
NORGES TEKNISK-NATURVITENSKAPELIGE
UNIVERSITET

Fitting a log Gaussian Cox process with temporally varying effects
a case study

by

Janine B. Illian, Sigrunn H. Sørbye, H̊avard Rue & Ditte K. Hendrichsen

PREPRINT
STATISTICS NO. 17/2010

NORWEGIAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY

TRONDHEIM, NORWAY

This preprint has URL http://www.math.ntnu.no/preprint/statistics/2010/S17-2010.pdf

H̊avard Rue has homepage: http://www.math.ntnu.no/∼hrue
E-mail: hrue@math.ntnu.no

Address: Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491
Trondheim, Norway.



Fitting a log Gaussian Cox process with temporally varying

effects – a case study

J. B. Illian1,∗, S. H. Sørbye2, H. Rue3 and D. K. Hendrichsen4,5

December 19, 2010

Abstract

Integrated nested Laplace approximation (INLA) provides a fast and yet quite ex-
act approach to fitting complex latent Gaussian models which comprise many statistical
models in a Bayesian context, including log Gaussian Cox processes. This paper discusses
how a joint log Gaussian Cox process model may be fitted to independent replicated
point patterns. We illustrate the approach by fitting a model to data on the locations of
muskoxen (Ovibos moschatus) herds in Zackenberg valley, Northeast Greenland and by
detailing how this model is specified within the R-interface R-INLA. The paper strongly
focusses on practical problems involved in the modelling process, including issues of spa-
tial scale, edge effects and prior choice, and finishes with a discussion on models with
varying boundary conditions.
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1 Introduction

Integrated nested Laplace approximation (INLA) provides a fast and yet quite exact approach
to fitting latent Gaussian models which comprise many statistical models, including models
with temporal or spatial dependence structures (Rue et al., 2009). As a result, many com-
plex models that previously required the use of time-consuming Markov chain Monte Carlo
(MCMC) calculations can be fitted fast and conveniently. Log Gaussian Cox processes, a
particularly flexible class of spatial point process models are a special case of latent Gaussian
models. Rue et al. (2009), Illian et al. (2010) and Illian and Rue (2010) show that complex
point process models, including hierarchically marked point processes may conveniently be
fitted with INLA. Standard approaches to parameter estimation for complex models based
on MCMC, for example, would be very cumbersome and computationally prohibitive.

1Centre for Research into Ecological and Environmental Modelling, The Observatory, University of St An-
drews, St Andrews KY16 9LZ, Scotland; janine@mcs.st-and.ac.uk
2Department of Mathematics and Statistics, University of Tromsø, N-9037 Tromsø, Norway;
sigrunn.sorbye@uit.no
3 Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491 Trondheim,
Norway; havard.rue@math.ntnu.no
4 Department of Arctic Environment, National Environmental Research Institute, Aarhus University, DK-4000
Roskilde, Denmark
5 Norwegian Institute for Nature Research, N-7047 Trondheim, Norway; ditte.hendrichsen@nina.no
∗Corresponding author

1



Fitting spatial point process models to some spatial patterns is computationally intensive due
to – amongst other things – the large number of individual points in the data set (Burslem
et al., 2001; Waagepetersen, 2007; Waagepetersen and Guan, 2009; Law et al., 2009). Here, we
consider a rather different situation. In some applications difficulties arise since point patterns
with only a very small number of points can be collected, due to logistic limitations (e.g. for
reasons of accessibility). These patterns are sometimes too small to justify the modelling of
a single pattern. However, if replicates exist, a joint model of all replicates with a factor
that accounts for variability among replicates caused by different conditions on different days
may be more suitable. Mixed effect models for replicated point patterns have recently been
considered in a frequentist approach for Gibbs processes (Illian and Hendrichsen, 2010). In
that approach, parameter estimation was based on the pseudolikelihood of a Gibbs process
as well as maximum quasi-likelihood optimisation. Here we discuss how data with a similar
structure may be modelled with a log-Gaussian Cox process.
The data that we have available have been collected at different time points and hence we
consider a complex point process model with a temporally varying effect and construct a model
that may then be fitted with INLA. This approach provides us with more general modelling
facilities that allow us to fit several models of varying complexity and compare their suitability
for a given data set. We show in detail how this model is specified in practice, within the
R-interface R-INLA (available at www.r-inla.org), and discuss issues involved in fitting the
model to a data set derived from an ecological field study. We use a data set detailing the
locations of muskoxen herds in Greenland (Illian and Hendrichsen, 2010; Schmidt et al., 2010)
to illustrate the approach. In addition, we discuss issues of fitting log Gaussian Cox processes
to point patterns that have been observed in observation windows where some of the edges
are real edges (Illian et al., 2008) which is particularly common in animal studies.

2 Modelling approach

2.1 The data

We consider a situation where T point patterns x1, . . . ,xT have been observed in an observa-
tion window S at different points in time, t = 1, . . . , T . The objects represented by the points
may be considered independent of the objects observed at other points in time conditional on
common observed (spatial) covariates z1, . . . , zp and other unobserved covariates. The pattern
may differ between the different time points as a result of observed and unobserved influences
specific to a given point in time. In order to fit a single model to all replicates, ”time” may
be treated as a factor in a point process model. For illustration, the approach is applied to a
data set detailing the spatial locations of muskoxen (Ovibos moschatus) herds in Zackenberg
valley, Northeast Greenland, 74◦30′N – 21◦00′W (hereafter referred to as ”muskoxen data”)
at different points in time within several years (Meltofte and Berg, 2004). See Figure 1 A and
B for the location of the study area within Greenland and Figure 1 C for a map of the area.
The muskoxen at Zackenberg have been studied since 1996 as part of a large-scale monitoring
programme in the area (Meltofte et al., 2008). The census area covers 45 square km, ranging
from sea level to 600 masl. The spatial locations of muskoxen herds have been recorded weekly
during the summer months, July and August, occasionally also in June. During the censuses,
all herds within the census area have been mapped to the nearest 100 metres (Schmidt et al.,
2010), then approached and identified to age and sex following Olesen and Thing (1989).
The categories are calves, yearlings, two-year, three-year and four-years or older. There is
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Figure 1: Map indicating the location of the Zackenberg valley within Greenland (A), within
the area sourrounding the valley (B) and the structure of the Zackenberg valley and its
boundaries (C).

an interest in analysing the spatial distribution of muskoxen in relation to spatial covariates
such as altitude or an index of vegetation productivity, the normalized differential vegetation
index (NDVI).
In this paper we analyse a subset of the muskoxen data corresponding to the years 2005–2007.
The observed locations of the muskoxen herds across all time points during these years are
illustrated in Figure 2, indicating that the intensity of the patterns seems to be particularly
high in one specific area that forms a diagonal across the plot. Illian and Hendrichsen (2009)
model a similar data set with a Gibbs process and fit the model by approximating the pseu-
dolikelihood based on a generalised linear mixed model with Poisson outcome. They include
”time” as a random effect applying the approximate Berman-Turner device (Baddeley and
Turner, 2000) in a frequentist approach. Here we specify a log-Gaussian Cox process model
and fit it in a Bayesian context, an approach that allows more flexibility and makes the fitting
and comparison of several models of varying complexity feasible.

2.2 Model fitting in INLA

A log-Gaussian Cox process is a hierarchical Poisson process with random intensity Λt(s) =
exp{ηt(s)}, where ηt = {ηt(s) : s ∈ Rd} denotes a Gaussian field. This type of model is
a special case of the more general class of latent Gaussian models, for which deterministic
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Figure 2: Plot of the locations of muskoxen herds observed in Greenland on 26 days during
the summer in 2005-2007, distinguished by year; circles: 2005, triangles: 2006 and crosses:
2007.

Bayesian inference can be performed using the INLA-methodology, see Rue et al. (2009).
We restrict the analysis to two-dimensional patterns and fit a log-Gaussian Cox process to
a specific point pattern xt discretising the observation window S into N grid cells {si}Ni=1,
where each cell has area |si|. For each time point t = 1, . . . , T , let yti denote the observed
number of points in grid cell si. Conditional on the intensities Λt(si) = exp{ηt(si)}, the
joint pattern of replicates can be described as a superposition x =

⋃
t=1,...,T xt of independent

Poisson processes, where
yti|ηt(si) ∼ Po(|si| exp(ηt(si))). (1)

We assume that the log-intensity of the Poisson processes can be described by a linear predictor

ηt(si) = β0 + βf +
∑

α

βαztα(si) +
∑

γ

fγ(ctγ(si)), (2)

in which the off-set β0 represents an intercept common to all time points while the factor
βf accounts for variation in intensity across different time points. The linear effects of (en-
vironmental) covariates can be incorporated as fixed factors {ztα(.)}, which may or may not
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vary with time. We also include potentially smooth effects of covariates {ctγ(.)}, in which the
functions {fγ(.)} are estimated based on all replicates.
Applying the INLA-methodology, the log-intensity in (2) is estimated assigning Gaussian
priors to all components of the random latent field ζ = {β0, βf , {βα}, {fγ(.)}}, as the resulting
model can be viewed as a latent Gaussian model. The posterior marginals of each element ζj
of the latent field are given by

π(ζj | y) =
∫

π(ζj | θ,y)π(θ | y)dθ, (3)

where the vector θ denotes the hyperparameters of the model. Here, θ includes the parameters
used in defining prior distributions for the precision (inverse variance) of the Gaussian priors,
in which

π(θj |y) =
∫

π(θ|y)dθ−j . (4)

The INLA-methodology applies a nested formulation to estimate (3)–(4), combining analytical
approximations with numerical integration, see Rue et al. (2009) for a thorough description.
The computations are based on approximating the full conditional of the latent field by a
Gaussian distribution π̃G(ζ|θ,y). Further, a Laplace approximation is used to estimate the
posterior of the hyperparameters, given by

π̃(θ|y) ∝ π(ζ, θ,y)

π̃G(ζ|θ,y)

∣∣∣∣
ζ=ζ∗(θ)

,

where for each θ, ζ∗(θ) is the mode of the Gaussian appproximation. Estimates of the
marginals π(ζj |θ,y) in (3) can be found either using a Laplace or a simplified Laplace ap-
proximation. Alternatively, the marginals can be estimated using a Gaussian approximation
derived from π̃G(ζ|θ,y). Although the Gaussian approximation might provide some inaccura-
cies in estimating the marginals (Rue and Martino, 2007), this approach is used here to speed
up calculations. Using numerical integration with respect to θ, the resulting approximation
to (3) is given by

π̃(ζj | y) =
∑

k

π̃G(ζj | θk,y)π̃(θk | y)∆k, (5)

where π̃(θk | y) is found by numerical integration in (4) and ∆k denotes the area weight
corresponding to θk.

2.3 Specifications for the muskoxen data set

In fitting (2) to the given subset of the muskoxen data, we have considered two observed en-
vironmental covariates, the altitude and the normalized differential vegetation index (NDVI).
The vegetation index is not available for all time points, including the years 2006 and 2007.
In various submodels for individual years this covariate has turned out to be non-significant
and is hence not included in the final model.
To account for small scale spatial variation not caused by environmental covariates but by
inter-individual (or here: inter-herd) interactions, we apply the ideas in Illian et al. (2010) and
introduce a constructed covariate in (2), that relates each midpoint of cell si ∈ S to pattern
points in the neighbourhood. Specifically, for grid cell si we define the constructed covariate
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ct(si) to be the Euclidean distance from the midpoint mi of cell si to the nearest point xtj in
the pattern outside si at time point t, i.e.

ct(si) = min
xtj∈xt

(|mi − xtj |), (6)

where |.| denotes the Euclidean distance. However, for each time point the constructed co-
variate for cell si is defined to be missing if the distance ct(si) is larger than the minimum
Euclidean distance between mi and the border, see section 2.5 for remarks on potential edge
effects. The constructed covariate reflects small-scale spatial interaction (attraction or repul-
sion), see Section 2.4 for further discussions on the choice of the constructed covariate. It is
incorporated in (2) using a smooth function fcc(.) as the functional relationship between the
intensity and the constructed covariate may not be linear. Specifically, the function fcc(.) is
modelled as a first-order random walk process, using a gamma prior for the precision param-
eter. Similarly, large-scale spatial variation is included in (2) as a smooth function in space
fspat(.) for all the grid cells and across all time points. Here, the spatial function is specified
as a second-order random walk on a lattice, as this spatial model is supported by R-INLA.
A gamma prior is used also for the precision parameter of the spatial model, see Section 2.4
and 3.1 for a discussion on appropriate choices for the prior parameters.
The resulting model for the muskoxen data set can be summarised as

ηt(si) = β0+βyear+β1z1(si)+fday(t)+fcc(ct(si))+fspat(si), t = 1, . . . T, i = 1, . . . , N, (7)

where z1(.) denotes the altitude for the different grid cells. We have modelled the temporally
varying effect by a factor βyear accounting for the yearly increase in mean intensity observed for
the years 2005-2007. In addition, we include a smooth function fday(t) assuming independent
Gaussian observations, which accounts for random variation in intensity on different days. To
ensure identifiability of the intercept, all of the smooth functions are constrained to sum to
zero.

2.4 Issues of spatial scale – prior choices

In an analysis of a spatial pattern, it is crucial to bear in mind the spatial scales that are
relevant for a specific spatial data set. Here we assume that social behaviour among the
herds operates at a local spatial scale and that the association with environmental covariates
operates on the scale of the variation in these covariates and hence often on a larger spatial
scale.
The large-scale spatial effect in (7) is included as a spatially structured error term to account
for any spatial autocorrelation unexplained by covariates in the model. The choice of the
gamma prior for the precision of the spatially structured effect determines the smoothness of
the spatial effect and, through this, the spatial scale at which it operates. To avoid overfitting,
and in order to obtain a model describing a generally interpretable trend we choose the prior
so that the spatial effect operates at a similar spatial scale as the covariate. This ensures
that the spatially stuctured effect does not operate on a smaller scale than the covariate as it
would otherwise be likely to explain the data better than the covariates, rendering the model
rather pointless. We approach this by repeatedly fitting a simple model (see Section 3.1),
comparing the estimated spatial effect to a plot of the covariate.
If small scale inter-individual spatial behaviour is of specific interest in an application it
may be modelled by the constructed covariate to account for local spatial behaviour. The
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muskoxen herds are likely to interact mainly with the herd that is closest to them (Dice,
1952; Clark and Evans, 1955) and so the distance to the nearest neighbour has been chosen
here as a constructed covariate accounting for local behaviour. This is of interest since the
model may be used to reveal the relevant distances at which the herds interact. Again there
is a danger of overfitting, especially since the constructed covariate is estimated directly from
the point pattern. Illian et al. (2010) discuss practicalities of using a spatial constructed
covariate and point out the importance of the choice of the covariate and its relevance to
a specific application. The choice of grid size is also linked to issues of spatial scale. Here
we apply the same grid and grid resolution as used in the data collection of locations of the
muskoxen herds.

2.5 Edge effects and boundary conditions

Spatial point pattern data are usually observed in a finite observation window only. Since
there typically is no data about the behaviour of the pattern outside the window, edge effects
occur and often have to be accounted for (Illian et al., 2008), in particular in the context of
stationary point processes. Edge effects have only a minor impact on large point pattern data
sets such as the rainforest data discussed in Rue et al. (2009).
However, in smaller data sets, including the data considered here, edge effects are certainly
relevant. Here, we consider a data set observed within a polygonal window assuming that
Λt(.) is defined in R2, i.e. that if the pattern had been observed beyond any of the edges it
would have the same properties as inside the observation area. For simplicity, we currently
assume that all edges are of the same quality, i.e. that they have been arbitrarily chosen
and have no impact on the spatial pattern. In applications this is not necessarily the case
as the boundary may reflect a true barrier beyond which the conditions are very different.
This might imply that the pattern does not continue in exactly the same way and that, more
importantly, the barrier has a direct influence on the pattern near the edge. We consider
these issues in the discussion indicating potential approaches to solving these.
It is necessary to account for potential edge effects in the constructed covariate leading to an
overestimation for cells close to the boundary as there might be points outside the observation
window that are closer to a specific cell than its nearest neighbour within the window. In the
calculation of the constructed covariate we hence exclude all cells for which the distance of
its midpoint to the nearest point in the pattern is larger than its minimum distance to the
boundary.

3 Results

To illustrate the modelling approach we consider a subset of the muskoxen dataset, consisting
of the patterns collected on T = 26 different days. The observation period included weekly
observations for a total of 10, 7 and 9 days during the summers of 2005-2007, respectively.
Across the years, the subset consists of a total of 754 observed muskoxen herds. These are
likely to include repeated observations of the same muskoxen herds at different times points.
Since information on herd identity is not available we cannot account for this in the model.
We divide the observation window S into a total of N = 4533 grid cells, each having an
area equal to 0.01 km2. Technically, the joint model for all locations and replicates is run in
R-INLA stacking all observations in one vector y = {yti, t = 1, . . . , T, i = 1, . . . , N}, having
corresponding vectors for the other terms in the model. Consequently, for the given subset of
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the data, the length of these vectors is 117858. We fit the model in (7) to the data and apply
the deviance information criterion (DIC) (Spiegelhalter et al., 2002) to assess the importance
of the different terms in the model.

3.1 Prior choices

We initially fit a very simple model to the data where we explain the location of the herds
purely based on a common spatial effect for all time points. This is done to assess the res-
olution of the spatial effect and simplify prior choice. We fit the model repeatedly using
different values for the shape parameter of the gamma prior and compare the resulting es-
timated spatial effects. We deliberately choose the prior for the spatial effect manually as
assessing the model based on DIC would encourage overfitting. Clearly, prior choices for the
parameters could be done using the full model in equation (7) as well, but this would be more
time-consuming.
We apply the simple model

ηt(si) = β0 + fspat(si), (8)

which takes about 15 seconds to run for each of the different parameter choices. The call in
R-INLA to fit this simple model is

> formula = y ~ 1 + f(i.spat, model = "rw2d", nrow = nrow, ncol = ncol,

param = prior.spat)

> result = inla(formula, data=data,family = "poisson",verbose =TRUE,

control.inla = list(strategy = "gaussian"),

control.compute=list(dic=TRUE))

The formula accounts for a common intercept, while f(i.spat) represents the smooth func-
tion of the spatial effect fspat(si). The spatial model is specified as a second-order random walk
on a lattice (rw2d) having dimension ncol×nrow, chosen to cover the observation window.
The shape and scale parameter of the gamma distribution used as a prior for the precision of
the spatial model, is given as the parameter vector prior.spat. Clearly, the function call to
INLA bears strong resemblance to that for other models in R, such as lm or glm, and similar
to the latter, the model family has to be given as family = "poisson". Due to the size
of the final model we apply the Gaussian approximation to estimate the marginals of each
component of the latent field (strategy=gaussian). Also, we specify that the DIC value
should be calculated (dic=TRUE).
Figure 3 illustrates how the spatial effect varies with different prior choices for the precision
parameter in the spatial model of fspat(.). We compare the smoothness of the estimated
surface to that of the observed altitude (Figure 3 (a)). Applying prior parameters (1, 0.001)
clearly results in a low degree of smoothing. The spatial effect reflects very local behaviour
(clustering at a smaller scale than the empirical covariate) and hence potentially yields a model
that is overfitted to the given observations, see Figure 3 (b). In Figure 3 (c), a moderate degree
of smoothing is obtained using the parameters (40, 0.001), in which the spatial effect clearly
indicates the higher intensity of points in the central area that is also obvious from the plot of
the pattern. A similar degree of smoothness results for a quite wide range of prior parameters
and hence this prior has been chosen for the analysis of the full model. Figure 3 (d) shows the
estimated spatial effect using the parameters (100, 0.001), leading to a very smooth spatial
effect which seems too strong for the current application.

8



0

100

200

300

400

500

600

(a)

−3

−2

−1

0

1

2

3

(b)

−2

−1

0

1

2

(c)

−0.2

−0.1

0.0

0.1

(d)

Figure 3: The observed altitude (a). The estimated spatially structured effect using the
parameters (1, 0.001) (b), (40, 0.001) (c) and (100, 0.001) (d) for the gamma prior in model
(8).

We take a similar approach to determine the prior for the constructed covariate and again fit
a simple model to the data and observe how the smoothness of the estimated function varies
with the choice of prior parameters. The model we fit here contains only the constructed
covariate and a common intercept, such that

ηt(si) = β0 + fcc(ct(si)). (9)

Figure 4 (a) indicates that using a gamma prior with parameters (2, 0.01), results in a very
wiggly curve. This is likely to be due to uninformative noise and stronger smoothing of the
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curve is required. The choice of prior parameters (60, 0.01), yields a much smoother curve,
see Figure 4 (b). The estimated curve looks very similar for quite a wide range of prior
parameters and this set of priors has been chosen for the final analysis. Finally, the effect of
choosing an extreme prior becomes clear in Figure 4 (c) with parameters (2000, 0.01) which
results in a very smooth and much flatter curve.
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Figure 4: The estimated effect of the constructed covariate including 95% pointwise credible
intervals, using the parameters (2, 0.01) (a), (60, 0.01) (b) and (2000, 0.01) (c) for the gamma
prior in model (9).

3.2 Model selection

Informed by the fit of the simple model in equation (8) we choose the prior parameters for
the spatial effect as prior.mod= (40, 0.001) and fit the full model in (7) to the muskoxen
dataset. The formula specification to run this model in R-INLA has the following format,

> formula = y ~ year.factor + cov.alt + f(day, model = "iid") +

f(inla.group(cov.cc), model = "rw1", param = prior.cc) +

f(i.spat, model = "rw2d", nrow = nrow, ncol = ncol, param = prior.spat)

The model took 213 seconds to run on a 12 core 2.33 GHz machine and the DIC for this model
is 8515. By specifying the year factor with three levels, we estimate a common intercept
β̂0 = −5.108. The additionally estimated coefficients for the years 2006 and 2007 are β̂year =
(0.108, 0.505), accounting for the increase in observed muskoxen herds during these years.
Having accounted for the annual effect, the estimated temporal effect as a function of days
was seen to be negligible. The altitude (specified by cov.alt), has a significant negative
effect on the intensity of the points with an estimated mean equal to −0.006 with a 95%
credible interval given by (−0.007, −0.004), see Figure 5 (a) for the resulting estimated effect
of altitude. The plot of the constructed covariate clearly indicates local clustering (Figure 5
(b)). The estimated spatial effect (Figure 5 (c)) shows a smooth and non-constant surface.
This surface might suggest other factors that have not been considered in the model (or in
the overall study) but may influence the pattern. Most markedly, in the south west corner
fewer herds appear to have been observed than the covariate altitude can explain.
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Figure 5: The estimated effect of altitude (a), the estimated function of the constructed
covariate including 95% pointwise credible intervals (b) and the estimated spatially structured
effect (c) for the full model in (7).

In order to assess the effect of the various terms in (7), we repeatedly fit submodels of the
full model leaving out one of the terms at a time and comparing the model fit based on the
DIC. The results are summarized in Table 1.
In concrete applications several covariates are often available and the DIC may be used to
identify the best model in terms of the covariates considered. We notice that DIC for a model
without the year and day effects is clearly higher than the full model supporting the inclusion
of the time-varying effect in the model. Likewise, the model without the altitude covariate
leads to a DIC of 8558, clearly indicating that the model may be improved by including this
covariate. Table 1 also illustrates that both the inclusion of a constructed covariate and a
large-scale spatial effect improves the model as the spatial autocorrelation cannot be explained
fully by the covariate.

4 Discussion

In many areas of science, rapidly improving technology facilitates data collection these days.
Ecologists in particular, have become aware of the importance and relevance of spatial in-
formation for an understanding of population dynamics. For these reasons, spatially explicit
data sets have become increasingly available in ecology as well as many other areas of sci-
ence, including geosciences, molecular genetics, evolution and game theory with the aim of
answering a similarly broad range of scientific questions. Currently, these data sets are often
analysed with methods that do not make full use of the available spatially explicit informa-
tion. Hence there is a need for making the existing point process methodology available and
accessible to applied scientists by facilitating the fitting of suitable models to help provide
answers to concrete scientific questions. In order to address this issue, this paper illustrates
in detail the process of fitting a spatial point process model to a realistically complex data
set using modern model fitting methodology. This provides non-specialists with an illustra-
tion of a modelling approach that makes the fitting of complex spatial point process models
accessible.
In the specific case considered here, a simple analysis of each of the pattern that does take
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the spatially explicit information into account would not be sufficient. The small size of the
individual patterns would render this analysis rather uninformative such that a complex joint
model of several subpatterns has to be considered in order to gain an understanding of the
system. In particular, to be able to fit this complex model we apply the deterministic Bayesian
INLA-methodology, to fit a model to a replicated point pattern allowing for variation among
the replicates by considering time-varying effects. The INLA approach speeds up parameter
estimation substantially such that we can fit several models within feasible time and use model
comparison methods to identify the most suitable model.

4.1 Spatial scale

In general, the issue of spatial scale has to be taken seriously when fitting spatial models,
irrespective of whether these are spatial point process models or other spatial models. Clearly,
any model can only explain mechanisms that operate on the spatial scale that the data have
been collected. In particular, in the example considered here, we find that altitude is a better
predictor for the spatial distribution of muskoxen than vegetation greenness (measured as
NDVI). That NDVI does not adequately explain muskoxen spatial distribution is likely to
be related to spatial scale, where NDVI does not adequately capture the local variation in
plant communities, growth and quality within a single valley. NDVI has become increasingly
popular as a measure of primary production. It is highly correlated with herbivore distribution
at larger scales (Pettorelli et al., 2006), and has become a useful tool in explaining herbivore
distribution and movement in areas where direct measurements of vegetation variables such as
biomass and quality is not available. However, it is less suitable in explaining habitat choice at
finer scales where habitat choice is determined by several factors, including nutrient contents
of foraging plants, the availability of salt licks, accessibility as well as behavioural interactions
between animals (Bro-Jorgensen et al., 2008). Muskoxen have a high preference for Salix, and
tend to select snow bed and moist meadows such as fens during summer time (Thing et al.,
1987). Whereas moist meadows have a high biomass and a high primary production, snow
beds are characterised by sparse vegetation of primarily willow, and a late green-up. NDVI is
therefore unlikely to pick up the small scale variation in vegetation distribution. Altitude, by
contrast, has a strong influence on vegetation communities, and may more accurately capture
the variations in vegetation distribution, phenology and green-up (Mysterud et al., 2001),
factors which are likely to be of more importance to muskoxen than the more crude measure
of primary productivity.

4.2 Model comparison and assessment

The modelling approach provides methods of model comparison through the DIC so that
it was possible to identify the most suitable model for the specific data set and to avoid
over-parameterisation. In addition, the spatially structured effect may be used for model
assessment as it reveals spatial structures in the data that have not been explained by the
model and potentially points to covariates that may be included in an improved model.
In the example considered here, the model was unable to explain the low number of muskoxen
herds in the south south-western section of the census area. In Zackenberg, this area together
with the south-eastern peninsula and the slopes above 500 masl are characterised by a mosaic
of vegetation types, but with a proportionally higher amount of low productive fell-fields and
barren lands (Fredskild and Mogensen, 1997; Bay, 1998), and these areas are likely to be less

12



preferred by muskoxen. By contrast, the diagonal band with high muskoxen densities corre-
spond with low-lying moist fens and grassland, vegetation types which are highly preferred
by muskoxen (Thing et al., 1987; Forchhammer et al., 2005). The covariates included in the
current model clearly do not reflect this much detail on the type of the local vegetation.

4.3 Boundary conditions

The current model assumes that all edges of the observation window were artificial edges
determined by the choice of the observation window and hence that the pattern was a sample
from a stationary process that continues in the same way beyond the boundaries. This
assumption is sensible in many data examples, where the observation window is a plot within
a larger area with similar characteristics. For instance, the examples discussed in (Rue et al.,
2009) and Illian et al. (2010) consider point patterns in rectangular observation window whose
edges have been arbitrarily chosen. However, strictly speaking, this assumption does not hold
for the concrete example data set. For instance, the southern boundary is formed by the sea
and muskoxen herds would never be observed beyond this border. In some data sets a border
like this might constitute a reflective boundary causing a higher intensity of animals close to
it. In other cases, the animals might actively avoid the vicinity of this boundary.
Muskoxen are highly motile and in principle capable of utilising the entire census area, in-
cluding the area immediately bordering the shoreline. However, their incitement to approach
the boundary may depend on a number of factors, of which the distribution and quality of
the vegetation is most obvious. The distribution of plant communities is strongly affected by
factors such as soil quality, water and nutrient availability and exposure, all of which may be
influenced by distance to the sea. It is therefore relevant to consider covariates when inter-
preting the effect of the boundary. In addition to the absolute nature of the shoreline as a
boundary, other sections of the boundary may be characterised by reduced connectivity across
the border, without being an absolute obstacle. For example, large sections of the left hand
(western) and right hand (eastern) boundaries are demarcated by rivers which are passable
to muskoxen, but where the degree of connectivity may vary with season (influencing water
discharge and break-up of ice) and with the age or condition of the animals attempting to
cross.
Situations where spatial point patterns have been observed within an observation window with
a true edge have been discussed in the context of finite point processes (Illian et al., 2008).
However, the given data set cannot be treated as a finite point process since it is not a truly
finite process. The animals can move in and out of the area at some parts of the boundary and,
more importantly, these boundaries have been arbitrarily chosen. Hence it is useful to assume
that the pattern continues in the same way beyond some part of the boundary and that the
edge has no effect on the pattern. In other words, a more realistic model of the data than the
model that we currently consider would consider the varying nature of the boundary. This
issue is likely to be relevant in many studies where spatial data on a large spatial scale have
been observed. For practical reasons (e.g. accessibility or ease of data collection) observation
areas are often chosen to line up with existing natural borders which might directly impact
on the spatial behaviour within the resulting observation window. In some applications, the
influence of the edge on the pattern might even be of primary interest to a study. Approaches
that allow the fitting of complex models to data sets with complicated boundary structures
are highly relevant not only to the specific data set discussed here but also to many other data
sets detailing the locations of animals, such as marine mammals (Sveegaard et al., 2010).
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Currently, it is not possible to account for different types of edges in INLA. However, the
approaches introduced in Lindgren et al. (2010) can be used to incorporate these in a model
in a straight forward way based on stochastic partial differential equations where different
boundary conditions may be specified. These new developments will soon be incorporated as
models in INLA and may then be applied to data sets with varying types of boundaries.
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Model Formula for ηt DIC

Full model β0 + βyear + β1z1(.) + fday(.) + fcc(.) + fspat(.) 8515
Without temporal effect β0 + β1z1(.) + fcc(.) + fspat(.) 8548
Without altitude β0 + βyear + fday(.) + fcc(.) + fspat(.) 8558
Without constructed covariate β0 + βyear + β1z1(.) + fday(.) + fspat(.) 8795
Without spatial effect β0 + βyear + β1z1(.) + fday(.) + fcc(.) 8561

Table 1: DIC values for different fitted models for the muskoxen data.
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