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Abstract

We present a Bayesian hierarchical model for quantitative real-time PCR data,

aiming at relative quantification of DNA copy number in different biological samples.

The model is specified in terms of a hidden Markov model for fluorescence intensities

measured at successive cycles of the polymerase chain reaction. The efficiency of

the reaction is assumed to depend on fluorescence intensities, and the relationship

is specified based on the kinetics of the reaction. The model includes noise in the

reaction process as well as measurement error. Taking a Bayesian inferential ap-

proach, marginal posterior distributions of the quantities of interest are estimated

using Markov chain Monte Carlo. The method is applied to simulated data and an

experimental data set.
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1 Introduction

Real-time quantitative PCR is a widely used technique for quantification of gene expres-
sion levels in a biological sample, in particular for low abundance genes. In contrast to
microarray experiments, where the expression level of thousands of genes are measured
simultaneously, real-time quantitative PCR is designed for targeted quantification of gene
expression for a limited number of genes.

Starting from the biological sample, RNA is typically first isolated and reverse transcribed
into complementary DNA. The initial target DNA is then amplified by the polymerase
chain reaction (PCR). The PCR process consists of a series of repeated cycles, where at
each cycle, a fraction of the target DNA is duplicated. The process is characterised by
the efficiency, which, taking into account the intrinsic random nature of the process, can
be defined as the probability that a molecule is duplicated at each cycle. In the initial
phase of the reaction the efficiency is normally near one, while it decreases in the course
of the reaction due to shortage of reaction material. Most commonly, the amount of
target DNA at each cycle of the reaction is quantified by using fluorescence chemistry,
and real-time PCR refers to continuous monitoring of the fluorescence intensities as the
process proceeds. Examples of amplification curves, displaying the fluorescence intensities
as a function of cycle, are shown in Section 4.2. For the first few cycles, the baseline
cycles, the fluorescence intensities corresponding to the copy numbers of the target DNA
are normally not distinguishable from background fluorescence. At the other end, as the
efficiency decreases, the curve is eventually levelling out, reaching a plateau.

An underlying assumption in most quantitative PCR (qPCR) approaches, is that, dis-
regarding the observational noise, the fluorescence intensity is proportional to the corre-
sponding target DNA copy number. Consequently, whether or not the constant of pro-
portionality is known, relative quantification of target DNA in two samples is possible,
comparing the fluorescence intensities between the samples. However, in the presence of a
series of baseline cycles, the fluorescence corresponding to the initial target DNA cannot
be read directly from the amplification curve, and must be estimated from the curve.

Many currently available quantification methods are based on the assumption of a constant
efficiency, implying exponential growth. In the approach by Livak and Schmittgen (2001),
the efficiency is assumed to be equal to one, while in e.g. Gentle et al. (2001), Marino
et al. (2003) and Cook et al. (2004), the assumption of exponential growth is utilised to
estimate the efficiency from the amplification curve data. Strategies for identification of
the cycles assumed to exhibit exponential growth have been suggested by e.g. Gentle
et al. (2001), Liu and Saint (2002a) and Tichopad et al. (2003). Relaxing the constant
efficiency assumption allows for the inclusion of data for a larger subset of the cycles. One
approach that has been proposed is to fit parametric curves to the fluorescence intensities
as a function of cycle number (Liu and Saint, 2002b; Rutledge, 2004), or to the sample
efficiency (computed from the ratio of fluorescence for successive cycles) as a function of
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intensity (Batsch et al., 2008; Alvarez et al., 2007). However, these are purely curve fitting
methods, and do not model the PCR process as such.

Jagers and Klebaner (2003) propose to model the PCR as a branching process with an
intensity dependent efficiency following the enzymological model for the PCR kinetics by
Schnell and Mendoza (1997). The number of duplicates after each cycle is binomially
distributed with probability given by the efficiency model. A modified version of the
model is given by Lalam et al. (2004) and Lalam (2006), assuming that the efficiency is
constant for the early cycles, but follows a damped version of the original efficiency model
for intensities higher than a threshold value. The parameters of the efficiency model are
estimated by conditional least squares, but no estimate of initial fluorescence for the target
DNA is given.

In a relative qPCR experiment, the aim is to compare the gene expression levels of two or
more conditions, and typically several replicates are made for each condition. We propose
a Bayesian hierarchical model for relative qPCR, including observational noise, and esti-
mating the model parameters based on data from all amplification curves jointly. With few
exceptions, including Cook et al. (2004) and Batsch et al. (2008), this is in contrast to cur-
rently available methods for analysing qPCR data, which normally operate separately on
each amplification curve. We quantify the uncertainty of the parameter estimates by their
estimated posterior distributions, generated using Markov chain Monte Carlo methodology.
Our approach is similar to that of Lalam (2007), but the latter is based on quantifying
DNA from a single amplification curve, and on assuming constant efficiency. Our model is
tested on a simulated data set, and results from running the algorithm on an experimental
data set are also presented.

2 Model specification

We specify the model for a relative qPCR experiment, where the aim is quantitative com-
parison of the gene expression levels for two or more conditions, often a treatment and a
control group. In what follows, we use the term treatment to refer to the experimental
conditions to be compared. To control for non-biological effects that might influence the
amplification process, the amplification curves for the gene of interest are usually con-
trasted with similar curves for a reference gene, that is expected not to be influenced by
the treatments. We further consider the situation where the PCR is run in replicates for
each treatment and gene combination. The model is specified for a qPCR experiment
consisting of n amplification curves, representing replicated PCR runs for nt treatments,
and ng genes for each treatment.
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2.1 Full model

The model relies on the assumption that for each reaction i, each molecule has a probability
pi,k to duplicate at cycle k, independently of the remaining molecules. Let Ni,k denote the
number of target DNA molecules for reaction i at cycle k. The stochastic model for the
kinetics can be written

Ni,k = Ni,k−1 + Zi,k, i = 1, . . . , n, k = 1, . . . , mi, (1)

where
Zi,k | Ni,k−1, pi,k ∼ Binom(Ni,k−1, pi,k), (2)

and mi is the number of cycles for reaction i. For large Ni,k, the binomial distribution can
be approximated by a normal distribution, such that

Ni,k | Ni,k−1, pi,k ∼ N (Ni,k−1(1 + pi,k), Ni,k−1pi,k(1 − pi,k)), i = 1, . . . , n, k = 1, . . . , mi.
(3)

The number of molecules after each cycle is measured in terms of the corresponding flu-
orescence intensity. We adopt the commonly made assumption that the fluorescence is
proportional to the number of molecules, but will assume in addition that the fluorescence
is measured with additive noise. Let xi,k = γNi,k, such that xi,k represents noise-free
fluorescence. Conditionally on the reaction history, the variable xi,k will then also be
approximately normal, with mean and variance given by

E(xi,k | Ni,k−1, pi,k) = γNi,k−1(1 + pi,k) (4)

Var(xi,k | Ni,k−1, pi,k) = γ2Ni,k−1pi,k(1 − pi,k). (5)

Substituting xi,k−1/γ for Ni,k−1, we get the model

xi,k | xi,k−1, pi,k, γ ∼ N (xi,k−1(1 + pi,k), γxi,k−1pi,k(1 − pi,k)), i = 1, . . . , n, k = 1, . . . , mi

(6)
for xi,k. We further assume that the initial fluorescence xi,0 for curve i is normally dis-
tributed with gene and treatment dependent means µgi,ti , and with variance κ−1

x0 µgi,ti pro-
portional to the mean. Here, gi and ti denote the considered gene (g) and treatment (t)
corresponding to amplification curve i. That is,

xi,0 | µgi,ti, κx0
∼ N (µgi,ti , κ

−1
x0

µgi,ti), i = 1, . . . , n. (7)

Our model for the efficiency pi,k of the reaction is motivated by the enzymological model
for the PCR kinetics presented in Schnell and Mendoza (1997). Following their model, the
efficiency pi,k, going from cycle k − 1 to k, and with Ni,k−1 molecules at cycle k − 1, is

pi,k =
Kgi,ti

Kgi,ti + Ni,k−1

, (8)
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where Kgi,ti is the Michaelis-Menten reaction constant, assumed to depend on gene and
treatment. We restrict our model to the subset of cycles for which (8) can be assumed to
be a reasonable description of the process. Substituting xi,k−1/γ for Ni,k−1, we get

logit(pi,k) = log

(

pi,k

1 − pi,k

)

(9)

= log

(

γKgi,ti

γKgi,ti + xi,k−1

/(1 −
γKgi,ti

γKgi,ti + xi,k−1

)

)

= log(γKgi,ti) − log(xi,k−1). (10)

We consider αgi,ti = log(γKgi,ti) as unknown constants to be estimated from the observed
amplification curve. In addition, we allow the coefficient of the log(xi,k−1) term to be
different from -1, and adding normally distributed noise, we arrive at the following model
for the efficiency pi,k:

logit(pi,k) | xi,k−1, αgi,ti , βgi,ti , τp ∼ N (αgi,ti + βgi,ti log(xi,k−1), τ
−1
p ), ∀i, k. (11)

As before, the indices g = gi and t = ti are used to represent the gene and treatment
corresponding to curve i, respectively.

Finally, we assume that fluorescence intensity is observed with additive normally dis-
tributed noise, and that the distribution for the observed fluorescence yi,k for cycle k
of curve i is given by

yi,k | xi,k, τy ∼ N (xi,k, τ
−1
y ), i = 1, . . . , n, k = 1, . . . , mi. (12)

In (12) we have implicitly assumed that yi,k represents background corrected data. In
principle, background correction could be included in the model and estimated jointly with
the remaining parameters, but we will assume that the amplification curves are background
corrected in a preprocessing stage. The full hierarchical model is illustrated in Figure 1.

In a typical experiment ng = 2 and nt = 2, and the main parameter of interest is the ratio
of the mean initial abundance for a treated and a control group for the gene of interest,
adjusted for the corresponding ratio for a reference gene. In terms of the model parameters,
this ratio, which we denote by Radj , is

Radj =
µ2,2/µ2,1

µ1,2/µ1,1

, (13)

where the first subscript (1 or 2) denotes the reference gene and the gene of interest,
respectively, and the second subscript (1 or 2) denotes the control and treated groups.

2.2 Simplified model

Observe that in the full model, stochastic growth is represented both by the model (11)
for the efficiencies pi,k, and in the normal model (6) for the fluorescence intensities, con-
ditionally on pi,k. Fitting the full model using the Markov chain Monte Carlo (MCMC)
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Figure 1: Graphical description of the full hierarchical model for a single reaction. Here,
y, x and p are used to denote the observed fluorescence intensities, the noise-free intensi-
ties, and the efficiency, respectively. The reaction subscript i is suppressed, and the cycle
independent parameters of the model are not shown.

approach described in Section 3 to simulated data sets, we experienced that mixing and
convergence of the MCMC algorithm were slow. Using a single-site MCMC algorithm, this
is not surprising, in light of the correlation structure inherent in the model. Further, some
of the parameters of the full model of Section 2.1 appears to be hard to identify from the
data. This applies in particular to the scaling factor γ in (6), representing the link between
the fluorescence intensity and the number of molecules.

We therefore propose a simplified version of the full model, ignoring the noise in the
model for the intensities xi,k as specified in (6). It turns out that the resulting model gives
reasonable mixing and convergence for the corresponding MCMC algorithm. An alternative
simplification is to ignore the error in the efficiency model (11), but this does not lead
to a similar improvement. The chosen simplification has the advantage that the scaling
factor γ is eliminated from the model. Also, attempts to quantify this scaling factor from
amplification data (see e.g. Rutledge (2004) and Goll et al. (2006)), indicate that the factor
is small relative to typical fluorescence intensities. Consequently, the conditional variance
for xi,k is expected to be relatively small, further motivating the proposed simplification.

By substituting xi,k by the conditional mean xi,k−1(1 + pi,k) in the likelihood (12) and in
the model (11) for the efficiency, the simplified model can be summarised by

yi,k | xi,0, pi,1, . . . , pi,k, τy ∼ N

(

xi,0

k
∏

j=1

(1 + pi,j), τ
−1
y

)

, (14)

logit (pi,k) | αgi,ti, βgi,ti , xi,0, pi,1, . . . , pi,k−1, τp ∼

N

(

αgi,ti + βgi,ti log

(

xi,0

k−1
∏

j=1

(1 + pi,j)

)

, τ−1
p

)

, (15)

xi,0|µgi,ti , κx0
∼ N

(

µgi,ti , κ
−1
x0

µgi,ti

)

, (16)

for i = 1, . . . , n and k = 1, . . . , mi.
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3 Parameter estimation

We take a Bayesian approach, and estimate marginal posterior distributions for the un-
known quantities of the model by Markov chain Monte Carlo (MCMC). The model specifi-
cation is based on the assumption that a valid range of cycles corresponding to the chosen
model for pi,k given in (15) has been identified. We first describe how the valid cycle
window is selected for an experimental data set, and then describe the sampling algorithm.

3.1 Selection of the cycle window

In the course of a PCR run, reaction conditions will change. Due to shortage of reaction
materials, the amplification curve will eventually level out, meaning that the efficiency
approaches zero. The limiting mean growth rate corresponding to the model given in (15)
is linear growth, implying that not all data points of an amplification curve can be included
in the analysis. We select the valid cycle window by identifying the inflection point of the
amplification curve from a four-parameter sigmoid curve fitted to the data, and choose the
closest cycle prior to this inflection point as the final cycle mi for each curve i. In addition,
we have observed that even after background correction, there are trends for the early
cycles that cannot be explained by the amplification process. The data for these cycles
are discarded from the analysis. The cycles to be ignored are selected using the method
in Tichopad et al. (2003) for identifying the final baseline cycle, and then discarding data
for the cycles prior to and including this cycle. Taking this approach, we will normally
discard more data than necessary, and selecting a maximal valid cycle window represents
a topic for further study.

3.2 The MCMC algorithm

To complete the model specification, we assign prior distributions to the cycle independent
parameters of the model. Let θ = (τy, τp, κx0

, {µg,t}, {αg,t}, {βg,t})T be the vector of these
parameters. Their priors are summarised in Table 1. The mean and precision of the
normal priors for αg,t and βg,t, and the precision of the truncated normal prior for µg,t,
are computed by first specifying what we believe is a reasonable range for each of the
these parameters, and then selecting the parameters of the distribution such that a prior
probability of approximately 0.95 is assigned to that range. The precision parameters are
all assigned non-informative priors.

The unknown quantities to be estimated are the vector of efficiencies pi, i = 1, . . . , n for
cycles 1 to mi for each curve i, the initial fluorescence, xi,0, i = 1, . . . , n, and the parameter
vector θ. The vector of fluorescence intensities xi = (xi,1, . . . , xi,mi

) for each amplification

curve can be computed from xi,0 and pi by xi,k = xi,0

∏k

j=1(1 + pi,j). We let yi denote the
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µg,t ∼ N (0, 5.02)I(µg,t > 0), g = 1, . . . , ng, t = 1, . . . , nt

κx0
∼ Gamma(0.1, 0.00001)

αg,t ∼ N (10.0, 7.52), g = 1, . . . , ng, t = 1, . . . , nt

βg,t ∼ N (−1.5, 0.52), g = 1, . . . , ng, t = 1, . . . , nt

τp ∼ Gamma(0.5, 0.0005)
τy ∼ Gamma(0.5, 0.0005)

Table 1: Summary of the prior distributions for the cycle independent parameters. Here,
ng and nt denotes the number of genes and treatments, respectively.

vector of corresponding observed fluorescence for reaction i.

The MCMC algorithm works by sampling from a Markov chain with the distribution of
interest as stationary distribution, in our problem the joint posterior distribution. Except
for the parameters αg,t and βg,t, we sample each parameter at a time from the full condi-
tional distribution given the remaining parameters. If the full conditional distribution is
non-standard, we apply a Metropolis-Hastings step. We then first generate a value from a
proposal distribution given the current sample, and then accept or reject this value with a
probability depending on the full conditional distribution and the proposal distribution.

The full conditional distributions of the precisions τp and τy and the parameter κx0
are

Gamma distributions, and these full conditional distributions can be sampled from directly.
The two parameters αg,t and βg,t for each pair (g, t) are sampled jointly from their binormal
full conditional distribution.

For the parameters µg,t, as well as for the efficiencies pi,k and the initial fluorescence xi,0, the
full conditional distributions are non-standard, and we apply a Metropolis-Hastings step
for each of these parameters. We use normal proposal distributions centred at the current
sample. The standard deviations of the proposal distributions are tuned by repeatedly
running a series of 5000 samples, and adjusting the standard deviations such that the
acceptance probabilities are approximately between 0.2 and 0.5.

The sampling routine is implemented in C.

4 Results

To illustrate our approach, we present results from applying it to a simulated and an
experimental data set.
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4.1 Results for a simulated data set

To assess the performance of the model and the MCMC algorithm, we run the algo-
rithm on a data set simulated from the model. We simulate a set of data with n = 12
samples, representing three replicates of each pair of ng = 2 genes and nt = 2 treat-
ments, using the parameter values given in Table 2. The values for αg,t are calculated as
αg,t = logit(0.999999) − βg,tlog(µg,t), using the selected values for βg,t and µg,t. The total
number of cycles for the twelve curves are m = (17, 17, 17, 18, 18, 18, 20, 20, 20, 20, 20, 20),
and the simulated amplification curves are shown in Figure 2.

µ1,1 = 0.2 α1,1 = 12.206
µ1,2 = 0.1 α1,2 = 11.513
µ2,1 = 0.025 α2,1 = 10.127
µ2,2 = 0.025 α2,1 = 10.127
κx0

= 1000 βg,t = −1.0, ∀(g, t)
τy = 1/402 τp = 64.0

Radj =
µ2,2/µ2,1

µ1,2/µ1,1

= 0.5

Table 2: Model parameters for the simulated data set.
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Figure 2: Amplification curves for the simulated data set. Each colour represents triplicates
of a gene and treatment combination (g, t): Black = (1, 1), red = (1, 2), green = (2, 1),
and blue = (2, 2).
.
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Figure 3: Trace plots for some of the parameters for the simulated data set. Every 4000th
iteration is shown. The horizontal lines indicate the true values.

The algorithm was run for 20 mill. iterations, taking 4h 17min of CPU time on a 2.66 GHz
Unix system. In Figure 3 trace plots of samples from the MCMC algorithm are shown for a
subset of the parameters. We discard the first 500 thinned iterations as burn-in iterations.
Estimated posterior means and 95% credibility intervals for the parameters were computed
from the remaining 4500 iterations, and the results are given in Table 3, together with the
true values. For the efficiency parameters, posterior means and 95% credibility intervals
are shown in Figure 4 for three reactions. We observe that the parameter values used to
generate the data set are well reproduced.

4.2 Results for an experimental data set

The model was fitted to an experimental data set comparing gene expression in rats treated
with Octreotide long-acting release (LAR) to untreated controls. The gene of interest,
KLF4, was contrasted with the reference gene β-actin, and the amplifications were run in
triplicates for each of the four treatment and gene combinations, in total n = 12 reactions.
The experimental protocol of the data set is described in Appendix A. The aim of the study
was not a thorough analysis of the specific data set, but to investigate the applicability of
the method to experimental data.

The data were background corrected by first manually selecting a window of 6-7 observa-
tions that were apparent baseline cycles, and subtracting the average fluorescence of these
cycles from all observations. The twelve background corrected amplification curves are
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Parameter Posterior mean 95% credibility interval True value
Lower limit Upper limit

τp 91.7 44.9 160 64
α1,1 14.5 9.76 19.9 12.2
β1,1 -1.24 -1.81 -0.726 -1
α1,2 12.1 9.09 15.4 11.5
β1,2 -1.06 -1.42 -0.729 -1
α2,1 10.4 8.87 12.1 10.1
β2,1 -1.04 -1.23 -0.863 -1
α2,2 10.3 8.66 11.9 10.1
β2,2 -1.01 -1.2 -0.832 -1
τy 0.000578 0.000465 0.000699 0.000625
κx0

1310 374 2890 1000
µ1,1 0.197 0.181 0.213 0.2
µ1,2 0.0974 0.0863 0.109 0.1
µ2,1 0.0259 0.0204 0.0321 0.025
µ2,2 0.0264 0.021 0.0328 0.025
Radj 0.491 0.34 0.68 0.5

Table 3: Estimated posterior means and 95% credibility intervals for the model parameters
of the simulated data set.
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Figure 4: Estimated posterior means (full lines) and 95% credibility intervals (black dashed
lines) for the efficiency p (upper panels) and logit(p) (lower panels) for three of the reac-
tions. The realisations of p for the simulated data set are added as red dashed lines.
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shown in the left panel of Figure 5. For each of the amplification curves, the approach
described in Section 3.1 was used to select the cycle window corresponding to the efficiency
model (15). The selected cycle windows for the twelve amplification curves are illustrated
in the right panel of Figur 5.
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Figure 5: Amplification curves for treated (red: KLF4, blue: reference gene) and untreated
(black: KLF4, green: reference gene) rats for the Octreotide LAR data set. The right panel
shows the cycle windows used in the analysis.

The simplified model was fitted using the MCMC algorithm described in Section 3, running
the algorithm for 50 mill. iterations. The convergence of the algorithm was monitored by
visual inspection of trace plots. The mixing was found to be reasonable, and the algorithm
was considered to have converged. Resulting trace plots for a few model parameters are
shown in Figure 3. After thinning to every 10000th iteration to reduce autocorrelation for
successive iterations, the initial 1000 iterations are considered burn-in iterations, leaving
4000 iterations for further analysis.

Estimated posterior means and 95% credibility intervals for the model parameters are
listed in Table 4. Similar results for the initial fluorescence for the individual amplification
curves, xi,0, i = 1, . . . , n, and for the efficiencies pi,k, for a selection of the curves, are
illustrated in Figures 7 and 8. The efficiencies are estimated to decrease from nearly 1 to
between 0.27 and 0.42 for the twelve curves. The precision τp of the efficiency model (15) is
estimated to be relatively high, and the posterior variability on logit-scale decreases with
cycle. The latter seems reasonable since, relative to the fluorescence intensities, the noise
of the amplification curves is expected to be largest close to the baseline cycles. From
Figure 7 we observe that the credibility intervals for the gene and treatment dependent
means of the initial fluorescence are of similar width as the corresponding intervals for the
individual initial values. This might seem counter-intuitive, but we should keep in mind
that the estimates are based on only three replicates within each gene and treatment group.

The estimated marginal posterior density of the main parameter of interest, the ratio Radj

(13), is shown in the right panel of Figure 7. The gene of interest, KLF4, is estimated
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Figure 6: Trace plots for some of the parameters for the Octreotide LAR data set. Every
10000th of 50 mill. iterations are shown.

to be up-regulated in the treated group compared to the control group. The posterior
mean gives a point estimate of 1.53, and using the sample quantiles, we arrive at a 95%
credibility interval between 1.15 and 1.99. The estimated posterior probability that Radj

exceeds 1 is P (Radj > 1 | y1, . . . , yn) = 0.996. This means that the posterior probability
that the gene of interest is up-regulated in the treated rats is estimated to 0.996.

5 Discussion

We have presented a Bayesian hierarchical model for quantitative real-time PCR data,
based on a generalisation of the branching process model of Jagers and Klebaner (2003).
The model allows for fluorescence intensity dependent efficiency, and includes noise in the
model for the reaction process as well as measurement error.

The approach relies on the assumption that the model for the efficiency is valid in the
selected cycle window, but it is not restricted to the specific model given in (15). In prin-
ciple, any model describing the relationship between efficiency and fluorescence intensity
or cycle can be used, as long as a corresponding cycle window representing the valid cycles
for the model can be identified.

In the full model in Section 2.1, we motivate the model for the fluorescence intensities by
a normal approximation to a binomial distribution of the number of new copies at each
cycle. This assumption can be questioned for small copy numbers combined with large
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Parameter Posterior mean 95% credibility interval
Lower limit Upper limit

τp 22900 11200 38800
αgoi,ctrl 13 11.9 14.1
βgoi,ctrl -1.49 -1.61 -1.36
αgoi,tr 12.4 11.8 13.2
βgoi,tr -1.43 -1.51 -1.36
αref,ctrl 13.9 12.6 15.3
βref,ctrl -1.59 -1.74 -1.44
αref,tr 14.7 13.8 15.9
βref,tr -1.65 -1.78 -1.55
τy 9.91e-05 7.81e-05 0.000122
κx0

12300 3260 27600
µgoi,ctr 0.00336 0.0027 0.00412
µgoi,tr 0.00694 0.00592 0.00803
µref,ctrl 0.0366 0.0338 0.0396
µref,tr 0.0499 0.0467 0.0533
Radj 1.54 1.15 2.04

Table 4: Estimated posterior means and 95% credibility intervals for the model parameters
for the Octreotide LAR data set. Here, ‘goi’ and ‘ref ’ denote the gene of interest and the
reference gene, respectively, and ‘tr’ and ‘ctrl’ the treated and control groups.
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Figure 8: Estimated posterior means (full lines) and 95% credibility intervals (black dashed
lines) for the efficiency p (upper panels) and logit(p) (lower panels) for three of the reactions
for the Octreotide LAR data set.

efficiencies. However, in the simplified model in Section 2.2 the noise in (6) is ignored, and
no such assumption is needed.

Due to the Markov structure of the model, the noise-free fluorescence x and the efficiencies
p are highly auto- and cross-correlated in the full model. In the simplified model, auto-
correlation for the efficiencies is still a source of slow mixing in the single-site MCMC
algorithm. Block sampling algorithms are known to improve mixing and convergence
properties, and blocking x and p, as well as related hyperparameters, could be explored.
However, a challenge of such an approach is to find joint proposal distributions that give
reasonable acceptance probabilities.

The model is based on the assumption that the amplification curve data are background
corrected in a preprocessing step, and the choice of background correction have potentially
a strong impact on the results. In principle, background correction could be included in the
model by adding a linear or non-linear term to the mean of the likelihood (14). However,
parameter identifiability might become an issue in this case, and introducing background
correction into the model remains a topic for further study.

We have focused on relative quantification, estimating the ratio Radj (13). However, if an
estimate of the scaling factor γ, relating fluorescence to DNA copy number, is available,
the approach can in principle also be used to quantify the absolute amount of target DNA
in a biological sample from the estimated initial fluorescence.
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A Experimental protocol for the Octreotide LAR data

The animal experiments were approved by the Animal Welfare Committee of St.Olav’s
University Hospital. Two groups of female Sprague-Dawley rats (body weight 193-227
g) were used, one group received Octreotide LAR and a control group received the LAR
vehicle. After 21 days the rats were anaesthesized, drained for blood and gastric oxyntic
mucosa was isolated. (For a full description of the experimental procedure see Erlandsen
et al. (2007)). Total RNA for qPCR was isolated using RNeasy Midi Kit (Qiagen, Valencia,
CA). cDNA synthesis and qPCR were performed using iScriptTMcDNA Synthesis Kit and
iQTM SYBR R© Green Supermix (Bio-Rad Laboratories, Hercules, CA), respectively, and
the qPCR reactions were done on the Mx3000PTMReal-Time PCR System (Stratagene,
La Jolla, CA). The gene of interest and reference gene used in the experiment were the
KLF4 (Unigene-ID Rn. 7719) and β-actin (Unigene-ID Rn. 94978). The gene specific
primers used for KLF4 were; forward primer: 5’-CTTGTGACTATGCAGGCTGT-3’, re-
verse primer: 5’-AGTGCCTGGTCAGTTCATCT-3’. The primers for the reference gene
were; forward primer: 5’-CTGGCTCCTAGCACCATGA-3’, reverse primer:
5’-AGCCACCAATCCACACAGA-3’. The PCR temperature profile was: once for 2 min
at 95 ◦C (activation), then 40 reaction cycles of 20 sec at 95 ◦C (denaturation), 30 sec
(optimised annealing temperature), 40 sec at 72 ◦C (synthesis) and finally 5 min at 72 ◦C
(elongation) and meltingpoint determination.
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