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Abstract

In this report we apply Integrated Nested Laplace approximation (INLA) to a series of multivariate
stochastic volatility models. These are a useful construct in financial time series analysis and can be
formulated as latent Gaussian Markov Random Field (GMRF) models. This popular class of models is
characterised by a GMRF as the second stage of the hierarchical structure and a vector of hyperparameters
as the third stage.

INLA is a new tool for fast, deterministic inference on latent GMRF models which provides very
accurate approximations to the posterior marginals of the model. We compare the performance of INLA
with that of some Markov Chain Monte Carlo (MCMC) algorithms run for a long time showing that the
approximations, despite being computed in only a fraction of time with respect to MCMC estimations, are
practically exact.

The INLA approach uses numerical schemes to integrate out the uncertainty with respect to the hy-
perparameters. In this report we cope with problems deriving from an increasing dimension of the hy-
perparameter vector. Moreover, we propose different approximations for the posterior marginals of the
hyperparameters of the model. We show also how Bayes factors can be efficiently approximated using the
INLA tools thus providing a base for model comparison.

1 Introduction

1.1 Stochastic volatility models

Financial time series, such as stock returns and exchange rates, present often a non stationary volatility.
Volatility is not directly observable in the financial markets, but presents some characteristics which are com-
monly seen in asset returns. For example, it shows clusters over time, that is there are period of high volatility
followed by periods of low volatility. Moreover, it is often stationary and evolves in time in a continuous
manner, that is volatility jumps are rare. A typical time series of financial data is represented in Figure 1.
The data are a time series of log-returns of pound-dollar daily exchange rates from October 1st, 1981 to June
28th,1985. In Figure 1 are clearly visible the time varying nature of the volatility and the presence of clusters,
for example in the right side of the plot.

The issue of modelling returns accounting for time varying volatility has been widely analysed in the literature.
A common model used for returns is defined as:

Yt = Ot€yg, €t ~ ”D(O, 1) (1)

In (1), &, t = 1,... is a series of uncorrelated standardised random variable often (but not necessarily)
assumed to be Gaussian, ands the time varying volatility. Model (1) could easily be generalised to allow
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Figure 1: Log-returns of Pound-dollar daily exchange rate from October 1st, 1981 to June 28th,1985.

for a non zero mean. Anyway, for asset returns the behaviour of the conditional mean is, usually, relatively
simple, in most cases it is just a constant. Hence, we consider only mean-centred series.

A popular way to look at volatility, is to consider it as a non observed random variable and model its squared
logarithm,h, = log 02, as a linear stochastic process, for example an autoregressive model of order 1 (AR1),

he = p+ ¢(he—1 — p) + 0, e ~ N(0,1/7)) (2

These kind of models, named stochastic volatility (SV) models, were introduced among others by Taylor
(1986) and since then have received much attention. Compared to the other class of models for time varying
volatility in finance time series, the generalised auto regressive conditional heteroscedasticity (or GARCH)
models, SV models are more sophisticated and present some theoretical advantages. GARCH models treat
the volatility as a deterministic function of previous observation and past variances, so that the one step ahead
forecast is fully determined. The additional error term makes the SV models more flexible than the GARCH
ones, see for example Kim et al. (1998). Moreover SV models represent the natural discrete time versions
of the continuous time models upon which much of modern finance theory has been developed. SV models
allow for the excess positive kurtosis which is often observed in asset returns and for volatility clustering.
Conditions for stationarity of the volatility time series are also easily determined.

The main drawback of SV models is that they are difficult to estimate. Unlike GARCH models where the
covariance structure at timeis known given the information up to time— 1, the conditional variance is
unobserved in SV models. Hence, SV models do not have a closed form for the likelihood function. Maximum
likelihood estimation is not possible and, therefore, they require a more statistically and computationally
demanding implementation. Another way to understand the difficulty in estimating SV models is to notice
that for each datg; the model uses two innovations,andr;, instead of just one as in the GARCH model.

Several estimation methods have been proposed for the SV models. They range from the less efficient gener-
alised methods of moments (Andersen and Sorensen, 1996), and quasi likelihood method (Harvey et al., 1994)
to more efficient methods such as simulated maximum likelihood (Danielsson, 1994) and Markov Chains
Monte Carlo (MCMC). Much attention has been devoted to the development of efficient MCMC algorithms
for SV models, e.g. Chib et al. (2002), and Shephard and Pitt (1997), since MCMC is considered one of the
most efficient estimation tools, see Andersen et al. (1999).



1.2 Multivariate Stochastic Volatility Models

There are several reasons, both economical and econometric, why multivariate volatility models are impor-
tant. Financial assets are clearly correlated and the knowledge of such correlation structures is vital in many
financial application such as asset pricing, optimal portfolio risk management, and asset allocation. Compared
with their univariate counterpart, multivariate models for financial assets have to be able to capture some more
features than those mentioned in Section 1.1. Both returns assets and volatility can be cross-dependent. More-
over, volatility can spill over from one market to another so that the knowledge about one asset can help
predicting another one. This form of dependency is known as Granger causality.

Multivariate versions exist both for GARCH and SV models. Multivariate GARCH models enjoy a volu-
minous literature, see, for example Bauwens et al. (2006) for a review. Even though multivariate stochastic
volatility (MSV) models have a number of advantages over multivariate GARCH models, the literature on
MSYV is more limited. This is due to the fact that MSV models pose a series of serious challenges in formula-
tion, estimation and testing. Not only, in fact, they suffer from the inherent problems of multivariate models,
such as the high dimensionality of parameter space and the required positive definiteness of covariance ma-
trices but, as for their univariate version, the likelihood has no closed form. There is, however, an increasing
interest in MSV models as showed, for example, by Vol. 25 of Econometric Review completely devoted to
these models.

1.3 Latent Gaussian Models and Approximate Inference

SV models, as in (1) and (2), and their multivariate counterpart, belong to the larger family of latent Gaussian
models. These are a very common construct in statistical analysis and assume a latent Gaussiaa field

{z1,...,z,} to be indirectly observed througty conditional independent data The covariance matrix
of the latent Gaussian field and, possibly, the likelihood are governed by a set of hyperparaéheters,
{61,...,0r}. We use a Bayesian approach by considering the hyperparameters as random variables with

prior densityr(6). The goal of the inference is, in general, the posterior distribution
w(x,0]y) o< w(6) m(z|6) [ [y |:,6).
t

This is used both for parameter estimation and for filtering or prediction of the latent field.

We are concerned with models where the latent Gaussian field admits conditional independence properties,
hence it is a Gaussian Markov random field (GMRF). MCMC is the standard tool for inference in such mod-
els. Itis, however, not without serious drawbacks. The often large dimension of the latent field, the strong
correlation withinz and betweerx and @, are all possible causes for slow convergence and poor mixing.
Block update strategies have been developed aiming to overcome such problems, see for example Knorr-Held
and Rue (2002) and Rue et al. (2004). Nevertheless in most cases MCMC algorithms remain very slow.

Rue and Martino (2006) and Rue et al. (2007) propose a deterministic alternative, named Integrated Nested
Laplace Approximation (INLA), to MCMC for inference on latent GMRF models. INLA allows fast and ac-
curate approximations to the posterior marginalsifaand posterior distribution fa#. In the INLA approach,

the posterior distribution of the hyperparameters is approximated as:

- m(x,0|y)
7'('(0 ’ y) X m ) (3)

In (3), 7c(x|0, y) is a Gaussian approximation to the full conditional for the latent figldndx*(0) is the
modal value ofr(x|0,y). Posterior marginals for the hyperparametef8,,|y) can, in principle, be easily
fund via numerical integration of (3). This becomes more involving if the dimensiéhisfarge, say above
4.



For the posterior marginals of the latent field Rue et al. (2007) propose to use

Tl y) = Fae | Opy) x 7Ok |y) x A 4)
k
where the sum is ove? with area-weights\, 7(z|y, @) is an approximation to the density of|y, @ and,
7(0y | y) is the approximation in (3). The dimensionality of the sum in (4) depends on the length of @ector
The approximatiorr(x;|y, @) can either be the Gaussian marginal derived fronix|y, @) or an improved
version.

Using INLA it is also possible approximate the marginal likelihodd) as the normalising constant of (3):

() :/ m(z,6ly)

(@], ) 19 ©)

xz=x*(0)

The marginal likelihood is a useful quantity for assessing statistical models, see e.g Clyde and George (2004)
and Kadane and Lazar (2004). Bayes factor is computed as the rati@pffor two competing models,
therefore efficient computation of marginal likelihood becomes important in model choice.

The computations used in INLA are based on sparse matrix calculations which are much faster that dense
matrix ones. The main advantage of INLA over MCMC is computational: results can be obtained in seconds
and minutes instead of hours and days. Also, INLA can easily be parallelised and automated.

Rue and Martino (2006) and Rue et al. (2007) provide several examples of applications of INLA for various
GMRF models comparing it with long MCMC runs. Their conclusion is that INLA totally outperforms
MCMC for both accuracy and speed. Eidsvik et al. (2006) apply the same ideas to geostatistical models, using
a different computational approach based on fast discrete Fourier transform for block circulant matrices.

One of the examples used by Rue et al. (2007) to illustrate the performance of INLA is a univariate SV model
similar to the one in (1) and (2). In this report we apply INLA to estimate marginal posterior densities for some
multivariate SV models. We compare the INLA performance with that of some MCMC algorithms. The main
challenge with multidimensional models is the increasing dimension of the hyperparameterfvettos,

in fact, makes the numerical integration procedures more costly. In this report we verify the CCD integration
scheme proposed in Rue et al. (2007) which reduces the cost of numerical integration and propose different
way to approximater(6,,|0). We also propose two different approximations for the marginal likelihood,
7(y), and use them as basis for model comparison.

1.4 Plan of the report

Section 2 presents the univariate and multivariate SV models we are interested in, and discusses the choice
of prior distributions for@. Section 3 contains preliminaries about GMRF, the Gaussian approximation

7 (x|y, @) to the full conditional ofx, and the approximation for(6|y). Section 4 presents the INLA
approach to computgé(x;|y). Two approximations forr(x|y, 8) are described. In Section 4 we describe

how to approximate the marginal likelihoady), and how it can be used to compare models. Examples of
applications are presented in Section 6. The problem of approximating marginal posteriors for each hyper-
parametefr(6,,|y), is discussed in Section 7. Section 8 explains how INLA can be applied to asymmetric
stochastic volatility models. We end with discussion in Section 9.

2 Model description and choice of the prior distribution

Most financial studies involve returns of assets instead of their prices. Campbell et al. (1997) give two main
reasons for using returns. First, for average investors, the return is a complete and scale free summary of
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the investment. Secondly, returns series are easier to handle than price series because the former have more
attractive statistical properties. In the literature, there are several definitions of assets retufsndietite

the price of the asset, or the exchange rate, at tinTdne simplest return is called “simple gross return”, and
defined as

B
14+ Ry =
Py
In this report we use the continuously compounded returfogsreturn defined as:

P,
yr = log(1 + Ry) = log t
P4

Continuously compounded returns enjoys more tractable statistical properties than simple gross returns, see
for example Ruppert (2004).

In this section we describe some SV models (both univariate and multivariate) for log-returns and report some
considerations about parametrisation. Finally, we discuss the choice of the prior distribuon for

2.1 Univariate Models

Let the series of interesy, = {v1, ..., yn}, be made up of a white noise process, with unit variance, multiplied
by a time dependent factet, the standard deviation. In a SV model the logarithm of the standard deviation,
h: = log(o}) is unobserved and modelled as a linear stochastic process. A simple, and often used, model for

h = {h1,...,h,} is an auto regressive process of order 1 (AR1). The model is then defined as:
Yt = eXp(ht/2)€t, t= ]-7 sy, €t ~ N(O’ 1) (6a)
ht:/L-}-qf)(ht,l—,U,)—}-nt, t=1,...,n, ’I’}tNN(O,l/T). (6b)

with |¢| < 1 to ensure stationarity of the process. The paramgter sometimes called the persistence
parameter. We impose a Gaussian prior to the mean parameter of the latent proces$0, 1/7,,). Hence,

by computing the joint density(h4, . .., hy, 1), the mean parameter can be included in the latent field. We
prefer to include the meam in the latent field instead of in the vector of hyperparamefiebgcause this is
computationally more convenient.

An alternative parametrisation for the SV model in (6) is

Yt = exp(ht/Q)et, t=1,...,n, € NN(O7 1/K*) (78.)
he= @t t=1on o~ N(O,1/77). (7b)

with |¢*| < 1 to ensure stationarity. This second parametrisation is used, for example in Durbin and Koopman
(2000) and Rue et al. (2007).

The two parametrisation are equivalent since we can sigé<*) = —pu, So that the precision term in

the likelihood of model (7) corresponds to the mean term of the latent Gaussian files in model (6). The main
difference between the two lies in the number of hyperparameters. While model (6), has two hyperparameters,
(¢, ), model (7) has thredp*, 7*, x*). If we use MCMC for inference no big advantage can derive from
choosing one or the other. On the other side, in the INLA approach model (6) is preferable since the parameter
space is of lower dimensionality. The difference in the hyperparameter space dimensionality between the two
parametrisation becomes bigger in the multivariate case. Hence, we parametrise multivariate models in a way
similar to (6).

The distribution of; in equations (6a) and (7a) does not necessarily have to be Gaussian. If extra kurtosis is
needed, we can choose, for example a Studdigtribution with unknown degree of freedam|In such case,

the dimension of the hyperparameter space becomes 3 and 4 in model (6) and (7) respectively. Considerations
regarding the parametrisation hold in exactly the same way.
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2.2 Multivariate Models
We describe five different models for multivariate SV as introduced in Yu and Mayer (2006). We focus on the
bivariate case but all models presented are amenable to a multidimensional generalisation.

Let I denote the bidimensional unit matrix. Let the observed log-returns atitimar data, be denoted by

Yy, = (Y, ye2)?, fort = 1,...,n. Leter = (e, e2)’, my = (e, me2)™, e = (e, pe2)’ andhy =
(het, heo)T. Moreover let

_ ([ 41 o2 (1 p
(I)_<¢21 ¢22>’ 26_<pe 1)’
D — ( /7y, Pn/ /T e > Q, — < exp(hi1t/2) 0 >
! pﬂ/\/ Tm Tne /7, ’ ! 0 exp(hae/2) )’

In all model considered here we do not use a stationary distributial, foather we assumiey = p.

Model 1 (Basic MSV)

This is the simplest generalisation of the univariate model in (6). It is equivalent to stacking two independent
univariate SV models together. The two series are then analysed independently from each other:

yt = Qtet, €t ~~ N(O, I)
hy = p + diag(p11, p22) (hi—1 — p) + 1y, My ~ N(0,diag(1/7,,,1/7,))

This model allows for leptokurtic returns distribution and volatility clustering. However, it does not allow for
correlations across returns or across volatility.

Model 2 (Constant correlation MSV)

Y; = ey, e ~N(0,%)
hi = p + diag(p11, p22) (hi—1 — p) + 1y, My ~ N(0,diag(1/7,,,1/7,))

This is similar to the multivariate ARCH model proposed by Bollerslev (1990). The returns are correlated
but no cross-correlation of the volatility is allowed.

Model 3 (MSV with Granger causality)

yt = Qtet, € ~ N(O, 25)
hi=p+ ®(hi—1 — p) +m;, 1y ~N(0,diag(1/7,;,,1/7,))

With ¢12 = 0. This model was first proposed by Yu and Mayer (2006). It allows the second asset to be Granger
caused by the the volatility of the first asset. Volatilities are therefore cross-correlated. The correlation between
returns is due to both Granger causality and volatility clustering. The model allowsgals60. In such case

a bilateral Granger causality between the two assets is allowed, we do not take this case into consideration.



Model 4 (Generalised constant correlation MSV)

yt = Qtet, €t ~ N(O, 26)
hy = p + diag(¢11, p22) (he—1 — p) + 1y, My ~ N(0,3,)

This model was studied by Harvey et al. (1994) and Danielsson (1998) who used respectively the quasi likeli-
hood and the simulated maximum likelihood methods for estimation. Both returns and volatility are correlated.
Clearly, both model 3 and 4 can generate cross-dependence in the volatility, using two different generating
mechanisms. Which specification is more appropriate is an interesting question which goes beyond the scope
of this report.

Model 5 (Heavy-tailed MSV)

There is some evidence that financial data have heavier tails than those resulting from inserting conditional
heteroscedasticity in a Gaussian process. This extra kurtosis can be introduced by using a Sigtiént-

tion instead of a Gaussian in the returns model. In a univariate context a Studistribution is used, for
example, in Chib et al. (2002) while in the multivariate SV context it was first used by Harvey et al. (1994) .

yt = Qtetv € ~ t(Oa 267 V)
ht =M + diaqull) d)QZ)(ht—l - l-‘l') + Ne, My ™~ N(Ov diaql/Tnp 1/7—7]2))

In this model the volatilities are uncorrelated but cross-dependencies in the returns are allowed. It would have
been possible to use a different generalisation of the univariate Studesttibution in a multivariate context,

that is assume each variable to be a Studemth its own degree of freedom. However, according to Yu and
Mayer (2006) this model performs empirically worse that the one presented above.

2.3 Choice of prior distributions

In a Bayesian framework, the hyperparameters of the model are considered random variables and assigned a
prior distributions (). In this section we discuss prior choice for the hyperparameters of the bivariate models
presented in Section 2.2. The same considerations hold also for univariate models.

In all models considered we assume a Gaussian prior for the mean pararsgighat, by computing the
joint density ofx = (h4,...,hy, ), it can be included in the latent field. The remaining hyperparame-
ters can be divided into two groups: parameters in the mean equation) and in the variance equation

((bll, ¢127 ¢227 Pns T7717TT]2)'

For computational reasons, it is convenient, when applying INLA, that all hyperparameters are defined over
the whole real line. Hence, when the original parameters in the model are constrained, we consider a function
of them.

We start by defining priors for the hyperparameters in the variance equation. We want the volatility time series
to be stationary. This holds if the roots of didg- ®z) lie outside the unit circle. For th& matrix in Model

4 this corresponds t@;;1| < 1, |¢22| < 1 andge; € R. We choose a Gaussian prior fos;. As for the two
persistence parametefs, andgso, we note that in a univariate AR1 model with persistence parametef,

the autocorrelation decays lik&', wherex > 0. Define the range of the time series as the distance where
the autocorrelation drops below = 0.05. That isk = loga/ log ¢. The range has a "physical” meaning,
therefore it is usually easier to interpreter than other parameters. We define, hence, the range of our two time
series a%1 = log o/ log ¢11 andky = log a/ log ¢ and assign each an exponential prior distribution.

A popular choice for the prior of the precision parametgfsandr,,, is Gammaa, b), with meana/b and



variancea /b%. We choose a quite vague prior with= 0.25 andb = 0.025.
The correlation parametgy, is constrained in the intervgl-1, 1]. Consider the function

() = logit <x;1> . xe|-1,1]

which assumes values over the whole real line. We choose a Gaussian prior for pargmetef (p;)
with precision0.4. This choice of the precision corresponds, roughly, to a uniform prido+in 1] for the
correlation parameter,. A smaller value for the precision corresponds to a less vague prigr,fdn fact,
the distribution ofp, derived from a vague Gaussian prior pj assigns most of the probability mass to
values close te-1 or 1. A larger precision, on the other side, results in a priopfowhich assign most of the
probability mass to values closer to 0, see figure Figure 2.

05

01

00

T
-10 -05 00 05 10 -10 -05 00 05 10 -10 -05 00

(a) Precision 9.2 (b) Precision= 0.4 (c) Precision= 0.8
Figure 2: Distribution ofy,, derived from a Gaussian distribution phwith different values of the precision.

We treat the correlation in the mean equatignn a similar way. Finally, for the degree of freedom for the
studentt distributionr, we consider* = log(v — 2) and assign a Gaussian prioruto.

All hyperparameters are assumed independent apriori. The prior distributions are listed below:

o it ~ N(0,0.4) wherep, = (o)
e v* ~ N(0,0.1) wherev* = log(v — 2)

e k7 ~ exponentigl0.5), wherex; = log o/ log ¢;; andi = 1,2 anda = 0.05

¢ ~ N(0,0.01)

py, ~ N(0,0.4) wherep, = f(p})

T, ~ Gammg0.25, 0.025) fori = 1,2

3 Gaussian Markov Random Fields

All models in Sections 2.2 and 2.1 can be thought of as different specifications of a general latent GMRF

model in three stages. The first stage is a likelihood model for the observables, a two dimensional Gaussian
or Studentt distribution. The data are independent conditional on some latent parameters, which in our case
consist in the volatility, and, possibly, some additional hyperparaméterdety = (y{,...,y. )’ and

h = (hY,...,hI)T be two column vectors. Each elementfofindy is indexed by two numbenrs where

t =1,2,... andi = {1, 2}, that is,¢ indicates time while indicates the different assets. For the univariate
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case the indexis omitted. We assume that eaghdepends only on the corresponding bidimensional vector
h; in the latent field, so that we have:

m(ylh,61) = Hﬂ'(yt’htael) (8)

Note that we consider the whole vectgras one data point. We say, then, that we have a multivariate model
if y, has dimension greater than one and a univariate model in the other case.

The second stage is a model for the latent field. In the cases analysed here, this is a bivariate autoregressive
model of order 1 with an unknown mean and a covariance matrix depending on some hyperpameters

hilhi—1, 0,02 ~ N(p+®(hi—1 —p),%,;) t=1,...,n

With xy = . Note that it is possible to have > ny4. This is the case, for example, if we are interested in
predicting future value of the volatility. We assume a Gaussian prior for the meanutern\V'(0,X,,). The
mean termu can then be included in the latent field by computing the density:

n

m(h, p1l01) = 7 () [ [ (Rl i1, 61) o Q| exp{—%(hT,uT)Q(hT,uT)T} 9)
t=1

WhereQ is the N x N precision (inverse of the covariance) matrix. H&fe= 2n + 2 is the length of the
latent vectoer = (b7, uT)

The third and last step of our latent Gaussian model is a prior distribution for the hyperparameter vector
0 =(01,05),7(0).

The precision matrix in (9) is sparse, meaning that only few of its elements are non-zero. This is a typical
characteristic of GMRFs. There is in fact a one to one correspondence between the Markov properties of the
field = and the non-zero structure of the precision mafpixmeaning that a off diagonal elemept; # 0 if

and only if the two random variables andz; are conditional independent given the rest of the variables in

x. Great computational efficiency can be achieved by exploiting the sparser@ssgbarticular, factorising

Q into its Cholesky triangld L’ can be done in a fast way. The Cholesky trianflmherits the sparseness

of @ thanks to the global Markov property, thus only the non-null term& iare computed. The nodes in

the GMRF can be reordered in such a way to minimise, or reduce, the number of non-null tetm$he
Cholesky triangle is then the basis for solving linear equations involgndror exampleQx = b is solved

by first solvingLv = b and theL” = = v. This is a typical way to produce random samples from a GMRF.

If z ~ N(0,I) then the solution of.”z = z has precision matri®). Also the log of the density in (9) can
easily be computed, for any configuratisnusingL sincelog |Q| = )", log L;;.

If the GMRF is defined with additional linear constraints of the type = e, whereA is ak x N matrix of
rankk ande is a vector of lengtl, it is possible to correct a samptedrawn from the unconstrained GMRF
in the following way:

¢ =x - Q tAT(AQ AT 1(Ax —e). (10)

x¢ is then a sample from the constrained density. This method is convenient when the rdrik simall.

In fact Q' A" is computed by solving; linear systems, one for each columnAf. The additional cost

for k linear constraints i€)(Nk?). This approach is commonly referred to as “conditioning by Kriging”,

see Cressie (1993) and Rue and Held (2005). For more details about sparse matrix computation see, for
example, Rue and Held (2005).

In the GMRF defined in (9) the covariance matrix is only implicitly known. Inverting the precision matrix can
be extremely costly due to its dimension. The sparsene§safmes to help again. To see this, we start with
LTx = z wherez ~ N(0, I). Recall that the solutiom has precision matri®. Writing this out in detail,

we obtainL;z; = z; — Ziv:iﬂ Ly;xy, fori = N,..., 1. Multiplying each side withz; j > , and taking

10



expectation, we obtain

N
1 . . .

Zij:(sij/Lzzi_F Z Ly, j=>i,1=N,...,1, (12)
" k=it+1

whereX (= Q') is the covariance matrix. Thus;; can be computed from (11), letting the outer laop
run from N to 1 and the inner loog from N to i. If we are only interested in the marginal variances, we
only need to comput&;;’s for which L;; (or L;;) is not known to be zero. Marginal variances under linear
constraints can be computed in a similar way, see Rue and Martino (2006, Sec. 2) for more details.

All computations used by INLA for latent GMRF models are based on algorithms for sparse matrices. The
non-zero structure of the precision matrix in (9) is represented in Figure 3. The size of the bandwidth depends
on both the order of the AR model and on the size of vehtorConsidering highly multidimensional models

or high order AR models makes the precision matrix more dense and therefore the computations less efficient.

......
......
......
......
......
......
------
------
......
......
......
......
........
........
......
......
....................

--------------------

Figure 3: Non zero structure of the precision matrix for a bidimensional AR1 model with unknown mean

3.1 Gaussian Approximation

The core of the INLA approach is a Gaussian approximation to the full conditional of the latent field:
1 e
m(zly,0) o exp {—QwTQw + thm)} (12)
t=1

wherexz = (hT,u”) and gi(x;) = logn(y,|z:,8:). The approximation, which we denote;(x|y, ),
is computed by matching the mode ofx|y, @) and its curvature at the mode. The moder¢k|y, 0) is
computed using an iterative procedure. Starting from an initial gug8swe expandy; (z;) aroundmgo) for
t=1... , g

1
gi(xy) = gt(m(o)) + th:vt — 5:vtTtht (13)
where
8291&(29&&) 02gt(x4)
_ Oz 0x10T 12
Ci=- 329t&t) 02gi(21)
8mt18m 633?2 0

Tr=m,
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and the2 x 1 vectorb;, is a function of the gradient af;(z;) evaluated at; = m! . Let diag C) indicate the
N x N matrix

[ C, 0 ... 0
0 C;, 0 ... 0
: ; (14)
0 ... C, O

0 .. 0

that is, diagC) is a band matrix with bandwidt@. For univariate models digg’) reduces to a diagonal
matrix. Moreover, leb” = (b7, bl ..., 0). We obtain a Gaussian approximation with precigipn diag(C)

and mean given by the solution 66 + diag/C))m(!) = b. The process is repeated until it converges to

a Gaussian distribution with precisi@d; = Q + diag(C) and mearnu. Both the precision matrix and

the mean value of the Gaussian approximation depend of the value of the hyperpar@ndtgarithm 1
displays a naive version of the procedure. In practice some more care has to be put into building the stopping
criteria in order to avoid the optimiser to fail. The costly part of Algorithm 1 is solving the linear system in

Algorithm 1 Computing the Gaussian approximation(x|y, 0)

1: Given a value foP and an initial guessn ()
2: iter =0,diff =10

3: while diff > ado

4. fort=1tondo

5: Computeb; andC'; using (13)

6: end for

7. Solve(Q +diag C))m™) = b

8: Computediff = a distance measure betweer?) andm(!)
9. Setm(® =m®
10: end while

11: Return z¢ = m(®) andQ = (Q + diag C))

line 7. This operation can be efficiently performed using sparse matrix computations. Note that, since each
y, depends only om;, the Gaussian approximation; (x|y, @) preserves the Markov properties of the prior
distribution forzx. This is convenient from a computational point of view.

3.2 Approximating the joint posterior of the hyperparameters 7(6|y)

The joint posterior for the hyperparameters in the moéle¥, (01, 02), is

ylz, O)m(2|0)m(6) 7(y|z,0)n(2|0)n(6)
m(y)m(z|6,y) m(x]0,y)

r(6ly) = (15)

which is valid for any configuratior. INLA builds an approximation to the density in (15), for each value
of 6, by substituting the denominatat(x|0, y) with the Gaussian approximation; (x|, y) described in
Section 3.1, and computing the right hand side of (15) at the modal yel(@). That is:

y|z,0)n(x|6)m(6)
a(x|0,y)

#(6ly) o« ™ (16)

z=pc(0)
This expression is equivalent to Tierney and Kadane (1986)’s Laplace approximation of a marginal posterior

distribution. This suggests that the approximation error is relative and of 6}(7}933/2) after renormalisa-
tion. However standard asymptotic assumption usually invoked for Laplace approximations are not verified
here, some considerations about the error rate for the approximation in (16) can be found in Rue et al. (2007).
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7(0|y) can be used to solve three different tasks in the inference process. The main7($8yfis to
integrate out the uncertainty with respect&tavhen computing approximations for the marginal posteriors

of the latent fieldr(z4;|y) as in (4). Secondlyr(0|y) is used to compute an approximation to the marginal
likelihood as in (5). Finally, sometimes we are also interested in marginal posteriors for the hyperparameters
7(0m|y). In this case we have to compute the integrals

FOly) = /%(Hy)de_m m=1,. .. M (17)

wheref_,,, indicates the vecta? with elementn removed.

All these procedures involve numerical integration over a multidimensional domain and, with increasing di-
mension of@, computations become soon unfeasible. Even if we are able to locate the area with highest
density for7(6|y) and compute the integral on a grid consistinglZipoints in each direction, the cost of
computing the integral i© (d"), whereM is the dimension o, that is, the cost grows exponentially .

It turns out that solving the first two tasks is an easier problem. In fact, we only need to exptdie
sufficiently to be able to select good evaluation points for the numerical integration in (4) and (5): only few
points, accurately selected, are enough to achieve satisfying accuracy in (4). With this we mean that the
resulting density approximation is indistinguishable from a density estimate obtained from a long MCMC
run. We describe this in Section 4.

On the other side, solving integral (17) is more involving. The shapgf,|y) can be quite irregular and
therefore we need more evaluation points to achieve satisfying precision. Moreover the integration needs to
be repeated possib/ times. We return to this task in Section 7.

4 Approximating posterior marginals for the latent field

In this section we present INLA for computing approximations for marginal posteriors of the latent field
m(xy|y) with ¢ = 1,2,... andi = 1, 2. The general strategy is in Algorithm 2: first, select a set of configu-

Algorithm 2 INLA strategy for computingr(z;|y)
1: Selectase® = {0,,..., Ok}
2. fork=1to K do
3:  Computer(0;|y)

4.  Computer(x;|0x, y) as a function ofry;

5

6

: end for
. Computer (x4 |y) Y 7(24|Ok, y)T(0|y) Ay, as function otey;, for all indexesti

rations® = {6,,..., O} from the hyperparameters space. For e@¢cle ® computer(0y|y) as in (16)
and an approximatiort(x;|6y, y) to the density ofr;|6;,y. Finally compute ther(x|y) via numerical
integration. Note that in Algorithm Z(0;|y) is computed for fixed value &, and, therefore is a scalar,
while (x40, y) is the density distribution of; |6y, y.

For Algorithm 2 to be operative we should first solve two tasks:

1. how to select a (possibly small) set of poi@s= {01, ..., Ok}

2. how to build a good approximation tdqz;|0y, y)

We discuss task 1 in Section 4.1 and task 2 in Section 4.2.
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4.1 Exploring 7(8|y)

To compute approximations to the density20fly we need to integrate out the uncertainty with respect to

the hyperparametes ¢ RM using numerical integration as in (4). Rue et al. (2007) propose two different
ways to explore the domain af(@|y). The first consists in locating a grid over the area with higher density

and evaluatér(0|y) at each point of this grid. This method is quite accurate. It is also efficient when the
dimension o is not too high, say less than 4. In cases, like those analysed in this report, where the number
of hyperparameters is higher, say between 4 and 11, they propose a different strategy which comes from
considering the integration problem as a design problem. This second approach reduces dramatically the
computational costs and, in our experience, still gives results which are sufficiently accurate for inference
purposes.

We describe the two strategies in Sections 4.1.1 and 4.1.2 respectively. Both strategiesrdésyim® be
uni-modal. This is the case for most of the real case scenarios. In both cases it is necessary to find the mode of
7(0|y), denoted a#*, and the negative Hessian at the modal configuralfor- 0. The mode can be found

using a multidimensional optimisation algorithm. If the dimensio® @ high, this operation can be costly,

but it has to be done only once. We compute the Hessian using finite differences. The inverse of the negative
Hessian® = H ! would be the covariance matrixif(@|y) were a Gaussian density.

4.1.1 Exploring7(0|y) using a grid strategy

The idea is to construct & dimensional grid of points which covers the region of the domain where the ma-
jority of the probability mass of (0|y) is located. To do this we start by computing the eigen-decomposition
> = VA2V T, Define the variable, such that:

0(z) = 0" + VA/?2 (18)

The variablez = (z1,..., zy) is standardised and its components are mutually orthogonal. We explore
7(0|y) using thez-parametrisation. We start at the mode,= 0 and proceed along thg axes, in the
positive direction, using a step length®f We computer(6(z)|y) at this new point and continue as long as

log7(0(0)|y) — log 7(8(2)|y) < 6x (19)

whered,. is a threshold value. Then, invert the direction and repeat. The same is done for each\bf the
directions. Once we have located the region of highest probability density, we fill in the grid by exploring
all different combinations of the points on the axes. We include these new points only if (19) holds. The
procedure is described in Algorithm 3 whekrgindicates a vector on lengthl whoseith element is 1 an all
others are 0.

Since the points are layed out on a regular grid, when computing (4) we can take all the area-f\gitghts
be equal.

Algorithm 3 has two tuning parameters, the step ledgthand the threshold,.. In general, to obtain satisfying
results it is enough to sét = 1 andd, = 2.5. This means that, ik(0|y) were Gaussian, we would select

5 points on each direction. The number of points to be computed using the grid strategy grows exponentially
with the dimension\/ of the hyperparameters space. This feature makes the grid approach fast only for small
hyperparameter spaces.

4.1.2 Exploring7(60|y) using a central composit design strategy

The idea explained in this section comes from considering the integration problem as a kind of response sur-
face problem: we want to lie out points inid dimensional space in such a way to learn about the shape
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Algorithm 3 Exploring7(€|y) using a grid strategy
1: Computed* and> = H !
2: ComputeX = VA/2yT
3: foriinl: M do
4 Start at the modez = 0
5. for dir in{-1,1}do
6: while log 7(0(0)|y) — log 7(0(2)|y) < d, do
7.
8
9

z=z+dir x1;
Computed(z) = 0* + VA/?2
Computer(0(z)|y)

10: end while
11: end for
12: end for

13: Compuite fill in points

of a response surface. We consider second order response surface and use the Box and Wilson (1951) cen-
tral composit design (CCD). A CCD contains an embedded factorial or fractional design with centre points
(design-points) plus an additional group2df/ + 1 “circle” points which allow to estimate the curvature. All

the points in a CCD design lie on the surface dffadimensional sphere with radiug)/ times an arbitrary
scalingo..q4. There are alway&M + 1 “circle” points. Out of them2M are located along each axis at
distance+v/M o..q and one is located at the origin. Figure 4 illustrates the location of the points in a CCD
design forM = 2. The number of design-points corresponding to the possible different dimengidas

O

[ (@]
g + O o o

[} |

- 0]

G 0.
€] o 0)
1:| o

Figure 4: Location of points in a CCD design fbf = 2. The squares are factorial points (design-points) and
the circles are the additional "circle” points.

displayed in Table 1. In addition to those points, each design coritdihs- 1 “circle” points. Sanchez and
Sanchez (2005) explain how to compute the locations of these points M tienensional space.

Dimension off \2 3 45 6 78 9-11 12-17
Numberofpoints\4 8 16 32 64 128 256

Table 1: Number of design-points in a CCD.

The points are located using tkeparametrisation defined in (18). Moreover, in order to capture some of
the asymmetry possibly present in the domainr(®|y) we allow the scaling parametet., to vary, not
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only according to the\/ different axis but also according to the direction, positive or negative, of each axes.
This means that for each design we havé scaling parameter$afzd+, o ),m=1,..., M. Tocompute
these, we first note that in a Gaussian density, the drop in log density when we move from the m@diego
standard deviation is2. We compute our scaling parameters in such a way that this is approximately true for

all direction in our design.

To compute the integral (4) we still have to determine the value of the area weightén fact here they
cannot be considered all equal like in Section 4.1.1. To determine the weights we assume for simplicity that
6|y is standard Gaussian. We require the integral of 1 to be 1 and the integ@aBab be M. This two
conditions give the integration weights for the points on the sphere with rgightia/:

A=|(n,—1)(f2-1) {1.0+exp (_M;&) H_l

where fp > 1 is any constant. The integration weight for the central poidtis(n, — 1)A wheren,, is the
total number of points in the design.

The CCD strategy reduces the accuracy of the numerical integral and, for small dimensions of the hyper-
parameter space the grid strategy is clearly preferable. Anyway, it often happens that when there are many
hyperparameters, the shape of the integrand is more regular and therefore simpler. This means that with in-
creasing dimension &, the number of evaluations points does not, necessarily, have to increase exponentially
to obtain a sufficient accuracy of the integral. Strategies like the 'plug-in’ approach brings this idea to extreme
by using only the modal value to integrate owe€P|y). The 'plug-in’ solution will probably underestimate

the variance, but in many cases, still gives useful results. The CCD integration strategy lies somewhere in
between the accurate, but expensive, grid strategy and the fast, but possibly imprecise, 'plug-in’ strategy. It
allows to capture some of the variability in the hyperparameter space also when this is too wide to be explored
via the grid strategy.

4.2 Approximating 7 (z|0y, )

The next task is to build an approximation to the density g0, y. It is clear that the quality of this appro-
ximation reflects into the quality 6f(z;|y) whatever the integration strategy. We propose here two different
approximations: a Gaussian approximation and an improved approximation. Computing the Gaussian ap-
proximation, 7 (x4 |0k, y), implies almost no extra costs after we have compuatéd,). It is, hence, an
extremely fast alternative. It can, however, present some errors due to the lack of skewness. The Gaussian
approximation is described in Section 4.2.1. A more accurate alternative is presented in Section 4.2.2. This
is a non-parametric approximation and, therefore, it can better capture the shape of the dengity. aj.

This improved approximation is more computationally demanding. The improved approximation is valuable
because it is more accurate, but also because it can serve as a validation for the Gaussian approximation. In
fact, if it is indistinguishable or very close the the Gaussian approximation, the latter is checked and con-
firmed without Monte Carlo sampling. A different strategy for assessing the approximation error based on the
effective number of parameters in the model is presented in Rue et al. (2007).

4.2.1 Gaussian approximation

The easiest way to approximatéz; |6y, y) is to use the marginal derived from; (x|0y, y) (Section 3.1).
When selecting the poin®, and computingr(0;|y) we have already compute;(x|6y, y), therefore we
know the mean vector, and the only element which remains to be computed is the vector of marginal variances.
This, as mentioned in Section 3 can be done efficiently thanks to the recursions described in Rue and Martino
(2006). Also, it makes practically no difference in terms of time, to compute one &f allarginal densities
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in the GMRF. The approximation is then

764l Ok, y) = N (2455 sy, (Ok), 08, (Ok)) (20)
whereo(0y,) is the N-dimensional vector of marginal variances.

Rue and Martino (2006) show that the approximation in (20) gives often accurate results, but, especially for
values of@;, located in extreme regions, there might be slight errors in the location and skewness. These
errors are detected by comparing the approximations with density estimates derived from very long MCMC
runs. Since these errors appear mainly in regions with low densit@|igrthey become much smaller after
integrating outd. In fact, even ifr(z|y) is, in this case, a mixture of Gaussian it can represent precisely
also highly skewed densities. Errors using the Gaussian approximation might, anyway, still be detectable in
7(xi|y), see Rue and Martino (2006).

4.2.2 Improved approximation

The errors in the Gaussian approximation in Section 4.2.1 are due to the fact that we approximate a (possibly)
skewed distribution with a symmetric one. It is natural then, to think of an improved approximation which
allows for skewness to be present. The improved approximation described in this section follows the lines
of the Simplified Laplace approximation proposed in Rue et al. (2007), with some modifications necessary to
adapt it to the problems described in this report. The improved approximation assumes no parametric form of
the densityz;|0y, y, therefore it is able to capture skewness if present.

The starting point is the identity

W(mfti,xtlwaay) 77(58,0,’!/)
W(mfti|xti30’y) W(mfti|xtiagay)

(21)

7r($ti’97 y) =

Where the suffix-¢: indicates that the elemetitin the vector has been removed. The idea, similar to the one
used in Section 3.2 to build(@|x), is to substitute the density in the denominator of the rightmost element in
equation (21) with a Gaussian approximation. The approximation then reads:

7T(113, 0k7 y)
Tac(T—tilxti, Ok, y)

7r1(24]Ok, y) (22)

T_yi=x* ,, (24;,0))

wherex* ,, (x4, 0%) is the mode ofr(x_+; |z, 01). This again is equivalent to the Laplace approximation in
Tierney and Kadane (1986).

It has to be noted that the density;c(x_¢; |z, 01, y), in the denominator of (22), is different from the
conditional distribution7 (x_¢;| %, 0%, y), which can be derived from the Gaussian approximation in (3.1).
In fact, 7¢ (@ |24, O, y) is computed through a rank 1 update fra@(xz|0y,y). Its precision matrix is
constant with respect te,; and its mean is a linear function of;,. On the other sidergc(x—ti|z1i, Ok, y)

is computed by first locating the moeae , (x;, 8)) of x_; |z, 0, y and then expanding the log-likelihood
term around it, in much the same way as in Algorithm 1. The precision matfixdi{x_; |, 0, y) varies

with z;;. The density in (22) is based on conditioningan and using Laplace approximation to cancel out
the remaining variables_;;. Hence, it is more accurate than the approximation in (20) which is based on
fitting a Gaussian as the joint distribution of all variabies

Unfortunately, having to locate the modemfx_4;|z;, 0k, y) means that, for each value of;, we have to
factorise a(/NV — 1) x (N — 1) matrix more than once (see Algorithm 1). Moreover, there are, potentially,
N posterior densities for the latent field to be computed. It is clear, then, that the approximation in (22)
is far too computationally expensive to be convenient. Hence, we need to slightly modify (22) to make it
computationally feasible.
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The conditional meand, (x_¢;|xi, Ok, y) from g (x_s; |z, O, y), and the conditional mode af_;;|x;, 0, y
would be coincident ifr(x|y, 8)) was Gaussian. This is of course not the case here, since the log likelihood
presents non quadratic terms. Anywaly|6, y) is not too far from a Gaussian, haviagd a Gaussian prior.
Moreover (22) is valid for any value at_;; and, though in a different context, Hsiao et al. (2004) show
that consideration for efficiency suggest that the value of should be chosen in an area of high density

of x_4;|x;, 01,y but not necessarily at the modal value. We propose therefore to compute the quantity in
(22) at the conditional mean instead of the conditional mode. This entails large computational benefits. First
of all we avoid the optimisation step: the conditional mean can easily be computed fotieasing (10)
wherex = p; andA = 14, a vector of zeros with 1 in positiori, ande is the value ofc;;. Moreover, this
computation needs to be done only once for edcltz,; = pg,, + 1, say. Exploiting the linearity of the
conditional mean with respect 1g;, we can, in fact, evaluate its numerical derivative as:

5ti = E’7~TG (mft’i|xti = HGy; + 17 0]477 y) - I’I’G,m‘

and, obtain its value at any; as:

= (x_tilxsi = 245, Op, y) = Be_,, + 5“(1’& - ﬂGti)

There is also another advantage in considering the conditional mean instead of the conditional mode: the
conditional modex* ,;(x¢;, 8%) is a continuous function aofy;, but, since we compute it via numerical op-
timisation, this continuity might not hold in practice. The conditional mean, on the other side, is always a
continuous function of;.

Even if using the conditional mean avoids the optimisation step, the approximation in (22) is still too heavy to
be computed efficiently. The log denominator of (22) is in fact:

log Taa (T —ti|T4i, v, Ok) x
T _ti=Ez (T—ti|©t:,0k,Y)

5102 |Q_y; _yi) + diag(C (w1, 01))| = f(x4i)

where@ is the prior precision matrix fo& and the subscript-ti, —ti] indicates that row and column cor-
responding to index: have been deleted. The matrix di&)yx;, 0y)) is the band matrix derived from the
Taylor expansion of the log-likelihood at the conditional meap & |+, 01, y) in much the same way as
in Section 3.1. Computing the determinant in (23) means factorisiidg & 1) x (N — 1) matrix, and this
has to be done for each valuexf.

(23)

In Rue et al. (2007), the authors propose to approximate (23) by a first order series expansiornzareund

La,,; (05). For the cases analysed in Rue et al. (2007) the matriX @iadefined in (14) is a diagonal matrix,

it is then possible to derive the exact expression for the first derivatiyégf), see Appendix for details. The

same is not possible for MSV models like those we are interested in this report. We can, anyway, compute the
numerical derivative of the quantity in (23)

f(zei +h) — f(wn)
h

Moreover,atry; = ug,, the log determinant ofQ_; _; + diagC (4, 0x)]) can be computed at almost no
extra costs as

o =

1 . 1
fuey,) = 2 log [Q[_ti,—t;) + diagC(uc,;, )]l = 3 log |Q¢| + logog,, (24)

See Appendix for detail about how to derive (24). All elements at the right hand side of equation (24) have
already been computed while computing(x|y, 0;) andrq(z:|y, 0%). Using a linear approximation for the

log denominator of equation (22) makes it necessary to factori®é-a 1) x (N — 1) matrix only once for

each of theV nodes in the latent field.
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The quantity in (22), modified as described above, has to be computed for different valugsod then
normalised in order to obtain a density. We select these points with the help of the mean and variance of the
Gaussian approximation (20), by choosing different values for the standardised variable

Tt; — MGy (ak)
O0Gy; (ok)

according to the corresponding choice of abscissas given by the Gauss-Hermite quadrature rule. To represent
the densityr; (4|0, y) we use

s __
Tyy =

71 (24| Ok, y) x N{zui; pa,,; (0r), 0c,, (0r)} x exp{cubic splingx;)}

The cubic spline is fitted to the differentes 7/ (x+;|0x, y) —log T (24 |0k, y) at the selected abscissa points.
The density is then normalised using quadrature integration.

5 Approximating marginal likelihood 7(y)

Model comparison is an important part of any statistical analysis and a central pursuit of science in general.
In a Bayesian framework, one way to compare models is to use Bayes factors. Given a series of competing
modelsMy, ..., Mk with assigned a prior probability(M},) the Bayes factor for two of th& models is

defined as
_ m(Mily)m(M;)

B Z7j -
9 = 2 (Myly)e(My)
If we choose the models to be apriori equiprobatld/,) = --- = (M), then the Bayes factor reduces
to
o m(y[M)
B(i,j) = —F——=
= i)

Hence, we can compare models by comparing their marginal likelinggdM ). Jeffreys (1961) provide a
scale for the interpretation d (7, j) which we report in Table 2. In the following, to simplify the notation,

Strength of the evidence
log B(%, j) in favour if M,
<0 Negative (support foiM ;)
0:1.09 Barely worth mentioning

1.09 : 2.30 Substantial

2.30 : 3.40 Strong

3.40 : 4.60 Very strong
> 4.60 Decisive

Table 2: Jeffreys (1961)’s scale for the interpretation of the Bayes factor

we suppress the conditioning oW, if it is not strictly necessary. In the INLA framework an approximation
to the marginal likelihoodr(y) can be computed as the normalising constant{éty)

i) - [ 220

= de
7"-G(m|07y>

xz=x*(0)

wherer(x, 0,y) = 7(y|z, )7 (x|0)7(0). We propose two approximations tdy). The first one is based
on a Gaussian approximation of the densit@gj built by matching the mode and the curvature at the mode,
that is

7 (0ly) = N (67, %) (25)
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wheref* is the mode an® = H ! is the inverse of the negative Hessian matrix computed at the modal
configuration. The normalising constant, and so our approximation for the marginal likelihood, is then given
by

mi(y) = 2m) M2 H |72 (26)

whereM is the dimension of. This approximation was proposed also by Kass and Vaidyatnatan (1992).

The second approximation is more precise but also more expensive to compute. It assumes no parametric form
of the density of9|y and uses the same integration scheme as in Section 4.1.1 to compute the normalising
constant. The approximation then reads

Ta(y) = Y Fo(ly, 6x)Ax (27)
k

This second approximation, allows to take into account departures from Gaussianity which are often encoun-
tered in7(6|y), and therefore gives more accurate results. Unluckily, as already explained in Section 4.1.1,
this integration scheme becomes unfeasible when the dimenségrofvs. Anyway, as shown in the exam-

ples, there seems not to be a big difference in the model ranking obtained from the two approximations.

Note that, when computing an approximation to the marginal likelino@g), aiming to use it for model
comparison, it is important to include carefully all normalising constants which appear in the prior for both
the hyperparameterg6) and the latent field (x|0), and in the likelihood termr (y|x, 0).

6 Examples of approximate inference for the latent field

In this section we apply INLA to estimate the univariate models in Section 2.1 and the five bivariate models
in Section 2.2. To assess the quality of the approximations, we compare them with density estimates obtained
from intensive MCMC runs.

Yu and Mayer (2006) propose to use the software package WinBUGS to implement a MCMC algorithm for
univariate and multivariate SV models. WinBUGS is an interactive Windows version of the BUGS program
for Bayesian analysis of complex statistical problems using MCMC techniques, see Spiegelhalter et al. (2003).
The BUGS (and WinBUGS) program provides an implementation of the Gibbs sampling algorithm, a specific
MCMC techniques that builds a Markov chain by sampling from all univariate full conditional distributions in

a cyclic way. WinBUGS uses a single site update scheme, therefore long runs are necessary since the mixing
might be poor due to the correlations within the latent fieldnd betweern: and6. Anyway, since we want

to compare our approximation with the “true” posterior densities, we have run the MCMC algorithm for much
longer time than it is usually done for inference purposes. The reader is referred to Mayer and Yu (2000) for
a comprehensive introduction on using BUGS for fitting SV models.

6.1 Implementation Issues

Running the INLA procedures described in Section 4 so that they are optimised in term of computational
time requires a very carefully implementation in an appropriate language. Much speed can be gained from
writing the code in a carefully and smart way, for example by appropriately storing computations and us-
ing efficient routines for sparse matrix computation. Many of the algorithms described are efficiently im-
plemented in the open-source libraBMRFLib. This library is written in C, and in addition to the INLA
routines, contains also several other routines for GMRF models. It is freely available at the web page
http://www.math.ntnu.no/ ~hrue/GMRFLib/ and a brief introduction to it can be found in Rue

and Held (2005). Rue and Martino (2006) and Rue et al. (2007) make an intensive use bfiitd.ib-library

in the examples they present.
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Unfortunately theGMRFLib-library does not support multivariate models like those described in Section 2.2.

It was therefore necessary, for the multivariate examples in this report, to rewrite almost every algorithm
necessary for the implementation of INLA. For this purpose, we used the statistical package R (Ihaka and
Gentleman, 1996). The R language is less fit than C for the purpose, moreover, the code used for the examples
in this report, is far from being optimal with respect to computational efficiency and time. Hence, the exam-
ples reported here have to be considered as a proof of concept showing another application of approximate
inference using INLA. The reader is referred to Rue et al. (2007) for examples showing the gain, in terms of
computing time, which can be achieved using the INLA over MCMC.

6.2 Univariate Models

In this section we fit two univariate SV models, first to a simulated data set, and then to the pound-dollar
exchange rate data displayed in Figure 1.

Both models are define as in equations (6). In the first magti¢])(we definee; ~ A(0,1), while in the
second modelX15) ; ~ t,. For each of the two data set, we fitt; and M5 and check the quality of the
INLA approach. Then, we compare the two models using the approximated marginal likelitgpd

6.2.1 Simulated data set

We simulate 500 data from the following model

Yt = exp(ht/2)€t7 t= 17 N N A ¢ (28)
h: = 0.1 + 0.53(ht71 — 01) +n, t=1,..0.n, np~ N(O, 1/23)

The simulated time series is displayed in Figure 5. Note that the Studisttibution allows for quite extreme
values of the returns.

0 100 200 300 400 500

Figure 5: Time series of returns simulated from model (28)

We first fit M to the simulated data. Following Algorithm 2, our first task is to locate a set of points in the
hyperparameters spad®, = {6,,..., 0k}, where to comput& (0 |y) and7(z.|0x,y). We do this using

both the grid and the CCD strategies. In the first case, the nukildrpoints to be computed is 22, while in

the second case it reduces to 9. For really low dimension of the hyperparameters space (as in this example)
there is no big computational difference in using one integration scheme or the other. Figure 6, panels (a) and
(b), show a contour plot of(8|y). Superimposed are the locations of the integration points when using a
grid strategy, panel (a), and a CCD strategy, panel (b). Figure 6(c) displays the results of the two integrations
strategies when computing the posterior margif@l;|y). The density displayed is chosen to be the one

for which the two integration schemes gave the most different results. The difference between densities is
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computed via a (symmetric) Kullback-Leibler measure. Even though the grid strategy uses more points than
the CCD strategy, and even thought the density @f|y) is quite far from a Gaussian, the difference in the
results of the two integrations is almost unnoticeable.

0.0
0.0

05
05

(a) Grid strategy (b) CCD strategy (c) integration results

Figure 6: M4, simulated data example. Configuratiofys used in the grid strategy (a) and in the CCD
strategy (b). In panel (c) is the result of the integration procedure using the grid (solid line) and the CCD
strategy (broken line)

We compare, the approximations fofz;|y) obtained using the Gaussian approximation and the improved
one, in Sections 4.2.1 and 4.2.2 respectively, to repres@ntfy, y). Figure 7, panels (a) and (b), show the

two approximations for one of the nodksin the time series, and for the common mearespectively. The

nodeh,; showed was chosen to be the one for which the Gaussian and the improved approximation gave the
most different result. In the same figures is also displayed an histogram obtained from an intensive MCMC run
of model M using WinBUGS. After a burn-in period, we have collected a MCMC samplégify keeping

every 20th simulated value in the chain. The Gaussian approximation appears to be shifted, especially when
considering the density of(u|y). The improved approximation, on the other hand, gives quite an accurate
result.
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m(he|y) m(ply)

Figure 7: M, simulated data example: Gaussian approximation (broken line), improved approximation (solid
line) and MCMC density estimate (histogram).
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We then fit modelM;, to the same simulated data. In this case the hyperparameters space has dimension 3.
The grid integration scheme requires 70 points while the CCD integration scheme only 15. Figure 8 shows
the results of the two integration procedures for one of the nodes in the lateniglgl Also in this case,

the CCD integration scheme allows for a quite big computational gain without loosing in accuracy.

Figure 8: M5, simulated data example: approximation@f:,|y) computed via the grid integration strategy
(solid line) and the CCD integration strategy (broken line).

In Figure 9 the Gaussian and improved approximations for two nbdandu, are displayed and compared
with an histogram derived from a long MCMC sample obtained as before. Notice that there are differences
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Figure 9: M5, simulated data example: Gaussian approximation (broken line), improved approximation (solid
line) and MCMC density estimate (histogram).

between the MCMC based estimate and the improved approximation especially in the right tail of the density
for the common mean(;:|y) (Figure 9b). We believe that these differences are mostly due to MCMC error,
which despite the long run, is still present in the sample. WIinBUGS uses a single site algorithm which can be
extremely slow and "sticky” especially with heavy tailed data and strongly correlated variables in the latent
field.

To reinforce our believes we made two experiments. First, we have fixed the value of the hyperparameter vec-
tor 8 to an arbitrary value. This makes the MCMC run faster. Moreover, quality of the INLA approximation
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for 7(z,|y) depends directly on the quality of the approximation#¢«;|y, ). Figure 10 shows results for

the same two nodes displays in Figure 9. The hyperparameters vadge:is- 2, log ™ = 0 andd = 1. These

values are chosen in a quite extreme region of the posterior der($ity) because in our experience (Rue

and Martino, 2006), it is in such areas that the approximation problem is more difficult. The Gaussian appro-
ximation appears to be slightly shifted with respect to the MCMC estimate while the improved approximation
gives an accurate result. The experiment was repeated for different values of the hyperparameters always with
the same result.

(@) 7(he|y) (b) w(ply)

Figure 10: Simulated data\1> model with fixed hyperparameters: Gaussian approximation (broken line),
improved approximation (solid line) and MCMC density estimate (histogram).

In our second experiment the hyperparameter vagtierrandom but only the first 50 data of the simulated

time series are considered. Decreasing the number of data makes the MCMC algorithm run much faster and
mix better. On the other side, the approximation problems are easier when the number of data increases,
see Rue et al. (2007) for considerations about the asymptotic behaviour of INLA. Figure 11 shows the im-
proved approximation and the MCMC density estimate for the same nodes in Figure 9 when only 50 data are
considered. Here the approximations and the MCMC estimates agree almost perfectly.

Based on these results, we believe that, if we run the MCMC algorithm for the full data set for much longer
time, the histograms in Figure 9 would finally overlap with the improved approximations.

To conclude, we compat&t; and Ms, using the approximated marginal likelihoa¢y|M}). We compute
two approximation forr (y|M}) using both the Gaussian approximation fd€|y) in (26) and numerical
integration in (27). Table 3 presents the logarithmrod| M. ). The marginal likelihood is largest for model

My : Gaus. returns M, : Stud. return

model model
log 71 (y| M) -209.1083 -206.1067
log 7o (y| M) -208.8983 -206.3458

Table 3: Simulated data example: estimated value of the marginal likelikgody|My) for i = 1,2
computed via a Gaussian approximationto®|y) and via numerical integration.

M, which corresponds to the true model in (28). The difference in the logarithm of the marginal likelihood
between the two models is 3 if we consider the Gaussian approximatiof@tg) in (27) and 2.4 if we

24



o 3 A

2 /\ . Z[ \\

w i m Al

| ity j_ e
@ (hely) (b) m(ply)

Figure 11: Simulated data, modal, considering only 50 data: Gaussian approximation (broken line),
improved approximation (solid line) and MCMC density estimate (histogram).

computer (y| My ) numerically. This shows evidence that tails heavier than those of a Gaussian distribution
are needed to describe the returns process in this example.
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6.2.2 Pound-dollar exchange rate data set

Our second example for the univariate SV model consists in the Pound-dollar exchange rates plotted in Fig-
ure 1 .The same data set was analysed, among others, by Durbin and Koopman (1997) and Rue et al. (2007).

Consider modelM; first. For the grid integration scheme 29 points are evaluated, while the CCD strategy
evaluates 9. Figure 12, shows contour plotsr(#|y). and locations of the integration points when using a

grid strategy, panel (a), and a CCD strategy, panel (b). Figure 12(c) displays the results of the two integrations
when computing the posterior margingle;|y). This time the difference between the two densities is almost
undetectable. This is due to the fact that,compared to that in the previous example, the dengiy pfs

more regular. Here by "regular” we mean no too far from a Gaussian.

(a) Grid strategy (b) CCD strategy (c) integration results

Figure 12: M, real data example: integration points needed to computgy). Panel (a) illustrates the grid
strategy and panel (b) the CCD strategy. In panel (c) is the result of integration procedure using the grid (solid
line) and the CCD strategy (broken line)

We proceed then to check the accuracy of the approximations foty). Figure 13, panels (a) and (b), show
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Figure 13: M, real data example: Gaussian approximation (broken line) improved approximation (solid line)
and MCMC density estimate (histogram).

the two approximations for one of the nodesin the time series, and for the common mganThe node
h: showed was chosen to be the one for which the Gaussian and the improved approximation gave the most
different result. In the same Figure is also an histogram obtained from a long (ardtitdrations) MCMC
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run which represents the "true” density. Again, the Gaussian approximation appears to be shifted, especially
when considering the approximation fofu|y) while the improved approximation is practically perfect.

When fitting. M5, the grid integration scheme requires 73 points while the CCD integration scheme only 15.
Figure 14 shows the results of the two integration procedures for one of the nodes in the latéwt, field
The node is chosen to be the one for which two procedures gave the most different results.
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Figure 14: M, real data example: approximationmfz;|y) computed via the grid integration strategy (solid
line) and the CCD integration strategy (broken line).

In Figure 15 the Gaussian and improved approximation for one node in the time series and for the common
meany are displayed together with density estimations from a very long MCMC run. Again we see that while
the Gaussian approximation can present errors in location and skewness, the improved approximation gives
very accurate results.
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Figure 15: M., real data example: Gaussian approximation (broken line) improved approximation (solid line)
and MCMC density estimate (histogram).

In order to compareV; and M5, we compute the approximation for the marginal likelihoods using both
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a Gaussian approximation fat(@|y) and the numerical integration in (27). Table 4 presents the computed
approximations fotog 7 (y| M}). The two approximations are very close to each other. The difference in log

M. Gaus. returns Ms,:Stud. return
models j model
log 71 (y| M) -67.416 -69.150
log T2 (y| M) -67.372 -68.949

Table 4: Real data example: estimated valuegfr(y| M) for the two univariate models fitted to the pound-

dollar exchange rate data. The estimated marginal likelihood is computed via a Gaussian approximation of

7(0)y) and via numerical integration.

marginal likelihood, close to 1.7, offers a substantial evidence in favour of the Gaussian returns model. The
idea that extra kurtosis in not needed for this data set is reinforced if we look at the mode of the posterior

distribution7 (0|y) for the two models. The modal value of the parametein the Student-model is 3.760,
this corresponds to a modal value for the degree of freedom of the Studestitibution around 46. With such
high degree of freedom, a Studendistribution is practically indistinguishable from a Gaussian. Moreover
the modes of the remaining two parameters, the ranged the precision practically coincide in the two
models, suggesting that a Gaussian distribution in the returns process well describes these data.
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6.3 Multivariate Models

In this section we fit the five bivariate models described in Section 2.2 to two financial time series.
The first data set consists in 300 data points simulated from Model 2 at page 7, with mean vector for the latent
field p = (0.1,—0.2) and hyperparameters valuésg 1 = 3, log ke = 5, logm = 2,logme =4, pf = 1.
The simulated data are plotted in Figure 16.
The second data set consists in 519 weekly mean corrected log-returns of the Australian dollar and New

-3 2 -1 0 1 2 3

-2 2 -1 0 1 2

Figure 16: Simulated bivariate time series.

Zeland dollar, both against the US dollar, from January 1994 to December 2003. The Australian and the
New Zeland economies are closely related to each other, hence we expect the dependence between the two
exchange rates to be strong. The two series are plotted in Figure 17 and indeed there appear to be strong
cross-dependence both in returns and volatility. The same data set is analysed also in Yu and Mayer (2006).
We analyse each of the five models separately and then compare them using the marginal lik¢Hood

Time

0 100 200 300 400 500

Figure 17: Time series for Australian/US Dollar (upper) and New Zeland/US Dollar (lower) exchange rate
returns
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Computationally, the main difference between univariate and multivariate models is the increasing number of
hyperparameters which makes all numerical integrations more intensive. Here the CCD integration strategy
can really help reducing the computational burden. In Table 5 we have reported the number of evaluation
points, for all five bivariate models fitted to both data set, necessary to compute the integral in (4) using the
CCD and the grid strategy. The tuning parameters for the grid strategy aredsettd andd,, = 2.5 in all

N. of Simulated Data Real Data

hyperparam,| GRID | CCD | GRID | CCD
Model 1 4 124 25 101 25
Model 2 5 277 27 383 27
Model 3 6 774 45 882 45
Model 4 6 810 45 720 45
Model 5 6 619 45 688 45

Table 5: Number of integration points used to comptite;;|y) using the two integration strategies.

cases. These default values have proved to be usually accurate enough (Rue et al., 2007). Notice that, when
the dimension of the hyperparameters space increases, the CCD strategy can reduce the number of evaluation
points by a factor of 20. To check the accuracy of the CCD integration strategy we compare, for each model,
its result with the result obtained via the more computational intensive grid strategy.

MODEL Variance Equation Mean Equation
K1 K2 P12 Py log 71 | log 72 J v*
Model 1 | 1.926 | 2.164 - - 3.014 | 2.654 - -
(1.017) | (0.760) - - (1.111) | (0.945) - -
Model 2 | 1.821 | 2.061 - - 2.906 | 2.701 | 0.882 -
(1.125) | (0.755) - - (1.203) | (0.972) | (0.118) -
Model 3 | 1.96 1.730 | 0.679 - 2.600 | 3.038 | 0.889 -
(0.907) | (0.744) | (0.529) - (1.056) | (1.052) | (0.119) -
Model 4 | 2.085 | 2.148 - 1.168 | 2.860 | 2.457 | 0.869 -
(0.976) | (0.652) - (1.377) | (1.115) | (0.824)| (0.120) -
Model 5 | 1.837 | 2.0258 - - 3.220 | 2.923 | 0.886 | 3.092
(1.073) | (0.810) - - (1.065) | (1.003) | (0.121) | (0.882)

Table 6: Modal values of (6|y) in the five bivariate models fitted to the simulated bivariate time series. In
parentheses is the standard deviation as estimated from the inverse of the negative Hessian matrix computed
at the mode.
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Variance Equation

Mean Equation

log K1 log Ko b12 pf] log 7,1 | log Ty o v*
Model 1 | 3.998 4,174 - - 3.188 | 2.700 - -
(0.333)| (0.351) - - (0.449) | (0.505) - -
Model 2 | 3.391 3.588 - - 3.792 | 2.803 | 1.993 -
(0.566) | (0.631) - - (0.538) | (0.731)| (0.097) -
Model 3 | 3.902 1.750 0.828 - 3.916 | 2.260 | 1.940 -
(0.374)| (0.576) | (0.393) - (0.485) | (0.648) | (0.098) -
Model 4 | 3.360 2.960 - 2.610 | 3.264 | 1.805 | 1.945 -
(0.377) | (0.4568) - (0.777)| (0.513) | (0.509)| (0.097) -
Model 5 | 3.206 3.517 - - 3.840 | 2.844 | 1991 | 3.535
(0.846) | (0.707) - - (0.574) | (0.795) | (0.100) | (0.942)

Table 7: Modal values of (€|y) in the five bivariate models fitted to the Australian/US and New Zeland/US
exchange rates. In parentheses is the standard deviation as estimated from the inverse of the negative Hessian
matrix computed at the mode.
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6.3.1 Model 1 (Basic MSV)

Model 1 is equivalent to stacking together two independent univariate models with Gaussian noise in the
returns equation. There is no correlation between volatilities nor between returns and no Granger causality is
allowed. The hyperparameters are four and consist in the two log precisions and the two log ranges for the
latent field. Table 6 refers to the simulated data set and reports the modal values of the hyperparameters and,
in parentheses, the standard deviations as estimated from assuming a Gaussian approximatdg)fas

in equation (25). Table 7 reports the same quantities for the Australian/New Zeland data set.

We compare approximations fefz,;|y) obtained using the grid and the CCD integration strategy. The results
are displayed in Figure 18. For each example we display the node for which the two integrations gave the
most different results. Even if the CCD strategy uses four times less evaluations points compared to the grid
strategy, the results are practically identical.

20

15

1.0

0.5

0.0

(a) Simulated data set (b) Real data set

Figure 18: Model 1. Results of the CCD (broken line) and grid (solid line) integration when computing
T (wti|y).

Figures 19 and 20 compare the Gaussian, the improved approximation and a density estimates obtained by
an intensive MCMC run of the posterior marginals for four nodes in the latent field. Figure 19 refers to the
simulated data set and Figure 20 to the real one. The nodes showed are two log-volailiied 15, and

the two common means; andus. In both cases while the Gaussian approximation presents a slight error in
locations, the improved approximation gives practically exact results.
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Figure 19: Simulated bivariate data set, Model 1. Gaussian approximation (broken line), improved approxi-
mation (solid line) and MCMC based density estimate (histogram).
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Figure 20: Australia/New Zeland data set, Model 1. Gaussian approximation (broken line), improved appro-
ximation (solid line) and MCMC based density estimate (histogram).
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6.3.2 Model 2 (Constant correlation MSV)

In Model 2 the returns are correlated. Hence, in addition to the four hyperparameters of Model 1 we also
have the correlation between returns. Tables 6 and 7 show the modal values of the hyperparameters and their
standard deviation as approximated from the inverse of the negative Hessian matté&{#®f. The hyper-
parametep?, which is a function of the correlations parametgrgsee Section 2.3), has, for the simulated

data, a modal value of 0.88, which is quite close to the real value of 1. The standard deviation, if we assume a
Gaussian approximation far(6|y) as in (25), is 0.11. Although this is a very rough estimate of the posterior
marginal ofp?, it suggests that the value pf is significantly different from 0 and that the two returns time

series are indeed correlated. The same can be said about the Australia/New Zeland data set where the modal
value ofp? is 1.99 with a Gaussian standard deviation equal to 0.11.

Figure 21 compares the results of the two integration strategies. Again the nodes displayed are those where
the CCD integration performs worst. There is indeed a slight difference between the approximations in both
examples. Anyway, when compared to the natural scale of the densities, these differences appear to be quite
small. On the other side, the savings in computational time due to the use of the CCD strategy is relevant, see
Table 5.

(a) Simulated data set (b) Real data set

Figure 21: Model 2. Grid (solid line) and CCD (broken line) integration results.

Figures 22 and 23 show the Gaussian and the improved approximation for some nodes in the latent field for
the simulated and real data set respectively. In the same plots is also an histogram derived from an intensive
MCMC run. For the real data set, there is a slight disagreement between the improved approximation and the
MCMC estimate in the left tail of one of the distribution (Figure 23b). In the simulated case the approximations
are practically perfect.
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Figure 22: Simulated bivariate data set, Model 2. Gaussian approximation (broken line), improved approxi-
mation (solid line) and MCMC based density estimate (histogram).
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Figure 23: Australia/New Zeland data set, Model 2. Gaussian approximation (broken line) the improved
approximation (solid line) and a MCMC based density estimate (histogram) for 4 nodes in the latent field.
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6.3.3 Model 3 (MSV with Granger causality)

Model 3 adds one more hyperparameter by allowing the two latent time series to be interdependent. The
cross-correlation between the time series of log-volatilities is caused by the Granger causality expressed by
the non-zero value of the parametey.

Consider first the simulate data set. Here, the posterior modesthies 0.679 and its standard deviation,
as derived from a Gaussian approximationt{®@|y), is 0.523, see Table 6 .This suggests that no Granger
causality is present between the latent fields. This corresponds to the true model we simulated the data from.

As for the Australia/New Zeland data set, the modal valug-fis 0.828 and that its standard deviation, as
estimated from a Gaussian approximationt0|y), is 0.39. This suggest,; being significantly different

from 0 and, in turns, that the volatility in Australian dollar Granger causes the volatility in the New Zeland
dollar. This is consistent with our expectations of the two economies to be strongly dependent. As a result
following the Granger causality, the posterior mode of the log-range in the volatility for the New Zeland dollar
is reduced from 3.58 to 1.75.

(a) Simulated data set (b) Real data set

Figure 24: Model 3. Grid (solid line) and CCD (broken line) integration results.

Figures 24 displays results obtained using the CCD and the grid strategies when approximating .
Again we notice that the CCD integration allows for a quite big reduction in computational costs (see Table 5)
with only a slight loss in terms of accuracy.

When comparing the Gaussian and the improved approximation with a MCMC based density estimate, Figures
25 and 26 for the simulated and the data respectively, there seems to be, in both cases a slight disagreement
between the improved approximation and the MCMC based estimate concerning the posterior density of
m(u1ly) (Figures 25c and 26¢). On one side this difference might depend on some MCMC error still presentin
the sample. We have seen, in fact, that the single site algorithm implemented in the WinBUGS software mixes
very slowly. On the other side, when compared with the natural scale of the density, the small disagreement
in skewness would make no difference in practice.
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Figure 25: Simulated data set, Model 3. Gaussian approximation (broken line), improved approximation

(solid line) and MCMC based density estimate (histogram).
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Figure 26: Australia/New Zeland data set, Model 3. Gaussian approximation (broken line) the improved
approximation (solid line) and a MCMC based density estimate (histogram) for 4 nodes in the latent field.
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6.3.4 Model 4 (Generalised constant correlation MSV)

Model 4 allows for cross-correlation between the volatilities but, unlike Model 3 this dependency is caused by
correlations between the two processes and not by Granger causality. Hence, the hyperparameter space keeps
the same dimension byb; is substituted bpj;.

From Table 6 we can see that the estimated modal valggafd the curvature of(0|y) at the mode, suggest
that the latent fields are uncorrelated for the simulation data example.

In the Australia/New Zeland case instead, the modal valu€ @f|y) is estimated to be 4.826 with a standard
deviations computed by approximatingf|y) with a six dimensional Gaussian distribution is 0.632, see
Table 7. This again suggests that the correlation between the two volatilities time series is hon-zero.

(a) Simulated data set (b) Real data set

Figure 27: Model 4. Grid (solid line) and CCD (broken line) integration results.

Figure 27 show the approximations obtained by using the grid and the CCD integration scheme for both our
bivariate examples. Again we see that, despite the large computational saving, the results obtained via the
CCD integration are only slightly different from those obtained via the grid scheme.

When we tried to fit Model 4 to the two data set via WinBUGS we found out that the algorithm runs extremely
slowly for this model. When using only the first 30 data points WinBUGS takes around 36 seconds to perform
100 iteration. The time consumed grows to circa 78 seconds for 40 data points and to 140 seconds for 50
data points. To obtain a long enough sample for the complete data set would take an extremely long time.
Therefore no comparison with MCMC estimates is presented for this model.
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6.3.5 Model 5 (Heavy-tailed MSV)

The last model considered is equivalent to Model 2 concerning the equation for the latent volatility models
but uses a Studerterror instead of a Gaussian one in the equation for the returns. No cross-correlation in the
volatility process is allowed. The number of hyperparameters is then again six.

(a) Simulated data set (b) Real data set

Figure 28: Model 5. Grid (solid line) and CCD (broken line) integration results.

In both our examples the modal valuedsfis over 3, with a standard deviation computed from the Gaussian
approximation ofr(6|y) close to 1. A value of* close to 3 corresponds to a value for the degrees of freedom
close to 22. This suggests that the extra kurtosis is not necessary to describe any of the two data sets.

Figure 28 compares the approximationsr¢f,;|y) obtained by using the grid and the CCD strategy. As usual
the nodes showing the largest differences are reported. No significant differences can be detected despite the
fact that the CCD integration uses almost 20 times less evaluation points.

Figures 29 and 30 compare the Gaussian and the improved approximation with an histogram derived from
a long MCMC run. While the improved approximation agrees almost perfectly with the MCMC density
estimate in the simulated data example (Figure 29), in the Australia/New Zeland example there is a slight
disagreement between the two. This can be seen especially in the left tail of Figure 30b and in the location
and skewness of the density in Figure 30c.

As an experiment we have run the same model this time only taking into account the first 50 points in the
Australia/New Zeland data set, so that the MCMC algorithm would run faster. Again we have compared the
histogram resulting from such MCMC run with the Gaussian and improved approximation. The results are
displayed Figure 31. This time the improved approximation and the MCMC density estimates overlap almost
perfectly. Following the same argument as for the simulated data in Section 6.2, we believe that running the
MCMC algorithm long enough the approximation and the MCMC estimate would coincide also for the full
data set.
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Figure 29: Simulated data set, Model 5. Gaussian approximation (broken line), improved approximation
(solid line) and MCMC based density estimate (histogram).
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Figure 30: Australia/New Zeland data set, Model 5. Gaussian approximation (broken line), improved appro-
ximation (solid line) and MCMC based density estimate (histogram).
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Figure 31: Australia/New Zeland data set, Model 5. Gaussian approximation (broken line), improved approxi-
mation (solid line) and MCMC based density estimate (histogram) when only the first 50 data are considered.
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6.4 Model comparison
In this section we compare the five bivariate models using the two approximations to the marginal likelihood
7(y|My,) described in Section 5.

Table 8 reports the values bfg 7(y|My,), for all five models fitted to the simulated data set. In the same
table is also the ranking associated with each of the models.

log 7 (IMy) | logTa(ylMy) | Rank| logma(ylMi)— |  logTa(yl M)~
maxy, log T1 (y|My) | maxy log 7o (y| M)
Model 1 -295.782 -296.4741 5 -24.802 -22.5181
Model 2 -270.980 -273.9560 1 0.000 0.0000
Model 3 -273.605 -277.8360 4 -2.625 -3.8800
Model 4 -271.247 -274.4130 2 -0.267 -0.4570
Model 5 -272.435 -275.5620 3 -1.455 -1.6060

Table 8: Simulated data set: approximated valueldgrr(y|My) for the bivariate models computed via
Gaussian approximation af(@|y) and via numerical integration. In the third column is the ranking of the
models according to the value of the marginal likelihood. The last two columns are the relative values of the
marginal likelihood.

Although the Gaussian approximation of the marginal likelihadg| M, ) is a quite rough approximation

since it does not take into account any departure from a multivariate normal distribution, it gives the same
ranking as the more accurate approximation computed via numerical integration. When comparing models
what counts is not the absolute valuerdiy| M), but rather the differences between the values(afi M)

relative to different models. We have computée 7(y| M}, ) —maxy, log 7(y|My.)) for both approximations

and reported it in Table 8 to show that the discrepancy between the two approximations is larger when we look
at absolute values than when we look at the more interesting relative values.

The highest value of the marginal likelihood corresponds to Model 2, which is actually the model we simulated
the data from. According to the marginal likelihood criteria, Model 4 receives practically the same support
from the data as Model 2. The difference in log marginal likelihood between Model 2 and Model 1 is more
than 20 indicating that some kind of dependence between the two time series is definitely present.

log 71 (y|My) | log T2 (y|My) | Rank log 71 (y| M) — log 7o (y| My )—
maxy, log 71 (y|My) | maxy log 7o (y| M)
Model 1 -580.342 -585.131 5 -200.823 -198.045
Model 2 -385.995 -391.332 3 -6.476 -4.246
Model 3 -381.294 -388.942 2 -1.775 -1.856
Model 4 -379.519 -387.086 1 0.000 0.000
Model 5 -387.352 -392.612 4 -7.833 -5.526

Table 9: Australia/New Zeland data set: approximated valuéfor (y| M) for the bivariate models com-
puted via Gaussian approximationff|y) and via numerical integration. In the third column is the ranking

of the models according to the value of the marginal likelihood. The last two columns are the relative values
of the marginal likelihood.

Results regarding the Australia/New Zeland data set are in Table 9. The model ranked as best is Model 4 which
allows for correlations in both the returns and the volatilities. This agrees well with our prior idea that the
economies of Australia and New Zeland are closely related. The difference in log marginal likelihood between
Model 4 and Model 3, which is ranked as second best, is 1.8. Both these models imply interdependence in the
returns process and in the latent volatility one. The difference being only in the nature of such interdependence.
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The difference in log marginal likelihood between the best model (Model 4) and the two models which allow
interdependence only in the returns process (Models 2 and 5) is over 7. This implies very strong evidence
against these two models.

Finally, Model 1, which assumes total independence between the two time series can definitely be rejected, its
log marginal likelihood being more than 200 smaller that the one of Model 4.

Yu and Mayer (2006) fit all these five models, although with a different parametrisation, to the same data set.
They rank the models using the deviation information criteria (DIC) obtaining the same ranking as we do here.

7 Approximating posterior marginals for the hyperparameters 7 (6,,|y)

In some cases one might be interested in investigating the marginal posterior distribution for the hyperparam-
eters of the modelr(6,,,|y) form = 1,..., M. In Section 3.2 an approximation to the joint posteri¢f|y),

is introduced. Moreover, in the examples in Section 6 we have seen that some information about the mar-
ginals7(6,,|y) can be obtained by approximating the joint marginal for the hyperparamet@yg) with a
multivariate normal distribution with mean at the modal vatief 7 (6|y) and covariance matrix equal to the
inverse of the negative Hessian matrixidP|y) computed a®*. This Gaussian approximation fa6,,|y)

is quite rough, it does not take into account the skewness which often is present in the posterior density of
the hyperparameters. In some cases we might, therefore, be interested in a more accurate approximation of
T(Om|y)-

Theoretically, giverr(0|y) the integral

(Omly) = / #(Oly) d6_, (29)

can be computed numerically, thus providing the required approximation. In practice though, as all numerical
integration problems, also this becomes more and more computational demanding with increasing dimension
of 6.

In our experience, there seems to be no real "trick” to avoid the rather heavy computational procedures needed
for evaluatingr (6,,|y), which means that obtaining a precise approximation to the posterior marginals of the
hyperparameters will always result in a time-consuming process.

In the following, we present different strategies to evaluate the integral in (29). Both strategies in Sections 7.1
and 7.2 give quite accurate results but require extra computations with respect to those used to approximate
7(xit|y). The strategies in Section 7.3 instead, are intended to provide an approximation, not necessarily very
accurate but still useful, by using quantities already computed when computifdy ).

7.1 Numerical integration via regular grid

For not too high dimension d, it is possible to evaluatg(@|y) on a regular grid and then use the resulting
values to numerically compute the integral in (29). In order to locate the area of highest probability density we
can use a strategy similar to that described in Algorithm 3 with two modifications. First the negative Hessian
H is replaced by its diagonal. This because the rotation of the axis dddncequation (18) is inconvenient
when summing out the variablés ,,,. Using only the diagonal oH suppresses the rotation but maintains

the scaling. Second, in order to obtain a regular grid of points we include all the fill in configurations whether
or not condition (19) is fulfilled.

After having computed the value @f6|y) for all points on the grid, by summing out the variabtes,,, we
obtain, for each dimensial/, a series of point§d). . . .., 0, } with relative density{7(6},), ..., 7(6%,)}. We
can then fit a spline to the values of the log-density in order to obtain a smooth estimate.
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This is the strategy used in Rue and Martino (2006) and Rue et al. (2007) to approximate posterior marginals
for hyperparameters, and has proved to give extremely accurate results when compared to those obtained by
intensive MCMC runs, provided that the grid is wide and dense enough.

Unfortunately, in order to achieve precise approximations ofrifte, |y), especially in the tails, the grid has

to be wider than the one used to compte,;|y) and in some cases also finer. This means that we have to set
the tuning parametey; to a higher value, lets say 5 and, in some caseg,.deta value smaller than 1. This,
together with the fact that we compute all fill in configurations, implies that with, increasing dimendion of
the computation becomes soon very heavy. Moreover, computing approximatief®,tfy) as described
here, does not make use of the valuesr@|y) evaluated to compute(x;|y) using the grid strategy as
described in Section 4.1.1, but implies additional computations.

As examples of this strategy, we have approximat&t),|y), m = 1,..., M for the two univariate models,
M andMs in Section 2.1, fitted to the pound-dollar exchange rate data set. The two models have respectively
two and three hyperparameters.
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Figure 32: Posterior marginals for the hyperparametersfinfitted to the Pound/Dollar data set. The solid
line is the approximation computed via the regular grid integration, the histogram is based on intensive MCMC
run.
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Figure 33: Posterior marginals for the hyperparameterstinfitted to the Pound/Dollar data set. The solid
line is the approximation computed via the regular grid integration, the histogram is based on intensive MCMC
run.

Figure 32 displays the approximations foft,,|y), m = 1,..., M in model M; compared with MCMC
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based density estimates, and Figure 33 displays mbdiel The approximations and the MCMC-based es-
timates agree very well. The size of the grid used to compiég,|y) is 70 for modelM; and 1300 for

model M. Itis clear, then, that when the dimension of the hyperparameters space increases, this strategy for
computing posterior marginals for the hyperparameters becomes soon really computational intensive.
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7.2 Laplace approximation

An alternative way to evaluat®(f,,|y) is to use once more the Laplace approximation. The starting point is
the identity:

B m(0]y)
mOnly) = G )

We already have an approximation fof@|y), then

(6ly)

%G(Ofmwm, y) 0. . —p*

7 (Omy) o (30)

where@* , is the modal configuration a&f(6_,,|0.,,y) for different values of,,, and7g(0_,,|0m,y) is a
Gaussian approximation (0 _,,|0,,, y) built by matching the mode and the curvature at the mode. That is
a Gaussian density with mean equabfo,, and precision matrix equal to the negative of the Hessian matrix
of 7(0_,,|0m,y) computed at the mode.

In order to get a smooth approximationd,, |y) we can compute the quantity in (30) for a set of different
values ofé,,, and then fit a spline to the logarithm of the obtained values. The density needs then to be
numerically normalised so that it integrates to one. The whole procedure has to be repeated for each of the
marginal distributionr(6,,|y) we are interested in.

The Laplace approximation as described above, gives quite accurate results when compared to density esti-
mates obtained from intensive MCMC runs. As an example we have computed the marginal posterior densities
for all the hyperparameters in Model 2 fitted to the simulated data set in Figure 16. The results are displayed in
Figure 34. Here the Laplace approximation in (30) is shown as a solid line. The histograms are based on long
(10%) MCMC runs. In all cases the approximated densities agree almost perfectly with the estimated ones.

Unfortunately, computing the expression in (30) implies finding the maximum of the- 1) dimensional
functionm(0_,,|0,,, y) for each value o#,,. This operation, with increasing dimension of the hyperparame-
ters space and of the latent fietd might become very costly.

In order to simplify the computations we have tried to substitute, when computing (30), the conditional mode

6, with the conditional mean &6_,,|6,,) computed from the Gaussian approximation€|y) in equa-

tion (25). The conditional mean can be computed in no time thanks to the usual properties of the multivariate
Gaussian distribution, therefore the computational time is reduced a lot. In fact, the only time-consuming op-
eration left to perform is the computation of Hessianr6d_,, |y, 6,,) at Ez(0_,,|0,,). This resembles what

we have already done in Section 4.2.2 when computing the improved approximatiofxfgy). The idea

of substituting the conditional mode with the conditional mean is based on the presupposition that the density
of interest,r(0|y) here andr(x|y, €) in Section 4.2.2, is not "too far” from its Gaussian approximation built

by matching the mode and the curvature at the mode. While this is essentially trtecfgr 0), 7(0|y) can

differ quite a lot from a Gaussian given also that the pri(#) is not Gaussian.

The results of approximating(6,,|y) using (30) computed at the conditional mean instead of the condi-
tional mode for Model 2 fitted to the simulated data set are displayed in Figure 34 as a broken line. Clearly
the Laplace approximation computed at the conditional mean underestimates the skewness of the marginal
posteriors when this is large.

7.3 Integration via an interpolating function
The procedures described in this section provide an approximatiatiffigy) using values of (6|y) already

computed during the numerical integration©fz;;|y) described in Section 4.1. The posterior marginals
obtained are not necessarily accurate but provide the user with useful results.
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Figure 34: Posterior marginals for the hyperparameters in Model 2 fitted to the simulated data in Figure 16.

The solid line is the Laplace approximation where (30) is computed at the conditional mode while the broken

line is the Laplace approximation where (30) is computed at the conditional mean. The histogram is based on
intensive MCMC run.

When evaluatingr(x4;|y) using the grid integration strategy in Section 4.1.1 we compute the deérisityy)

for a certain numbeF of points. Although they cannot be directly used to compt(i#,,|y), these points
carry information about the shape#®f6€|y) in the area with highest density. We propose to usefhmints

in the grid to build al/-dimensional interpolating functiofi(@). This can then be easily computed for any
point inside the grid in order to numerically compute the integral in (29).

The main advantage of this approach is that, unlike the grid strategy presented in Section 7.1, it requires no
extra computations af (6|y) with respect to the computation 8fz;|y). In fact, the same evaluation points

0. in the hyperparameters space, are used to compute all the posterior marginals in the model. Unfortunately
building a M — 1 dimensional interpolating function is not straight forward. We have implemented three
different interpolating functions:

Function 1: Computef (@) as a weighted sum of th& valuesw(0x|y), k = 1,..., K, thatis f(8) =
> wim(0k|y). The weightsu, depend on the Euclidean distanceddfom eachdy,.

Function 2: Computef(8), as the linear interpolation form the + 1 points nearest té.

Function 3: Computef(8), as the quadratic interpolation form thé -+ 1 points nearest t. The curvature
is assumed to be 1 as for the standard Gaussian density.

Function 1 seems to provide approximations which tends to be too smooth with respect to the real posterior
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densities while Function 2 and 3 can, sometimes, present spikes which make the numerical integration dif-
ficult. Moreover, when the dimension éfincreases, not only computing the grid, but also compufit)

itself becomes expensive. In fact, computing any of the three functions described above requires visiting all
the K points which constitutes the grid, and their number grows exponentiallyM/itResults obtained using
Function 1 to interpolate th& points for the univariate Studen{zM-) model fitted to the Pound-Dollar data

set, are displayed in Figure 35. Notice that the approximations, especialty:ftiry) are too smooth.
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Figure 35: Hyperparameters for the Studentodel fitted to the Pound-Dollar data set. The solid line is the
approximation obtained via the interpolation Function 2 and the histogram is derived from a long MCMC run.

If the CCD strategy is used to computézr,;|y) no grid on the hyperparameter space is available. Hence a
different strategy has to be used. £0) = (21(0), . .., zas(0)) be the point in the:-parametrisation defined
in (18) corresponding t6. We define the functiorf(€) as

M
10) =[] fn(zm(8) (31)
m=1
where
exp <—sz) if 2>0
fm(z) = w0 (32)
exp —2(07,1;)22 ) if z2<0
ando ando”;, m = 1,...,M, are defined at page 16. The function in (31) is not an interpolating

function. It seems, however, to have some advantages over the three functions described above. First of all
it is much faster to compute, regardless the dimensiaf, since it does not require visiting any other point

in the hyperparameter space. Moreover, when the dimensi@nsofarge we do not use the grid strategy for
computingr (z;;|y) therefore the points constituting the grid are not available.

In Figure 36 we report the approximations fof®,,|y), m = 1, ..., 6 obtained using (31) for Model 5 fitted

to the simulated data set. In the same Figure are also displayed the Gaussian approximatiths|{or

in (25), and an histogram derived from a long MCMC run. The approximations derived from (31) correct
the Gaussian ones for locations and some skewness. Even though they are not extremely precise they sitill
provide useful information about the marginals for the hyperparameters. The fact that this approximations are
computed at almost no extra cost after having compiteg, |y) makes them valuable.

The approximations based on (31) seem to be more reliable than the one based on the interpolating functions
described at page 51. They can also be computed when the grid integration strategy is used at the cost of
computing the positive and negative “standard deviati@rjg ande™, , m=1,..., M.

ced !
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Figure 36: Posterior marginals for the hyperparameters on Model 5 fitted to the simulated bivariate data set.
The solid line is the approximation based on 31 while the broken line is the Gaussian approximation in (25).
The histograms are based on intensive MCMC runs.

8 Extension: asymmetric models

One feature often observed in financial studies is that volatility responds asymmetrically to positive and neg-
ative return shocks. Several explanations have have been proposed in the literature to explain the presence of
such asymmetric relationship between volatility and returns. One of the most widely cited is due, to Black
(1976) and Christie (1982) who suggest that the asymmetry reflects a change in financial leverage. In partic-
ular, the argument is that, when a firm experiences a positive (negative) return, it becomes less (more) risky,
thus decreasing (increasing) its volatility. In other words there is a negative correlations between returns and
volatility. This is known adeverageeffect.

A univariate SV model with leverage effect was first introduces by Harvey and Shephard (1996) and takes the
form:

Yt = exp(ht/2)et, (33)

Tey1 = p+ ¢(he — p) + oneta

wheree; andn,,1 are standard Gaussian variables. The leverage effect is introduced by letting the two error
processes to be negatively correlated. Formally, €gamj.+1) = p, with p < 0. Note that for asymmetric
models we prefer the formulation in (33) over the one in (6), used in Jacquier et al. (2004). This is because
in model (33) a shock at timeinfluences the volatility at time + 1, while in model (6) a shock at time
influences the volatility at timeé. The former being more logically appealing both from a theoretical and a
empirical point of view, see Yu (2005). The SV model with leverage effect in (33) is estimated by quasi-
likelihood method in Harvey and Shephard (1996) and by MCMC in Mayer and Yu (2000).
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In this section we describe how it is possible to perform approximate inference using INLA for univariate SV
models with correlated errors. We have not implemented the algorithms for such kind of models, therefore no
example is presented.

The core of the INLA approach is the Gaussian approximation for the full conditional of the latent field
7(x|0,y) described in Section 3.1. In order to be able to write down such approximation we need to have an
expression for the likelihood of each data paittt.|x, 0). After some algebra ot can be showed that

m(ys|x, 0) = 7(ye|xe, v441,0) = N{gext/Q[ﬂftH —p+ P(xy — p)], e (1 — Pz)} (34)

See Appendix for details on how to derive (34) from (33). Note that unlike the univariate models analysed on
Section 2.1, here each data pojptdepends on two nodes of the latent field, namefyandx;,,. The prior
distribution for the latent GMRE: is unchanged from Section 2.1. Hence, the full conditional reads

m(x|y, 6) o exp {—;iETQiE + Z fe(@t, $t+1)} (35)

t=1

wheref;(x¢, z141) = log m(yt|ze, 441, 0). Similarly to what is done in Section 3.1, we can expgid;, x¢11)
around the pointz{, z?, ;) obtaining

1
fi(x, 2e41) = Const+ (x4, 2441)by — 5(%, 241)Cr(we, 2441) 7

whereC is a2 x 2 symmetric matrix and; a column vector if dimension 2. Bo#h andC; are functions
of the gradient and the Hessian matrixfofz:, z:11) computed atz?, =, ;) and depend on the value of the
hyperparameters vectér Let c;?j indicate the elemenyj of the matrixC; andbd! indicate theith element of
vectorb;, wherei, j = 1, 2. Moreover let

[ ety cly 0 0 0]
ek ey 42 c? 0 0
21 (22 T 12
0 21 Gyt cfy . 0
diagC) = | - |
0 0

and
b" = [by, by + b7, b5 + b7, ..., 0]

Here diagC) is a N x N matrix, whereN is the dimension of the latent fiele andb is a vector of length

N. Similarly to what described in Section 3.1, we can build a Gaussian approximatiofxtg, ) with
precision matrix@ + diag(C) and mean given by the solution 0f) + diag(C))x* = b wherex* is the

modal configuration ofr(x|y,#). Note that sincer; andx,; are neighbours in the graph of the latent

field x, the Gaussian approximation is a Gaussian Markov random field with respect to the same graph and
therefore preserves the Markov properties of the prior distribution of the latentfield

Starting from the Gaussian approximation described above, it is possible to derive all the other algorithms
necessary to implement the INLA approach also for SV models with correlated errors.

9 Discussion

The purpose of this report was to present one more class of models where Integrated Nested Laplace appro-
ximation, introduced in Rue et al. (2007) can be used. In this report we apply INLA to different bivariate
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stochastic volatility models obtaining approximations to the posterior marginals of the latent field. These
approximations have been checked against very long runs of MCMC algorithms and appear to be extremely
accurate. There are some cases where the approximations and the MCMC based estimates seem to disagree.
We are confident that, in these cases the disagreement is mostly due to some MCMC error which, despite the
long run, is still present in the sample.

The problems analysed in this report present a higher dimension of the hyperparametef eatothose in

Rue and Martino (2006) and Rue et al. (2007). Hence the grid integration scheme used in Rue and Martino
(2006) and Rue et al. (2007) becomes too computationally expensive. We have, therefore, used a different
integration procedure, named central composit design (CCD). This was introduced in Rue et al. (2007) but in
this report we verify that in most cases it gives accurate results, despite the fact that the hyperparameter space
is explored in a much cruder way.

In all examples considered here, we consider bivariate data and model latent field as a bivariate autoregressive
model of order 1. It is, in principle, possible to generalise this model by allowing higher dimension of the
data set and higher order of the autoregressive model. However, this would make not only the number of
hyperparameters to increase, but also the structure of the precision matrix of the latent field to become more
dense. This means, in turn, that the efficiency of INLA decreases. Anyway, efficiency problems would be
present, for such complex models, also for MCMC based inference.

Computing approximations for the posterior marginals of hyperparamet@rsy), m = 1, ..., M becomes

harder when\/ grows. In this report we propose different solutions to this problem. There seems to be no
real method to obtain accurate approximations#f(t,,|y) in a cheap way. If accuracy(f,,|y) is required,

some additional computational time has to be invested in this task. Anyway,we describe fast solutions which
give useful, though not extremely accurate, results.

Using INLA also the issue of model choice can be solved. An approximation for the marginal likelihood of
the model can easily be derived and, for the class of models discussed here, the Bayes factor can be used for
model comparison.
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A Appendix

A.1 Linear expansion oflog mgg (@ _¢|z¢, O)

In a unidimensional problem, the log denominator of expression (22) is given by

_ 1 .
log Faa(T—t| e, Ok) o ilog!Q + diag{c (¢, 0y) }| (36)

x_=Ez (z—t|z¢,0k)

where Q* is the prior precision matrix of the GMRE where the row and column numberave been
removed, ana(z;, 8,) is the vector of minus the second derivative of the 10g-likelihood evaluateg at
Ez. (xj|x:, 01), that is:

& r(yjlz;, Or)

cj(xy, 0y) = — oy
j

z;=Ez (z;|2t,0k)

Let 4" indicate the derivative of the conditional meagp Ex;|z:, 6}), then each:; can be written as a function
of z; as

;= 1ig,(0,) + 05 (2 — 1, (01))
wherep(0y) is the mean of the Gaussian approximatien(x|y, 05).

We want to expand expression (36) around= pu,(0x). For this purpose we have to compute its first
derivative. Let
0c; (O, vt) B (y;|xy, O)
(. 0,) = =25 = — J179 5t
]($t> k) 8.1'15 81‘3 j
J zj=Ez (z;|2:,0k)
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Since for any matrixM we have thad log | M| = Tracd M ~'9M), then

dlog |Q*+diaglc)| _ Trace{[Q*+diag(c>],1d[Q*+diag(c)]

d dxy
= Trace{[Q* + diag(c)]‘diagd®(z:, 0;)] } (37)
= >; Var(zjlz)dd (x4, 0y,)
= X 0G,(0k)[1 — Coriz (1, 70k)] d} (w1, O)

We have then

~
~

log Taa(T—t|7e, Ok)

(38)

:z:_t:E%G (e—t|zt,0k)
% Tt Zj 0G; (Gk)[l — COFI’EFG (ZCt, x3|0k)] d?(:vt, Hk)

Note that the correlation between andx;, necessary to compute (38) is only available for some of'the
andt’s since he marginal variances are computed using (11). The solution to this problem given by Rue et al.
(2007) is to simply replace all non computed correlations with a default value, say 0.05.

For Gaussian data (36) is just a constant, so the term in (38) is the first order correction for non-Gaussian
observations.

The first order expansion presented here depends from the fact that the matfix}dig diagonal matrix.
The corresponding matrix for multidimensional models ¢i@g, defined in Section 3.1, instead, includes
also some off diagonal terms, these make the computation of the derivative in (37) much more complex.

A.2  Determinantof Q_; _;

For any GMRFz, with precision matrixQ we have that

m(x) |Q|1/2 exp{—%mTQm} (39)

From the basic properties of a Gaussian distribution we have that, for anyindek ..., n, the precision
matrix ofz_;|z; is Q[_; _;. Moreover we have that

w(@) = (i) ilr:) o Var(e) 1Qp, |V exp{~ 32T Q) (40)

Comparing (39) and (40) we have that

1 1 1
5 log |Q_;—i| = 5 log |Q| + 3 log Var(x;)

A.3 Likelihood for asymmetric SV models

We can rewrite model (33) as

yr = exp(z¢/2)eq,
Tep1 = po+ Gz — p) + o(per + /1 — p?wigr

with w;y; being a standard Gaussian and CQtiw;1) = 0.

We want to compute the density(y;|x¢, z,+1,0). To start, notice that given the valueswfandz;, then
e, = exp(—x/2) y, and

Tep1 = p+ ¢(xy — p) + oexp(—x¢/2)ye + o/ 1 — pPwip
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that is

Te1|we, yt, 0 ~ N(p + ¢ — p) + o exp(—2¢/2)yr, o/ 1 — p?). (41)
Moreover we have
ye|xt0 ~ N (0, exp(xy)). (42)
We can write
T(Yt|Te, 2441, 0) o T(Yt, Tt, Te41160)
o (we|0) T (ye|ze, O)T (Tt 41|28, Y1, 0)
X m(yt|ze, O)m (Tes1 e, yt, 0)

From (41) and (42) we have then

—xzy /2
m(yelwe, 2041, 0) o e/ exp {—e 5 yf} exp {_W—;ﬂ)[xt-f—l — =zt — ) — Upext/Qyt]}
_ 2 _ —xzy /2
o exp{—L[em 4 Zpem | g+ lwen — 1 — oo — )] B )

which is the core of a Gaussian density with

2 —1
Var(ye|ze, ve41,6) = [6_” + 7 f 2 6‘“] = (1—p?)e™
and
pe /2 p* -
_ —x —x
E(y|oe, e41,0) = [w441 — p — d(x — p)] =) [e C+ 7 ‘

= (@1 — p— (wy — p)] geggt/z
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