , θl
m} with relative density{π̃(θ1

m), . . . , π̃(θl
m)}. We

can then fit a spline to the values of the log-density in order to obtain a smooth estimate.
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This is the strategy used in Rue and Martino (2006) and Rue et al. (2007) to approximate posterior marginals
for hyperparameters, and has proved to give extremely accurate results when compared to those obtained by
intensive MCMC runs, provided that the grid is wide and dense enough.

Unfortunately, in order to achieve precise approximations of theπ(θm|y), especially in the tails, the grid has
to be wider than the one used to computeπ̃(xti|y) and in some cases also finer. This means that we have to set
the tuning parameterδπ to a higher value, lets say 5 and, in some cases, setδz to a value smaller than 1. This,
together with the fact that we compute all fill in configurations, implies that with, increasing dimension ofθ,
the computation becomes soon very heavy. Moreover, computing approximations toπ(θm|y) as described
here, does not make use of the values ofπ̃(θ|y) evaluated to computeπ(xti|y) using the grid strategy as
described in Section 4.1.1, but implies additional computations.

As examples of this strategy, we have approximatedπ(θm|y), m = 1, . . . , M for the two univariate models,
M1 andM2 in Section 2.1, fitted to the pound-dollar exchange rate data set. The two models have respectively
two and three hyperparameters.
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Figure 32: Posterior marginals for the hyperparameters inM1 fitted to the Pound/Dollar data set. The solid
line is the approximation computed via the regular grid integration, the histogram is based on intensive MCMC
run.
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Figure 33: Posterior marginals for the hyperparameters inM2 fitted to the Pound/Dollar data set. The solid
line is the approximation computed via the regular grid integration, the histogram is based on intensive MCMC
run.

Figure 32 displays the approximations forπ(θm|y), m = 1, . . . , M in modelM1 compared with MCMC
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based density estimates, and Figure 33 displays modelM2. The approximations and the MCMC-based es-
timates agree very well. The size of the grid used to computeπ̃(θm|y) is 70 for modelM1 and 1300 for
modelM2. It is clear, then, that when the dimension of the hyperparameters space increases, this strategy for
computing posterior marginals for the hyperparameters becomes soon really computational intensive.
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7.2 Laplace approximation

An alternative way to evaluatẽπ(θm|y) is to use once more the Laplace approximation. The starting point is
the identity:

π(θm|y) =
π(θ|y)

π(θ−m|θm, y)
.

We already have an approximation forπ(θ|y), then

π̃(θm|y) ∝ π̃(θ|y)
π̃G(θ−m|θm, y)

∣∣∣∣∣
θ−m=θ∗

−m

(30)

whereθ∗
−m is the modal configuration of̃π(θ−m|θm, y) for different values ofθm andπ̃G(θ−m|θm, y) is a

Gaussian approximation tõπ(θ−m|θm, y) built by matching the mode and the curvature at the mode. That is
a Gaussian density with mean equal toθ∗

−m and precision matrix equal to the negative of the Hessian matrix
of π̃(θ−m|θm, y) computed at the mode.

In order to get a smooth approximation toπ(θm|y) we can compute the quantity in (30) for a set of different
values ofθm and then fit a spline to the logarithm of the obtained values. The density needs then to be
numerically normalised so that it integrates to one. The whole procedure has to be repeated for each of the
marginal distributionπ(θm|y) we are interested in.

The Laplace approximation as described above, gives quite accurate results when compared to density esti-
mates obtained from intensive MCMC runs. As an example we have computed the marginal posterior densities
for all the hyperparameters in Model 2 fitted to the simulated data set in Figure 16. The results are displayed in
Figure 34. Here the Laplace approximation in (30) is shown as a solid line. The histograms are based on long
(106) MCMC runs. In all cases the approximated densities agree almost perfectly with the estimated ones.

Unfortunately, computing the expression in (30) implies finding the maximum of the(M − 1) dimensional
functionπ̃(θ−m|θm, y) for each value ofθm. This operation, with increasing dimension of the hyperparame-
ters space and of the latent fieldx, might become very costly.

In order to simplify the computations we have tried to substitute, when computing (30), the conditional mode
θ∗
−m with the conditional mean EG(θ−m|θm) computed from the Gaussian approximationπ̃G(θ|y) in equa-

tion (25). The conditional mean can be computed in no time thanks to the usual properties of the multivariate
Gaussian distribution, therefore the computational time is reduced a lot. In fact, the only time-consuming op-
eration left to perform is the computation of Hessian ofπ̃(θ−m|y, θm) at EG(θ−m|θm). This resembles what
we have already done in Section 4.2.2 when computing the improved approximation forπ(xti|y). The idea
of substituting the conditional mode with the conditional mean is based on the presupposition that the density
of interest,̃π(θ|y) here andπ(x|y, θ) in Section 4.2.2, is not ”too far” from its Gaussian approximation built
by matching the mode and the curvature at the mode. While this is essentially true forπ(x|y, θ), π̃(θ|y) can
differ quite a lot from a Gaussian given also that the priorπ(θ) is not Gaussian.

The results of approximating̃π(θm|y) using (30) computed at the conditional mean instead of the condi-
tional mode for Model 2 fitted to the simulated data set are displayed in Figure 34 as a broken line. Clearly
the Laplace approximation computed at the conditional mean underestimates the skewness of the marginal
posteriors when this is large.

7.3 Integration via an interpolating function

The procedures described in this section provide an approximation forπ(θm|y) using values of̃π(θ|y) already
computed during the numerical integration ofπ̃(xit|y) described in Section 4.1. The posterior marginals
obtained are not necessarily accurate but provide the user with useful results.

50



−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

−1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

−2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

(a) (b) (c)

0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(d) (e)

Figure 34: Posterior marginals for the hyperparameters in Model 2 fitted to the simulated data in Figure 16.
The solid line is the Laplace approximation where (30) is computed at the conditional mode while the broken
line is the Laplace approximation where (30) is computed at the conditional mean. The histogram is based on
intensive MCMC run.

When evaluating̃π(xti|y) using the grid integration strategy in Section 4.1.1 we compute the densityπ̃(θk|y)
for a certain numberK of points. Although they cannot be directly used to computeπ̃(θm|y), these points
carry information about the shape ofπ̃(θ|y) in the area with highest density. We propose to use theK points
in the grid to build aM -dimensional interpolating functionf(θ). This can then be easily computed for any
point inside the grid in order to numerically compute the integral in (29).

The main advantage of this approach is that, unlike the grid strategy presented in Section 7.1, it requires no
extra computations of̃π(θ|y) with respect to the computation ofπ̃(xti|y). In fact, the same evaluation points
θk in the hyperparameters space, are used to compute all the posterior marginals in the model. Unfortunately
building aM − 1 dimensional interpolating function is not straight forward. We have implemented three
different interpolating functions:

Function 1: Computef(θ) as a weighted sum of theK valuesπ̃(θk|y), k = 1, . . . , K, that isf(θ) =∑
wkπ̃(θk|y). The weightswk depend on the Euclidean distance ofθ from eachθk.

Function 2: Computef(θ), as the linear interpolation form theM + 1 points nearest toθ.

Function 3: Computef(θ), as the quadratic interpolation form theM + 1 points nearest toθ. The curvature
is assumed to be 1 as for the standard Gaussian density.

Function 1 seems to provide approximations which tends to be too smooth with respect to the real posterior
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densities while Function 2 and 3 can, sometimes, present spikes which make the numerical integration dif-
ficult. Moreover, when the dimension ofθ increases, not only computing the grid, but also computingf(θ)
itself becomes expensive. In fact, computing any of the three functions described above requires visiting all
theK points which constitutes the grid, and their number grows exponentially withM . Results obtained using
Function 1 to interpolate theK points for the univariate Student-t (M2) model fitted to the Pound-Dollar data
set, are displayed in Figure 35. Notice that the approximations, especially forπ(ν∗|y) are too smooth.
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Figure 35: Hyperparameters for the Student-t model fitted to the Pound-Dollar data set. The solid line is the
approximation obtained via the interpolation Function 2 and the histogram is derived from a long MCMC run.

If the CCD strategy is used to computeπ̃(xti|y) no grid on the hyperparameter space is available. Hence a
different strategy has to be used. Letz(θ) = (z1(θ), . . . , zM (θ)) be the point in thez-parametrisation defined
in (18) corresponding toθ. We define the functionf(θ) as

f(θ) =
M∏

m=1

fm(zm(θ)) (31)

where

fm(z) =

 exp
(
− 1

2(σm+
ccd )2

z2
)

if z ≥ 0

exp
(
− 1

2(σm−
ccd )2

z2
)

if z < 0
(32)

andσm+
ccd andσm−

ccd , m = 1, . . . , M , are defined at page 16. The function in (31) is not an interpolating
function. It seems, however, to have some advantages over the three functions described above. First of all
it is much faster to compute, regardless the dimension ofθ, since it does not require visiting any other point
in the hyperparameter space. Moreover, when the dimension ofθ is large we do not use the grid strategy for
computingπ̃(xit|y) therefore the points constituting the grid are not available.

In Figure 36 we report the approximations forπ(θm|y), m = 1, . . . , 6 obtained using (31) for Model 5 fitted
to the simulated data set. In the same Figure are also displayed the Gaussian approximations forπ(θm|y)
in (25), and an histogram derived from a long MCMC run. The approximations derived from (31) correct
the Gaussian ones for locations and some skewness. Even though they are not extremely precise they still
provide useful information about the marginals for the hyperparameters. The fact that this approximations are
computed at almost no extra cost after having computedπ̃(xit|y) makes them valuable.

The approximations based on (31) seem to be more reliable than the one based on the interpolating functions
described at page 51. They can also be computed when the grid integration strategy is used at the cost of
computing the positive and negative “standard deviations”σm+

ccd andσm−
ccd , m = 1, . . . , M .
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Figure 36: Posterior marginals for the hyperparameters on Model 5 fitted to the simulated bivariate data set.
The solid line is the approximation based on 31 while the broken line is the Gaussian approximation in (25).
The histograms are based on intensive MCMC runs.

8 Extension: asymmetric models

One feature often observed in financial studies is that volatility responds asymmetrically to positive and neg-
ative return shocks. Several explanations have have been proposed in the literature to explain the presence of
such asymmetric relationship between volatility and returns. One of the most widely cited is due, to Black
(1976) and Christie (1982) who suggest that the asymmetry reflects a change in financial leverage. In partic-
ular, the argument is that, when a firm experiences a positive (negative) return, it becomes less (more) risky,
thus decreasing (increasing) its volatility. In other words there is a negative correlations between returns and
volatility. This is known asleverageeffect.

A univariate SV model with leverage effect was first introduces by Harvey and Shephard (1996) and takes the
form:

yt = exp(ht/2)εt,
xt+1 = µ + φ(ht − µ) + σηt+1

(33)

whereεt andηt+1 are standard Gaussian variables. The leverage effect is introduced by letting the two error
processes to be negatively correlated. Formally, Corr(εt, ηt+1) = ρ, with ρ < 0. Note that for asymmetric
models we prefer the formulation in (33) over the one in (6), used in Jacquier et al. (2004). This is because
in model (33) a shock at timet influences the volatility at timet + 1, while in model (6) a shock at timet
influences the volatility at timet. The former being more logically appealing both from a theoretical and a
empirical point of view, see Yu (2005). The SV model with leverage effect in (33) is estimated by quasi-
likelihood method in Harvey and Shephard (1996) and by MCMC in Mayer and Yu (2000).
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In this section we describe how it is possible to perform approximate inference using INLA for univariate SV
models with correlated errors. We have not implemented the algorithms for such kind of models, therefore no
example is presented.

The core of the INLA approach is the Gaussian approximation for the full conditional of the latent field
π(x|θ, y) described in Section 3.1. In order to be able to write down such approximation we need to have an
expression for the likelihood of each data pointπ(yt|x, θ). After some algebra ot can be showed that

π(yt|x, θ) = π(yt|xt, xt+1, θ) = N
{ρ

σ
ext/2[xt+1 − µ + φ(xt − µ)], ext(1 − ρ2)

}
(34)

See Appendix for details on how to derive (34) from (33). Note that unlike the univariate models analysed on
Section 2.1, here each data pointyt depends on two nodes of the latent field, namely,xt andxt+1. The prior
distribution for the latent GMRFx is unchanged from Section 2.1. Hence, the full conditional reads

π(x|y, θ) ∝ exp

{
−1

2
xT Qx +

nd∑
t=1

ft(xt, xt+1)

}
(35)

whereft(xt, xt+1) = log π(yt|xt, xt+1, θ). Similarly to what is done in Section 3.1, we can expandft(xt, xt+1)
around the point(x0

t , x
0
t+1) obtaining

ft(xt, xt+1) ≈ Const+ (xt, xt+1)bt − 1
2
(xt, xt+1)Ct(xt, xt+1)T .

whereCt is a2 × 2 symmetric matrix andbt a column vector if dimension 2. Bothbt andCt are functions
of the gradient and the Hessian matrix offt(xt, xt+1) computed at(x0

t , x
0
t+1) and depend on the value of the

hyperparameters vectorθ. Let ct
ij indicate the elementij of the matrixCt andbt

i indicate theith element of
vectorbt, wherei, j = 1, 2. Moreover let

diag(C) =



c1
11 c1

12 0 0 . . . 0
c1
21 c1

22 + c2
11 c2

12 0 . . . 0
0 c2

21 c2
22 + c3

11 c3
12 . . . 0

...
...

0
. . . 0

0 . . . 0


,

and
bT = [b1

1, b
1
2 + b2

1, b
2
2 + b3

1, . . . , 0]

Here diag(C) is aN × N matrix, whereN is the dimension of the latent fieldx andb is a vector of length
N . Similarly to what described in Section 3.1, we can build a Gaussian approximation toπ(x|y, θ) with
precision matrixQ + diag(C) and mean given by the solution of(Q + diag(C))x∗ = b wherex∗ is the
modal configuration ofπ(x|y, θ). Note that sincext and xt+1 are neighbours in the graph of the latent
field x, the Gaussian approximation is a Gaussian Markov random field with respect to the same graph and
therefore preserves the Markov properties of the prior distribution of the latent fieldx.

Starting from the Gaussian approximation described above, it is possible to derive all the other algorithms
necessary to implement the INLA approach also for SV models with correlated errors.

9 Discussion

The purpose of this report was to present one more class of models where Integrated Nested Laplace appro-
ximation, introduced in Rue et al. (2007) can be used. In this report we apply INLA to different bivariate
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stochastic volatility models obtaining approximations to the posterior marginals of the latent field. These
approximations have been checked against very long runs of MCMC algorithms and appear to be extremely
accurate. There are some cases where the approximations and the MCMC based estimates seem to disagree.
We are confident that, in these cases the disagreement is mostly due to some MCMC error which, despite the
long run, is still present in the sample.

The problems analysed in this report present a higher dimension of the hyperparameter vectorθ than those in
Rue and Martino (2006) and Rue et al. (2007). Hence the grid integration scheme used in Rue and Martino
(2006) and Rue et al. (2007) becomes too computationally expensive. We have, therefore, used a different
integration procedure, named central composit design (CCD). This was introduced in Rue et al. (2007) but in
this report we verify that in most cases it gives accurate results, despite the fact that the hyperparameter space
is explored in a much cruder way.

In all examples considered here, we consider bivariate data and model latent field as a bivariate autoregressive
model of order 1. It is, in principle, possible to generalise this model by allowing higher dimension of the
data set and higher order of the autoregressive model. However, this would make not only the number of
hyperparameters to increase, but also the structure of the precision matrix of the latent field to become more
dense. This means, in turn, that the efficiency of INLA decreases. Anyway, efficiency problems would be
present, for such complex models, also for MCMC based inference.

Computing approximations for the posterior marginals of hyperparametersπ(θm|y), m = 1, . . . , M becomes
harder whenM grows. In this report we propose different solutions to this problem. There seems to be no
real method to obtain accurate approximations forπ(θm|y) in a cheap way. If accuracỹπ(θm|y) is required,
some additional computational time has to be invested in this task. Anyway,we describe fast solutions which
give useful, though not extremely accurate, results.

Using INLA also the issue of model choice can be solved. An approximation for the marginal likelihood of
the model can easily be derived and, for the class of models discussed here, the Bayes factor can be used for
model comparison.
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A Appendix

A.1 Linear expansion oflog πGG(x−t|xt,θk)

In a unidimensional problem, the log denominator of expression (22) is given by

log π̃GG(x−t|xt, θk)

∣∣∣∣∣
x−t=EeπG

(x−t|xt,θk)

∝ 1
2

log |Q∗ + diag{c(xt, θk)}| (36)

whereQ∗ is the prior precision matrix of the GMRFx where the row and column numbert have been
removed, andc(xt, θk) is the vector of minus the second derivative of the l0g-likelihood evaluated atxj =
EeπG

(xj |xt, θk), that is:

cj(xt, θk) = −∂2π(yj |xj , θk)
∂x2

j

∣∣∣∣∣
xj=EeπG

(xj |xt,θk)

Let δt indicate the derivative of the conditional mean EeπG
(xj |xt, θk), then eachxj can be written as a function

of xt as
xj = µGj(θk) + δt

j(xt − µGt(θk))

whereµG(θk) is the mean of the Gaussian approximationπG(x|y, θk).

We want to expand expression (36) aroundxt = µGt(θk). For this purpose we have to compute its first
derivative. Let

d3
j (xt, θk) =

∂cj(θk, xt)
∂xt

= −∂3π(yj |xj , θk)
∂x3

j

∣∣∣∣∣
xj=EeπG

(xj |xt,θk)

δt
j
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Since for any matrixM we have that∂ log |M | = Trace(M−1∂M), then

d log |Q∗+diag(c)|
dxt

= Trace
{

[Q∗ + diag(c)]−1 d[Q∗+diag(c)]
dxt

}
= Trace

{
[Q∗ + diag(c)]−1diag[d3(xt, θk)]

}
=

∑
j Var(xj |xt)d3

j (xt, θk)
=

∑
j σGj (θk)[1 − Corr2πG

(xt, xj |θk)] d3
j (xt, θk)

(37)

We have then

log π̃GG(x−t|xt, θk)

∣∣∣∣∣
x−t=EeπG

(x−t|xt,θk)

≈
1
2 xt

∑
j σGj (θk)[1 − Corr2πG

(xt, xj |θk)] d3
j (xt, θk)

(38)

Note that the correlation betweenxj andxt, necessary to compute (38) is only available for some of thei’s
andt’s since he marginal variances are computed using (11). The solution to this problem given by Rue et al.
(2007) is to simply replace all non computed correlations with a default value, say 0.05.

For Gaussian data (36) is just a constant, so the term in (38) is the first order correction for non-Gaussian
observations.

The first order expansion presented here depends from the fact that the matrix diag{c} is a diagonal matrix.
The corresponding matrix for multidimensional models diag{C}, defined in Section 3.1, instead, includes
also some off diagonal terms, these make the computation of the derivative in (37) much more complex.

A.2 Determinant of Q[−i,−i]

For any GMRFx, with precision matrixQ we have that

π(x) ∝ |Q|1/2 exp{−1
2
xT Qx} (39)

From the basic properties of a Gaussian distribution we have that, for any indexi = 1, . . . , n, the precision
matrix ofx−i|xi is Q[−i,−i]. Moreover we have that

π(x) = π(xi)π(x−i|xi) ∝ Var(xi)−1/2|Q[−i,−i]|1/2 exp{−1
2
xT Qx} (40)

Comparing (39) and (40) we have that

1
2

log |Q[−i,−i]| =
1
2

log |Q| + 1
2

log Var(xi)

A.3 Likelihood for asymmetric SV models

We can rewrite model (33) as

yt = exp(xt/2)εt,

xt+1 = µ + φ(xt − µ) + σ(ρεt +
√

1 − ρ2ωt+1

with ωt+1 being a standard Gaussian and Corr(εt, ωt+1) = 0.

We want to compute the densityπ(yt|xt, xt+1, θ). To start, notice that given the values ofyt andxt, then
εt = exp(−xt/2) yt and

xt+1 = µ + φ(xt − µ) + σ exp(−xt/2)yt + σ
√

1 − ρ2ωt+1
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that is
xt+1|xt, yt, θ ∼ N (µ + φ(xt − µ) + σ exp(−xt/2)yt, σ

√
1 − ρ2). (41)

Moreover we have
yt|xtθ ∼ N (0, exp(xt)). (42)

We can write

π(yt|xt, xt+1, θ) ∝ π(yt, xt, xt+1|θ)
∝ π(xt|θ)π(yt|xt, θ)π(xt+1|xt, yt, θ)
∝ π(yt|xt, θ)π(xt+1|xt, yt, θ)

From (41) and (42) we have then

π(yt|xt, xt+1, θ) ∝ ext/2 exp
{
− e−xt/2

2 y2
t

}
exp

{
− 1

2σ2(1−ρ2)
[xt+1 − µ − φ(xt − µ) − σρext/2yt]

}
∝ exp

{
−1

2

[
e−xt + ρ2

1−ρ2 e−xt

]
y2

t + [xt+1 − µ − φ(xt − µ)] ρe−xt/2

σ(1−ρ2)
yt

}
which is the core of a Gaussian density with

Var(yt|xt, xt+1, θ) =
[
e−xt +

ρ2

1 − ρ2
e−xt

]−1

= (1 − ρ2)ext

and

E(yt|xt, xt+1, θ) = [xt+1 − µ − φ(xt − µ)]
ρe−xt/2

σ(1 − ρ2)

[
e−xt +

ρ2

1 − ρ2
e−xt

]−1

= [xt+1 − µ − φ(xt − µ)]
ρ

σ
ext/2
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