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Abstract

Data cloning method is a new computational tool for computing maximum likelihood estimates in

complex statistical models such as mixed models. The data cloning method is synthesized with

integrated nested Laplace approximation to compute maximum likelihood estimates efficiently via

a fast implementation in generalized linear mixed models. Asymptotic normality of the hybrid

data cloning based distribution is established aided by modification of Stein’s Identity. The results

are illustrated through a series of well known examples. It is shown that the proposed method as

well as normal approximation perform very well and justify the theory.

Keywords: Approximate Bayesian Inference, Asymptotic Normality, Data Cloning, Generalized

Linear Mixed Models, Integrated Nested Laplace Approximation, Stein’s Identity.

1. Introduction

Non-Gaussian repeated measurements such as longitudinal and clustered data are common

in many sciences such as biology, ecology, epidemiology and medicine. The Generalized Linear

Mixed Models are flexible models for modeling these types of data. As an extension of generalized

linear models (GLMs) (McCullagh and Nelder, 1989), a GLMM assumes that the response variable

follows a distribution from the exponential family and is conditionally independent given latent

variables, while the latent variables are modeled by random effects that are typically Gaussian

(Breslow and Clayton, 1993).
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Statistical inferences in such models has been the subject of a great deal of research over the

past decade. Both frequentist and Bayesian methods have been developed for inference in GLMMs

(McCulloch, 1997). Due to the advances in computation, the most commonly used approach for

inference in these models is based on the Bayesian paradigm, especially Markov chain Monte Carlo

(MCMC) algorithms. But Bayesian inferences depend on the choice of the prior distributions and

the specification of prior distributions is not straightforward in particular for variance components

(Fong et al., 2009). Moreover, MCMC algorithms applied to these models come with a wide range

of problems in terms of convergence and computational time.

A recent suitable alternative method to carry out likelihood based inference in GLMM can

be the data cloning (DC) method, which was first introduced by Lele et al. (2007) in ecological

studies. DC uses an MCMC algorithm from an artificial constructed distribution, named DC-

based distribution, to compute maximum likelihood estimates (MLE) and their variance estimates.

Although the distribution looks like a Bayesian posterior distribution, but it is constructed from

two functions which are not in fact a prior distribution and a likelihood. However, considering

them as prior and likelihood can be mimicked virtually (Baghishani and Mohammadzadeh, 2009).

The trick in the DC is generating samples from a DC-based distribution constructed by duplicating

the original data set enough times, k say, such that the sample mean as well as the scaled sample

variance converge to MLE and its variance estimate. Computation, however, is an issue since the

usual implementation is via MCMC.

It is the main purpose of this paper to describe how DC method may be synthesized with inte-

grated nested Laplace approximation (INLA) introduced by Rue and Martino (2007) and Rue et al.

(2009), using Stein’s Identity proposed by Weng and Tsai (2008), to compute MLE efficiently. It

is also the aim to establish the asymptotic normality of the new hybrid DC-based distribution in

a GLMM.

In the next section we describe the model and INLA methodology. Also, we represent Stein’s

Identity. Section 3 describes the new hybrid DC method. In Section 4, the performance of the

method is explored through a series of well known examples. All technical details for establishing

the asymptotic normality of the hybrid DC-based distribution are presented in Section 5. Finally,

Section 6 concludes with a brief discussion.

2



2. Model and INLA

In this section we introduce the our basic model and INLA methodology. We also represent

Stein’s Identity to use for establishing the asymptotic normality of the hybrid DC-based distribu-

tion.

2.1. The Model

Generalized linear mixed models are flexible models for modeling non-Gaussian repeated mea-

surements. On the basis of the GLM, the GLMM assumes that the responses are independent

conditional on the random effects and are distributed according to a member of the exponential

family.

We consider clustered data in which repeated measures of a response variable are taken on a

random sample of m clusters. Consider the response vectors yi = (yi1, . . . , yini)
T , i = 1, . . . ,m.

Let n =
∑m

i=1 ni be the total sample size. Conditional on r × 1 vector of unobservable cluster-

specific random effects ui = (ui1, . . . , uir)T , these data are distributed according to a member of

the exponential family:

f(yij|ui,β) = exp{yij(xT
ijβ + vT

ijui)− a(xT
ijβ + vT

ijui) + c(yij)},

for i = 1, . . . ,m; j = 1, . . . , ni, in which xij and vij , are the corresponding p- and r-dimensional

covariate vectors associated with the fixed effects and the random effects respectively, β is a p-

dimensional vector of unknown regression parameters, and a(·) and c(·) are specific functions. Here

τij = xT
ijβ + vT

ijui is the canonical parameter. Let μij = E[Yij|β,ui] = a
′
(τij) with g(μij) = ηij =

xT
ijβ + vT

ijui, where g(·) is a monotonic link function. Furthermore, assume ui comes from a

Gaussian distribution, ui|Q ∼ N(0, Q−1), in which the precision matrix Q = Q(θ) depends on

parameters θ. Let θ denote the d × 1 vector of the variance components for which prior π(θ) is

assigned. We further assume that β is assigned a normal prior distribution, π(β), with known

hyperparameters. Let also ψ = (β,u) denote the q × 1 vector of parameters assigned Gaussian

priors. Moreover, let y = (y1, . . . ,ym), θ ∈ Θ, an open subset of �d, and ψ ∈ Ψ, an open subset

of �q. Now, the posterior density is defined by

π(ψ,θ|y) ∝ π(ψ|y,θ)π(θ|y) ∝ π(θ)π(β)|Q(θ)|1/2 exp

{
−1

2
uTQ(θ)u+

m∑
i=1

log f(yi|ψ)

}
. (1)

3



Then, we can write

log π(ψ,θ|y) ∝ log π(ψ|y,θ) + log π(θ|y) = �n(ψ) + �n(θ).

2.2. Integrated Nested Laplace Approximation

Because of the usefulness and easy implementation of the MCMC methods, the most commonly

used approach for inference in the GLMMs is based on Bayesian methods and MCMC sampling.

Considering (1) the main aim is to compute the posterior marginals π(ψl|y), l = 1, . . . , q and

π(θv|y), v = 1, . . . , d. It is well known, however, that MCMC methods tend to exhibit poor

performance when applied to such models (Rue et al., 2009).

INLA is a new tool for Bayesian inference on latent Gaussian models introduced by Rue et al.

(2009). The method combines Laplace approximations and numerical integration in a very efficient

manner. INLA substitutes MCMC simulations with accurate, deterministic approximations to

posterior marginal distributions. The quality of such approximations is high in most cases such

that even very long MCMC runs could not detect any error in them.

We can write

π(ψl|y) =
∫
π(ψl|θ,y)π(θ|y)dθ,

π(θv|y) =
∫
π(θ|y)dθ−v,

and the key feature of INLA is to use this form to construct nested approximations

π̃(ψl|y) =
∫
π̃(ψl|θ,y)π̃(θ|y)dθ,

π̃(θv|y) =
∫
π̃(θ|y)dθ−v,

where Laplace approximation is applied to carry out the integrations required for evaluation of

π̃(ψl|θ,y). The approximate posterior marginals obtained from INLA can then be used to compute

summary statistics of interest, such as posterior means, variances or quantiles.

2.3. Stein’s Identity

This subsection represents Stein’s Identity. We use it to establish the asymptotic normality of

the hybrid DC-based distribution in Section 5. For a detailed account of Stein’s Identity, we refer

readers to Woodroofe (1989).
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Let Γ be a finite signed measure of the form dΓ = fdΦr in which f is a real-valued function

defined on �r satisfying
∫ |f |dΦr <∞. Write Φrh =

∫
hdΦr for functions h for which the integral

is finite and also write Γh =
∫
hdΓ. For s ≥ 0, let Hs be the collection of all measurable functions

h : �r −→ � for which |h(a)| ≤ c(1 + ‖a‖s) for some c > 0, where a ∈ �r and let H = ∪s≥oHs.

Given h ∈ Hs, let h0 = Φrh, hr = h, and

hj(b1, . . . , bj) =
∫
�r−j

h(b1, . . . , bj ,e)Φr−j(de),

gj(b1, . . . , br) = e
1
2
b2j

∫ ∞

bj

{hj(b1, . . . , bj−1, c) − hj−1(b1, . . . , bj−1)}e−
1
2
e2
dc,

for −∞ < b1, . . . , br <∞ and j = 1, . . . , r. Then let Uh = (g1, . . . , gr)T . Following lemma states a

modified version of Stein’s Identity.

Lemma 1. (Weng and Tsai, 2008). Let s be a nonnegative integer and let dΓ = fdΦr, where f

is differentiable on �r such that∫
�r

|f |dΦr +
∫
�r

(1 + ‖a‖s)‖∇f(a)‖Φr(da) <∞.

Then

Γh− Γ1 · Φrh =
∫

(Uh(a))T∇f(a)Φr(da),

for all h ∈ Hs.

3. A Hybrid Data Cloning Method

A recent suitable alternative method to carry out likelihood based inference in GLMMs is the

DC method, which was first introduced by Lele et al. (2007). DC uses, as a computational trick,

an MCMC algorithm to compute MLE and their variance estimates. The trick in DC is to apply

an MCMC algorithm to a data set constructed by duplicating the original data set enough times,

k say, that the resulting estimates converge to MLE.

Let π(k)(ψ,θ|y) ∝ π(k)(ψ|y,θ)π(k)(θ|y) be the artificial constructed joint density, which we

call it joint DC-based density, from k identical and independent clones of the data and prior

distributions, π(θ) and π(β). According to Baghishani and Mohammadzadeh (2009),

E(k)(ψ,θ|y) k→∞−→ (ψ̂, θ̂),

Var(k)(ψ,θ|y) k→∞−→
√
k ×Var((ψ̂, θ̂)).

5



Following, we will combine the DC method with INLA. We first present the asymptotic normality

of the DC-based distribution. Let y(k) = (y, . . . ,y) denote the k-repeated cloned vector of the

data. Then,

log π(k)(ψ,θ|y) ∝ log π(k)(ψ|y,θ) + log π(k)(θ|y) = �(k)
n (ψ) + �(k)

n (θ).

Now we define Fn,k, Gn,k, zn,k and wn,k as follow:

F T
n,kFn,k = −∇2�(k)

n (ψ̂n), zn,k = Fn,k(ψ − ψ̂n),

GT
n,kGn,k = −∇2�(k)

n (θ̂n), wn,k = Gn,k(θ − θ̂n),

Therefore,

π(k)
n (zn,k,wn,k|y) ∝ π(k)

n (ψ(zn,k),θ(wn,k)|y) ∝ e�
(k)
n (ψ)−�

(k)
n (

ˆψn)e�
(k)
n (θ)−�

(k)
n (

ˆθn).

Theorem 1 below shows the asymptotic distribution of the DC-based distribution is normal.

Theorem 1. Suppose that h be any bounded measurable function as in Lemma 1 and k → ∞.

Moreover, suppose that the prior π(θ) satisfies (F1)-(F3), �(k)
n (θ) and �

(k)
n (ψ) satisfies appro-

priate conditions, similar to conditions (B1)-(B4) and (C1)-(C4) replacing n with nk. Then,

Ec
nk[h(zn,k,wn,k)]

p−→ Φh.

3.1. The Proposed Hybrid Method

As Rue et al. (2009) have mentioned, MCMC methods tend to exhibit poor performance when

applied to GLMMs. Then the DC method can also acts worse. It would be expected that synthe-

sizing of the DC method by INLA can reduces the computational efforts severely.

Combining obtained results of Theorem 1 with INLA methodology, we can establish the asymp-

totic normality of the new hybrid DC-based distribution. Let �̃(k)
n (θ) and �̃(k)

n (ψ) be the correspond-

ing approximates of �(k)
n (θ) and �(k)

n (ψ) respectively obtained by INLA. Then,

log π̃(k)(ψ,θ|y) = �̃(k)
n (θ) + �̃(k)

n (ψ).

Let also

QT
n,kQn,k = −∇2�̃(k)

n (ψ̂n), xn,k = Qn,k(ψ − ψ̂n), (2)

V T
n,kVn,k = −∇2�̃(k)

n (θ̂n), sn,k = Vn,k(θ − θ̂n), (3)

Now we can state the following theorem.
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Theorem 2. Suppose that h be any bounded measurable function as in Lemma 1 and k → ∞.

Moreover, suppose that the prior π(θ) satisfies (F1)-(F3), �̃(k)
n (θ) and �̃(k)

n (ψ) satisfies appropriate

conditions replacing n with nk. Then, Ẽc
nk[h(xn,k, sn,k)]

p−→ Φh.

4. Examples

To illustrate the performance of the proposed hybrid method, we consider three examples

by which both nested (Subsection 4.1) and crossed (Subsections 4.2 and 4.3) random effects are

introduced. These examples have been considered previously by Breslow and Clayton (1993) and

Fong et al. (2009). The computations are carried out by R INLA package (www.r-inla.org).

Fong et al. (2009) analyzed these examples by using INLA methodology and gave a number

of prescriptions for prior specification especially for variance components. They also noticed that

sometimes specification of a prior for variance components is not straightforward. But DC-based

results are invariant to the choice of the priors.

4.1. Overdispersion

This example concerns data on the proportion of seeds that germinated on each of m = 21

plates arranged according to a 2× 2 factorial design with respect to seed variety and type of root

extract (Crowder, 1978). The sampling model is Yi|β, pi ∼ Bin(ni, pi) where, for plate i, yi is the

number of germinating seeds and ni is the total number of seeds for i = 1, . . . ,m. To account

for the extraneous between plate variability, Breslow and Clayton (1993) introduced plate-level

random effects and then fitted two main effects and interaction models:

logit(pi) = β0 + β1x1i + β2x2i + ui, (4)

logit(pi) = β0 + β1x1i + β2x2i + β3x1ix2i + ui,

in which ui|σ2 iid∼ N(0, σ2), and x1i, x2i represent the seed variety and type of root extract for plate

i.

To show that the DC-based estimators are invariant to the choice of the priors, we used four

different sets of prior distributions. Following Fong et al. (2009), the first set include N(0, 10) for

fixed effects and Ga(0.5, 0.0164) for σ−2 in the main effects model and N(1, 100) for fixed effects and

Ga(0.5, 0.0164) for σ−2 in the interaction effects model. The second, third and fourth sets for the

main effects model include N(1, 100) and Ga(0.25, 0.1), N(−2, 1), N(−1, 1) and Ga(0.75, 0.002),
7



Table 1: MLEs and DC-based estimates obtained by hybrid DC method with k = 200 for Seed data in the main

effects model. a From Breslow and Clayton (1993). Standard errors are in brackets.

Par. MLEa DC1 DC2 DC3 DC4

Intercept -0.389 (0.166) -0.389 (0.165) -0.389 (0.165) -0.389 (0.165) -0.389 (0.166)

Seed -0.347 (0.215) -0.346 (0.212) -0.346 (0.212) -0.346 (0.212) -0.347 (0.212)

Extract 1.029 (0.205) 1.029 (0.204) 1.029 (0.204) 1.029 (0.204) 1.029 (0.204)

σ 0.295 (0.112) 0.293 (0.110) 0.293 (0.110) 0.293 (0.110) 0.294 (0.110)

and N(0, 100) and Ga(0.25, 0.3) respectively. The second, third and fourth sets for the interaction

effects model also include N(−1, 1), N(−2, 1), N(−1, 1) and Ga(0.25, 0.1), N(−2, 100), N(2, 100),

N(1, 100) and Ga(0.75, 0.002), and N(2, 1000) and Ga(0.25, 0.4) respectively.

To implement the method using R INLA package, we first prepared cloned data by duplicating

the original data. Notice that the number of plates for cloned data, plate.k, is m× k = 21k. Let

x.k1i and x.k2i denote the new cloned covariates. Let also r.ki and n.ki denote the proportion and

the total number of seeds for i = 1, . . . , 21k respectively. Fitting the model (4), say, is done by

calling the inla() function:

> formula = r.k ~ x1.k+x2.k+f(plate.k,model="iid",param=c(.5,.0164))

> result = inla(formula,data=clone.data,family="binomial",Ntrials=n.k)

Tables 1 and 2 present the results obtained by hybrid DC method with k = 200 for four different

prior sets in the main and interaction effects models respectively. These results are compared with

MLEs obtained by Breslow and Clayton (1993) using Gaussian quadrature. There is surprisingly

very close correspondence between the MLE and obtained results from hybrid DC method for

different priors. For other several prior sets the results, which are not reported, remained the same

as well. Furthermore, marginal DC-based distributions converge to Normal distributions almost

exactly. These findings are illustrated in Figure 1 for interaction effect and precision parameter of

random effect in the interaction model. For other fixed effects the densities are indistinguishable

for different priors.

4.2. Longitudinal Data

Epilepsy data of Thall and Vail (1990) are a well known dataset that was analyzed several

times by various authors. They presented data from a clinical trial of 59 epileptics who were

randomized to a new drug (Trt=1) or a placebo (Trt=0). Baseline data available at entry into
8



Table 2: MLEs and DC-based estimates obtained by hybrid DC method with k = 200 for Seed data in the interaction

effects model. a From Breslow and Clayton (1993). Standard errors are in brackets.

Par. MLEa DC1 DC2 DC3 DC4

Intercept -0.548 (0.167) -0.548 (0.166) -0.548 (0.166) -0.548 (0.166) -0.548 (0.166)

Seed 0.097 (0.278) 0.097 (0.276) 0.097 (0.276) 0.097 (0.276) 0.096 (0.277)

Extract 1.337 (0.237) 1.337 (0.235) 1.337 (0.236) 1.337 (0.235) 1.337 (0.237)

Interaction -0.811 (0.385) -0.810 (0.383) -0.810 (0.383) -0.810 (0.383) -0.811 (0.385)

σ 0.236 (0.110) 0.234 (0.108) 0.235 (0.108) 0.234 (0.109) 0.238 (0.106)
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Figure 1: Marginal DC-based densities of interaction effect (top panel) and precision parameter of random effect

(bottom panel) in the interaction model with k = 200; The graphs showing the densities for first prior set (dashes),

second prior set (dots), third prior set (dot-small dash), fourth prior set (dot-dash), and approximate normal density

(solid).
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the trial included the number of epileptic seizures recorded in the preceding 8-weeks period and

age in years. The logarithm of 1
4 the number of baseline seizures (Base) and the logarithm of age

(Age) were treated as covariables in the analysis. A multivariate response variable consisted of the

counts of epileptic seizures, yij, for patient i during the 2-weeks before each of four clinic visits j

(Visit, coded −3,−1,+1,+3), with Yij|β, ui
iid∼ Po(μij), i = 1, . . . , 59; j = 1, . . . , 4. An indicator of

the fourth visit was also constructed to model to account its effect. Following Fong et al. (2009),

we concentrate on the three random effects models fitted by Breslow and Clayton (1993):

log(μij) = xT
ijβ + u1i, (5)

log(μij) = xT
ijβ + u1i + u0ij , (6)

log(μij) = xT
ijβ + u1i + u2iVj/10, (7)

where xij is a 6× 1 vector containing a 1 for intercept, the baseline by treatment interaction and

above mentioned covariates and β is the associated fixed effect. All three models include patient-

specific random effects u1i ∼ N(0, σ2
1), while in model (6) we introduce independent measurement

errors b0ij ∼ N(0, σ2
0) and model (7) includes random effects on the slope associated with visit,

u2i, with (
u1i

u2i

)
∼ N(0, Q−1).

According to Fong et al. (2009) we assume Q ∼Wishart(r, T ) with

T =

⎡⎣ T11 T12

T21 T22

⎤⎦ .
Here, similar to the previous subsection, we used three different sets of prior distributions.

The first set for three models are priors considered by Fong et al. (2009). The second and third

sets for the first model include N(1, 100) for β and Ga(1, 2.5) for σ−2
1 and N(0, 10), N(−1, 10),

N(−2, 100), N(2, 100), N(0, 10), N(1, 100) for β andGa(1.5, 2) for σ−2
1 respectively. For the second

model the second prior set include N(1, 100) for β and Ga(1, 2.5) and Ga(2, 1.140) for σ−2
1 and

σ−2
0 respectively. And the third set include N(0, 10), N(−1, 10), N(−2, 100), N(2, 100), N(0, 10),

N(1, 100) for β and Ga(1.5, 2) and Ga(2, 1.140) for σ−2
1 and σ−2

0 respectively. Finally, for the third

model the second and third prior sets include the same priors for fixed effects as second model but

they include r = 4 and T = diag(3, 4) and r = 6 and T = diag(0.5, 0.5) respectively.
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Table 3: DC estimates obtained by hybrid method with k = 100 for Epilepsy data in the model (5) compared with

PQL and INLA estimates. a From Fong et al. (2009). Standard errors are in brackets.

Par. PQLa INLAa DC1 DC2 DC3

Base 0.87 (0.14) 0.88 (0.15) 0.88 (0.13) 0.88 (0.13) 0.88 (0.13)

Trt -0.91 (0.41) -0.94 (0.44) -0.93 (0.40) -0.93 (0.40) -0.93 (0.40)

Base×Trt 0.33 (0.21) 0.34 (0.22) 0.34 (0.20) 0.34 (0.20) 0.34 (0.20)

Age 0.47 (0.36) 0.47 (0.38) 0.48 (0.35) 0.48 (0.35) 0.48 (0.35)

V4 or V/10 -0.16 (0.05) -0.16 (0.05) -0.16 (0.05) -0.16 (0.05) -0.16 (0.05)

σ1 0.53 (0.06) 0.56 (0.08) 0.50 (0.06) 0.50 (0.06) 0.50 (0.06)

Table 4: DC estimates obtained by hybrid method with k = 100 for Epilepsy data in the model (6) compared with

PQL and INLA estimates. a From Fong et al. (2009). Standard errors are in brackets.

Par. PQLa INLAa DC1 DC2 DC3

Base 0.86 (0.13) 0.88 (0.15) 0.88 (0.13) 0.88 (0.13) 0.88 (0.13)

Trt -0.93 (0.40) -0.96 (0.44) -0.95 (0.40) -0.95 (0.40) -0.95 (0.40)

Base×Trt 0.34 (0.21) 0.35 (0.23) 0.35 (0.20) 0.35 (0.20) 0.35 (0.20)

Age 0.47 (0.35) 0.48 (0.39) 0.49 (0.34) 0.49 (0.34) 0.49 (0.34)

V4 or V/10 -0.10 (0.09) -0.10 (0.09) -0.10 (0.09) -0.10 (0.09) -0.10 (0.09)

σ0 0.36 (0.04) 0.41 (0.04) 0.36 (0.04) 0.36 (0.04) 0.36 (0.04)

σ1 0.48 (0.06) 0.53 (0.07) 0.46 (0.06) 0.46 (0.06) 0.46 (0.06)

Tables 3–5 present the results obtained by hybrid DC method with k = 100. The results

are compared with PQL and INLA results of Fong et al. (2009). It is clear that the results are

indistinguishable for different priors and are very close to results of Fong et al. (2009). Note that

σ2
2 = T−1

22 .

Figures 2 and 3 show the marginal DC-based densities of fixed effects and precision parameters

of random effects for third model (7) respectively. According to the figures, detection of any

difference between curves is not possible. Approximate normal distributions are also illustrated in

these figures. It is clear that the normal distributions give very good approximations to the hybrid

DC-based distributions. The results remain the same for two other models as well.

4.3. Crossed Random Effects: The Salamander Data

McCullagh and Nelder (1989) described an interesting dataset on the success of matings be-

tween male and female salamander of two population types, roughbutts (RB) and whitesides (WS).
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Table 5: DC estimates obtained by hybrid method with k = 100 for Epilepsy data in the model (7) compared with

PQL and INLA estimates. a From Fong et al. (2009). Standard errors are in brackets.

Par. PQLa INLAa DC1 DC2 DC3

Base 0.87 (0.14) 0.88 (0.14) 0.89 (0.13) 0.88 (0.13) 0.89 (0.13)

Trt -0.91 (0.41) -0.94 (0.44) -0.93 (0.40) -0.93 (0.40) -0.93 (0.40)

Base×Trt 0.33 (0.21) 0.34 (0.22) 0.34 (0.20) 0.34 (0.20) 0.34 (0.20)

Age 0.46 (0.36) 0.47 (0.38) 0.47 (0.35) 0.48 (0.35) 0.48 (0.35)

V4 or V/10 -0.26 (0.16) -0.27 (0.16) -0.26 (0.17) -0.27 (0.17) -0.27 (0.16)

σ1 0.52 (0.06) 0.56 (0.08) 0.50 (0.06) 0.50 (0.06) 0.50 (0.06)

σ2 0.74 (0.16) 0.70 (0.14) 0.73 (0.15) 0.73 (0.15) 0.72 (0.15)
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Figure 2: Marginal DC-based densities of fixed effects in the model (7) with k = 100; The graphs showing the

densities for first prior set (dashes), second prior set (dots), third prior set (dot-dash), and approximate normal

density (solid).
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Figure 3: Marginal DC-based densities of precision parameters of random effects in the model (7) with k = 100;

The graphs showing the densities for first prior set (dashes), second prior set (dots), third prior set (dot-dash), and

approximate normal density (solid).

The experimental design involves three experiments having multiple pairings, with each salaman-

der being involved in multiple matings, so that crossed random effects are required. The first

experiment conducted during the summer of 1986 and the second and third conducted in the

fall. Each experiment involved 30 matings of each of the four gender-population combinations.

There are 360 binary responses in total. This complex data is reanalyzed by several authors such

as karim and Zeger (1992), Breslow and Clayton (1993), Bellio and Varin (2005) and Fong et al.

(2009).

Suppose yijk be the binary response for female i and male j in experiment k. Here, we focus

on model that was considered by Fong et al. (2009):

logitPr(Yijk = 1|β, uf
ik, u

m
jk) = xT

ijkβk + uf
ik + um

jk,

where xijk is a 4× 1 vector representing the intercept, an indicator WSf of whiteside females, an

indicator WSm of whiteside males and their interaction and βk is the corresponding fixed effect.

As Fong et al. (2009) have mentioned this model allows the fixed effects to vary by experiment and

the model contains six random effects

uf
ik

iid∼ N(o, σ2
fk), um

ik
iid∼ N(o, σ2

mk), k = 1, 2, 3

one for each of males and females, and in each experiment.
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Table 6: DC estimates obtained by hybrid method with k = 100 for Salamander data for summer experiment

compared with REML and INLA estimates. a From Fong et al. (2009). Standard errors are in brackets and ∗
denotes standard errors that were unavailable.

Par. REMLa INLAa DC1 DC2 DC3

Intercept 1.34 (0.62) 1.48 (0.72) 1.33 (0.63) 1.34 (0.63) 1.34 (0.63)

WSf -2.94 (0.88) -3.26 (1.01) -2.93 (0.93) -2.95 (0.93) -2.94 (0.93)

WSm -0.42 (0.63) -0.50 (0.73) -0.42 (0.64) -0.43 (0.64) -0.43 (0.64)

WSf ×WSm 3.18 (0.94) 3.52 (1.03) 3.17 (0.99) 3.19 (0.99) 3.18 (0.99)

σf1 1.25 (∗) 1.29 (0.46) 1.24 (0.40) 1.24 (0.41) 1.24 (0.40)

σm1 0.27 (∗) 0.78 (0.29) 0.33 (0.41) 0.37 (0.40) 0.36 (0.39)

Table 7: DC estimates obtained by hybrid method with k = 100 for Salamander data for first fall experiment

compared with REML and INLA estimates. a From Fong et al. (2009). Standard errors are in brackets and ∗
denotes standard errors that were unavailable.

Par. REMLa INLAa DC1 DC2 DC3

Intercept 0.57 (0.67) 0.56 (0.71) 0.55 (0.65) 0.55 (0.65) 0.55 (0.65)

WSf -2.46 (0.93) -2.51 (1.02) -2.39 (0.95) -2.39 (0.96) -2.39 (0.95)

WSm -0.77 (0.72) -0.75 (0.75) -0.73 (0.70) -0.73 (0.70) -0.73 (0.70)

WSf ×WSm 3.71 (0.96) 3.74 (1.03) 3.58 (1.03) 3.59 (1.03) 3.58 (1.03)

σf2 1.35 (∗) 1.38 (0.50) 1.30 (0.47) 1.31 (0.47) 1.30 (0.47)

σm2 0.96 (∗) 1.00 (0.36) 0.91 (0.42) 0.92 (0.42) 0.91 (0.42)

Again similar to the previous subsections, we used three different sets of prior distributions and

the first set presents priors considered by Fong et al. (2009). The second set include N(0, 10) for

β and Ga(0.25, 1) for both σ−2
fk and σ−2

mk. The third set also include N(0, 10) for β and Ga(1, 1)

for both σ−2
fk and σ−2

mk.

Tables 6–8 show the results obtained by hybrid DC method with k = 100. The results are

compared with REML and INLA results of Fong et al. (2009). It is simple to see that the results

are indistinguishable for different priors. The results are also very close to REML but there are

some differences between them and INLA estimates, usually with slightly larger standard deviations

under the latter.

Figures 4–6 show the marginal DC-based densities of precision parameters of random effects

obtained for three experiments. According to the figures, there are a good matching between

curves. Approximate normal distributions are also illustrated in these figures. It is clear that the
14



Table 8: DC estimates obtained by hybrid method with k = 100 for Salamander data for second fall experiment

compared with REML and INLA estimates. a From Fong et al. (2009). Standard errors are in brackets and ∗ denotes

standard errors that were unavailable.

Par. REMLa INLAa DC1 DC2 DC3

Intercept 1.02 (0.65) 1.07 (0.73) 1.00 (0.64) 1.00 (0.64) 1.00 (0.64)

WSf -3.23 (0.83) -3.39 (0.92) -3.17 (0.85) -3.18 (0.86) -3.17 (0.86)

WSm -0.82 (0.86) -0.85 (0.94) -0.79 (0.85) -0.79 (0.85) -0.79 (0.85)

WSf ×WSm 3.82 (0.99) 4.03 (1.05) 3.74 (1.03) 3.75 (1.04) 3.75 (1.03)

σf3 0.59 (∗) 0.80 (0.28) 0.54 (0.44) 0.57 (0.42) 0.55 (0.43)

σm3 1.36 (∗) 1.46 (0.48) 1.33 (0.43) 1.34 (0.43) 1.34 (0.43)

normal distributions give very good approximations to the hybrid DC-based distributions and the

approximation bias is negligible. Detection of any difference between hybrid DC-based densities of

fixed effects and between their approximate normal densities is not possible.

5. Technical Details

In this section we give details for establishing the asymptotic normality of the hybrid DC-based

distribution. For this purpose, we first establish the asymptotic normality of the approximate

posterior distributions as well as the DC-based distribution. Then the asymptotic normality of the

hybrid DC-based distribution follows by combining them together.

Some notations and calculations are needed in the sequel. We show the approximations of

�n(ψ) and �n(θ) by �̃n(ψ) and �̃n(θ) which obtained by INLA. Therefore (1) is approximated by

π̃(ψ,θ|y) = exp{�̃n(ψ) + �̃n(θ)}.

Assume that the functions �n(θ) and �̃n(θ) as well as �n(ψ) and �̃n(ψ) are twice continuously

differentiable with respect to θ and ψ respectively. Let ∇�n(θ), ∇�̃n(θ), ∇�n(ψ) and ∇�̃n(ψ) be

the vectors of first-order partial derivatives with respect to θ and ψ respectively. Furthermore, let

∇2�n(θ), ∇2�̃n(θ), ∇2�n(ψ) and ∇2�̃n(ψ) be the matrices of second-order partial derivatives with

respect to θ and ψ respectively. Here and subsequently, let ψ̂n be the mode of �n(ψ), satisfying

∇�n(ψ) = 0 and θ̂n be the mode of �n(θ), satisfying ∇�n(θ) = 0.

To facilitate asymptotic theory arguments, whenever the ψ̂n and θ̂n exist and −∇2�n(ψ),

−∇2�̃n(ψ), −∇2�n(θ) and −∇2�̃n(θ) are positive definite, we define Fn, Gn, Qn, Vn, zn, wn, xn
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Figure 4: Marginal DC-based densities of precision parameters of random effects obtained for summer experiment

with k = 100; The graphs showing the densities for first prior set (dashes), second prior set (dots), third prior set

(dot-dash), and approximate normal density (solid).
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Figure 5: Marginal DC-based densities of precision parameters of random effects obtained for first fall experiment

with k = 100; The graphs showing the densities for first prior set (dashes), second prior set (dots), third prior set

(dot-dash), and approximate normal density (solid).
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Figure 6: Marginal DC-based densities of precision parameters of random effects obtained for second fall experiment

with k = 100; The graphs showing the densities for first prior set (dashes), second prior set (dots), third prior set

(dot-dash), and approximate normal density (solid).

and sn as follow:

F T
n Fn = −∇2�n(ψ̂n), zn = Fn(ψ − ψ̂n),

QT
nQn = −∇2�̃n(ψ̂n), xn = Qn(ψ − ψ̂n),

GT
nGn = −∇2�n(θ̂n), wn = Gn(θ − θ̂n),

V T
n Vn = −∇2�̃n(θ̂n), sn = Vn(θ − θ̂n),

otherwise define them arbitrarily, in a measurable way. Then the joint approximate posterior

density of (xn, sn) is

π̃n(xn, sn|y) ∝ π̃n(ψ(xn),θ(sn)|y) ∝ e�̃n(ψ)−�̃n(
ˆψn)e�̃n(θ)−�̃n(

ˆθn). (8)

Let θ0 and ψ0 denote the true underlying parameters and the true realization of random effects

respectively. Let also P̃ c
n and Ẽc

n denote the approximate conditional probability and expectation

given data y. In what follows, all probability statements are with respect to the true underlying

probability distribution. Then we must show

P̃ c
n((xT

n , s
T
n )T ∈ B) −→ Φq+d(B),

as n → ∞, where B is any Borel set in �q+d and Φq+d is the standard q + d-variate Gaussian

distribution.
17



To conduct the posterior distribution in a form suitable for Stein’s Identity, we need following

calculations. For converting �̃n(ψ) into a form close to normal, we first take a Taylor’s expansion

of �n(ψ) at ψ̂n,

�n(ψ) = �n(ψ̂n) +
1
2
(ψ − ψ̂n)T∇2�n(ψ∗)(ψ − ψ̂n) +Rn

where ψ∗ lies between ψ and ψ̂n. According to Tierney and Kadane (1986), say for θ, �n(θ1) =

�̃n(θ1)(1+Oθ1
(n−1)), whereOθ1

(n−1) is of orderO(n−1) but depends on θ1 ∈ Θ. Tierney and Kadane

(1986) showed that this error term will be uniformly of order O(n−1) for θ1 in some fixed neigh-

borhood of θ0. They also showed the error in the approximation �̃n(θ1) is of order O(n−3/2) in

n−1/2 neighborhood of θ̂1n. Lemma 2 reveals their result.

Lemma 2. Let N1 = N(ψ̂n, n
−1/2) and N2 = N(θ̂n, n

−1/2) be n−1/2 neighborhoods of ψ̂n and θ̂n

respectively. Then, for ψ ∈ N1 and θ ∈ N2 we have,

�n(ψ) = �̃n(ψ)(1 +O(n−3/2)),

�n(θ) = �̃n(θ)(1 +O(n−3/2)).

Remark 1. By Lemma 2, it is easy to see that

∇�n(ψ) = ∇�̃n(ψ)(1 +O(n−3/2)),

∇�n(θ) = ∇�̃n(θ)(1 +O(n−3/2)).

The same relations hold for ∇2�̃n(ψ) and ∇2�̃n(θ).

Hereafter, whenever be required, we consider ψ ∈ N1 and θ ∈ N2. Now by Remark 1 we have,

�̃n(ψ) = �̃n(ψ̂n) +
1
2
(ψ − ψ̂n)T∇2�̃n(ψ∗)(ψ − ψ̂n) +R

′
n,

in which

R
′
n = Rn + [�n(ψ̂n)− �̃n(ψ̂n)] + [�̃n(ψ)− �n(ψ)]

+
1
2
(ψ − ψ̂n)T [∇2�n(ψ∗)−∇2�̃n(ψ∗)](ψ − ψ̂n).

Let

kn(ψ) = −1
2
(ψ − ψ̂n)T [∇2�̃n(ψ̂n)−∇2�̃n(ψ∗)](ψ − ψ̂n).

18



Thus,

�̃n(ψ) ≈ �̃n(ψ̂n)− 1
2
‖xn‖2 + kn(ψ).

With parallel arguments, we have

�̃n(θ) ≈ �̃n(θ̂n) +
1
2
(θ − θ̂n)T∇2�̃n(θ∗)(θ − θ̂n),

ln(θ) = −1
2
(θ − θ̂n)T [∇2�̃n(θ̂n)−∇2�̃n(θ∗)](θ − θ̂n),

�̃n(θ) ≈ �̃n(θ̂n)− 1
2
‖sn‖2 + ln(θ),

where θ∗ lies between θ and θ̂n. Therefor we can rewrite (8) as

π̃n(xn, sn|y) ∝ φq(xn)φd(sn)fn(xn, sn), (9)

where fn(xn, sn) = exp{kn(ψ) + ln(θ)} and φt(·) display the standard t-variate Gaussian density.

Suppose ∇xnf(xn, sn) and ∇snfn(xn, sn) denote the partial derivatives of fn(xn, sn) with

respect to xn and sn respectively. Hence,

∇xnfn(xn, sn)
fn(xn, sn)

= (QT
n )−1∇kn(ψ), (10)

∇snfn(xn, sn)
fn(xn, sn)

= (V T
n )−1∇ln(θ). (11)

Let also D = {D1 ∪D2}, in which D1 = {∇�̃n(ψ̂n) = 0,−∇2�̃n(ψ̂n) > 0} and D2 = {∇�̃n(θ̂n) =

0,−∇2�̃n(θ̂n) > 0}. Here A > 0 means that the matrix A is positive definite.

5.1. Asymptotic Normality of Approximate Posterior Distribution

We consider the regularity conditions of Weng and Tsai (2008) modifying for �̃n(θ), (B1)-(B4),

and �̃n(ψ), (C1)-(C4), instead of �n(θ) and �n(ψ). We also suppose ‖J‖2 = λmax(JTJ) be the

spectral norm of J . The following conditions are required for �̃n(θ):

(B1) P (Dc
2) −→ 0, ‖V −1

n ‖ p−→ 0, and θ̂n
p−→ θ0 as n −→∞.

(B2) There exists an increasing sequence of positive constants {b1n} that converges to ∞, such

that

sup
ηij∈{θ:‖sn‖≤b1n}

‖Id + (V T
n )−1(∂2�̃n/∂θi∂θj(ηij))V −1

n ‖ p−→ 0.

(B3) Let b1n be as in (B2). There exist constants r1 ≥ 1 and c1 ≥ 0 such that for all θ ∈ {‖sn‖ >
b1n} ∩Θ, ‖(V T

n )−1∇ln(θ)‖ ≤ c1‖sn‖r1 .
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(B4) There exist constant r1 ≥ 1 and a nonnegative function v1 : �+ ×�d −→ � for which, with

probability tending to 1 and ∀θ ∈ Θ, [�̃n(θ̂n)−�̃n(θ)] ≥ v1(t,θ), e1n(θ) = (detVn)‖sn‖r1e−v1(t,θ)

are uniformly integrable in t and
∫
Θ
e1n(θ)dθ are uniformly bounded in t.

The following conditions are also required for �̃n(ψ):

(C1) P (Dc
1) −→ 0, ‖Q−1

n ‖ p−→ 0, and ψ̂n
p−→ ψ0 as n −→∞.

(C2) There exists an increasing sequence of positive constants {b2n} that converges to ∞, such

that

sup
ζij∈{ψ:‖xn‖≤b2n}

‖Iq + (QT
n )−1(∂2�̃n/∂ψi∂ψj(ζij))Q−1

n ‖ p−→ 0.

(C3) Let b2n be as in (C2). There exist constants r2 ≥ 1 and c2 ≥ 0 such that for all ψ ∈ {‖xn‖ >
b2n} ∩Ψ, ‖(QT

n )−1∇kn(ψ)‖ ≤ c2‖xn‖r2 .

(C4) There exist constant r2 ≥ 1 and a nonnegative function v2 : �+ ×�q −→ � for which, with

probability tending to 1 and ∀ψ ∈ Ψ, [�̃n(ψ̂n)−�̃n(ψ)] ≥ v2(t,ψ), e2n(ψ) = (detQn)‖xn‖r2e−v2(t,ψ)

are uniformly integrable in t and
∫
Ψ
e2n(ψ)dψ are uniformly bounded in t.

Furthermore, we consider the conditions (F1)-(F3) for π(θ):

(F1) π(θ) is continuously differentiable on �d.

(F2) π(θ) has a compact support Θ ⊂ �d

(F3) There exist ε0 and δ0 such that π(θ) > ε0 over N(θ0; δ0).

Let also

S =
{

(xn, sn) : xn = Qn(ψ − ψ̂n), sn = Vn(θ − θ̂n);ψ ∈ N1,θ ∈ N2

}
. (12)

The following theorem establishes the asymptotic normality of approximate posterior distribu-

tion.

Theorem 3. Suppose that h be any bounded measurable function as in Lemma 1. Moreover,

suppose that the prior π(θ) satisfies (F1)-(F3), �̃n(θ) satisfies (B1)-(B4) and �̃n(ψ) satisfies (C1)-

(C4). Then, Ẽc
n[h(xn, sn)]

p−→ Φh.
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Before proving the theorem, we need the following lemmas. Their proofs are extended forms of

similar lemmas of Baghishani and Mohammadzadeh (2010) such that replacing �n(ψ) and �n(θ)

with �̃n(ψ) and �̃n(θ), they hold.

Lemma 3. Let s be a nonnegative integer. Suppose that π(θ) satisfies (F1) and (F2). Then for

all h : �q+d −→ � where h ∈ Hs,

Ẽc
n[h(xn, sn)]− Φh = Ẽc

n

{
(Uh(xn, sn))T [

∇xnfn(xn, sn)
fn(xn, sn)

,
∇snfn(xn, sn)
fn(xn, sn)

]
}
,

a.e. on D.

Lemma 4. 1. If (B2) and (C2) hold, there exist constants p1, p2, q1 and q2 such that, with

probability tending to 1,

sup
θ:‖sn‖≤p1

{�̃n(θ̂n)− �̃n(θ)} ≤ q1,

sup
ψ:‖xn‖≤p2

{�̃n(ψ̂n)− �̃n(ψ)} ≤ q2.

2. If (B3) and (C3) hold, then for some 0 < M <∞, with probability tending to 1,∫
S e{�̃n(ψ)−�̃n(

ˆψn)}e{�̃n(θ)−�̃n(
ˆθn)}dxndsn < M∫

S ‖xn‖‖sn‖e{�̃n(ψ)−�̃n(
ˆψn)}e{�̃n(θ)−�̃n(

ˆθn)}dxndsn < M∫
S′ ‖sn‖r1‖xn‖r2e{�̃n(ψ)−�̃n(

ˆψn)}e{�̃n(θ)−�̃n(
ˆθn)}dxndsn

p−→ 0

where S
′
= S ∩ {‖sn‖ > b1n} ∩ {‖xn‖ > b2n}

Lemma 5. Let fn(xn, sn) and S be as in (9) and (12) respectively. Suppose that π(θ) satisfies

(F1)-(F3). Then,

D1 If conditions (B1), (B2), (C1) and (C2) hold, then there exists K1 > 0 such that, with

probability tending to 1,
∫

S
φq(xn)φd(sn)fn(xn, sn)dxndsn > K1.

D2 If (B4) and (C4) hold, then there exists K2 > 0 such that, with probability tending to 1,∫
S
φq(xn)φd(sn)fn(xn, sn)dxndsn < K2.

Proof. Note that Uh and π(θ) are bounded by Lemma 3.1 of Weng and Tsai (2008) and (F1)-(F2).

From (10), (11) and Lemma 3, for a.e. on D, we have

Ẽc
n[h(xn, sn)]− Φh = Ẽc

n,xn
+ Ẽc

n,sn
,
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where

Ẽc
n,xn

= Ẽc
n

{
(Uh1(xn))T (QT

n )−1∇kn(ψ)
}

= Ixn , (13)

Ẽc
n,sn

= Ẽc
n

{
(Uh2(sn))T (V T

n )−1∇ln(θ)
}

= Isn . (14)

Since P (Dc
2) −→ 0 by (B1) and P (Dc

1) −→ 0 by (C1), it suffices to show Isn

p−→ 0 and Ixn

p−→ 0.

From (14) we have,

Isn =

∫
S(Uh2(sn))T (V T

n )−1∇ln(θ)φd(sn)φq(xn)fn(sn,xn)dsndxn∫
S φd(sn)φq(xn)fn(sn,xn)dsndxn

.

The denominator is bounded below by some K1 > 0 by Lemma 5(D1). Then we just need to

show that the numerator converges to 0 in probability. First we decompose the numerator into two

integrals over ‖sn‖ ≤ b1n and ‖sn‖ > b1n and call the corresponding integrals as Isn,1 and Isn,2

respectively. With respect to (F1)-(F2), Lemma 3.1 of Weng and Tsai (2008), and

(V T
n )−1∇ln(θ) =

{
Id − (V T

n )−1[−(
∂2�̃n
∂θi∂θj

(θ∗ij))]V −1
n

}
sn,

there exists a constant C1 > 0 such that

|Isn,1| ≤
∫
‖sn‖≤b1n

|(Uh2(sn))T (V T
n )−1∇ln(θ)|e�̃n(θ)−�̃n(

ˆθ)e�̃n(ψ)−�̃n(
ˆψ)dsndxn

≤ C1 sup
θ:‖sn‖≤b1n

‖Id − (V T
n )−1[−(

∂2�̃n
∂θi∂θj

)(θ∗ij)]V −1
n ‖

×
∫
‖sn‖≤b1n

‖sn‖e�̃n(θ)−�̃n(
ˆθ)e�̃n(ψ)−�̃n(

ˆψ)dsndxn.

Using (B2) and Lemma 4 part 2 we conclude that Isn,1
p−→ 0. Next, by (B3), (F1)-(F2) and

Lemma 3.1 of Weng and Tsai (2008), there exists a constant C2 > 0 such that

|Isn,2| ≤ C2

∫
S∩{‖sn‖>b1n}

‖sn‖r1e�̃n(θ)−�̃n(
ˆθ)e�̃n(ψ)−�̃n(

ˆψ)dsndxn,

which using Lemma 4 part 2, converges to 0 in probability. Hence, Isn

p−→ 0.

Similarly, Ixn

p−→ 0 follows from (F1)-(F2), (C2)-(C3), Lemma 4 part 2, Lemma 3.1 of

Weng and Tsai (2008) and

(QT
n )−1∇kn(ψ) =

{
Iq − (QT

n )−1[−(
∂2�̃n
∂ψi∂ψj

(ψ∗ij))]Q−1
n

}
xn.

This completes the proof.
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Corollary 1. Following Weng and Tsai (2008, Theorem 4.2 and 4.3) and Theorem 3, asymptotic

normality of marginal approximate posterior distribution of the parameter vector for a GLMM,

holds with priors that must be continuous and bounded but need not have compact supports or be

differentiable.

Now in the following, we can prove two Theorems 1 and 2.

Proof of Theorem 1

The proof of Theorem 1 is based on similar techniques of the proof of Theorem 3.

Proof of Theorem 2

The proof of Theorem 2 follows by combining (2) and (3) with Theorem 3.

Corollary 2. Following Corollary 1 the asymptotic normality of marginal hybrid DC-based distri-

bution of the parameter vector for a GLMM, holds with priors that must be continuous and bounded

but need not have compact supports or be continuously differentiable.

6. Discussion

Although Fong et al. (2009) gave a number of prescriptions for prior specification especially for

variance components in a GLMM, but sometimes specification of a prior in these models is not

straightforward. On the other side, the DC-based inferences are invariant to the choice of the priors.

Computation and convergence, however, is an issue since the usual implementation of DC method

is via MCMC. On the other hand, INLA provides precise estimates in seconds and minutes, even

for models involving thousands of variables, in situations where any MCMC computation typically

takes hours or even days. In this paper, we synthesized these two approach and introduced a new

hybrid DC method so that its performance, according to the obtained results, is very good and

inherits invariance property of DC method as well.

The benefits of our proposed method are the simplicity of implementation using R INLA pack-

age and to obtain MLE efficiently. The most available alternative methods to compute MLE in

GLMMs, especially in models with crossed random effects, have disadvantages in the sense of con-

sistent estimation, loss of efficiency, computational time required and convergence assessment, e.g.

penalized quasi likelihood (Breslow and Clayton, 1993), composite likelihood (Bellio and Varin,

2005) and Monte Carlo expectation maximization (Booth et al., 2001).
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A disadvantage of the our work is that, according to INLA methodology, the prior distributions

for fixed effects β must be Gaussian. However, we can use Gaussian priors with high variances

to consider approximately flat priors and the results, theoretically, are invariant to the choice of

the priors as well. Alongside good performance of DC method, Baghishani and Mohammadzadeh

(2009) have mentioned some its limitations and their possible solutions. Although we did not

discussed about selecting the number of clones, k, but, in general, selecting k under different

circumstances such as sample size, random effects dimension and number of parameters needs

further research.

In this paper, we assumed that the dimension of the random effects is fixed. But in some

frameworks such as spatial models and spline smoothing models, the number of random effects

(spline basis) increases with the sample size. Extending the hybrid DC method to such frameworks

can be interesting.

Finally, as Ponciano et al. (2009) have noticed, nowadays, the choice between Bayesian and

frequentist approaches in GLMMs is no longer a matter of feasibility but rather can be based on

the philosophical views of researchers.
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