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A Note on the Bivariate ACER Method

Arvid Naess∗

Abstract

The paper focuses on the extension of the ACER method for prediction
of extreme value statistics to the case of bivariate time series. Using the
ACER method it is possible to provide an estimate of the exact extreme
value distribution of a univariate time series. This is obtained by introduc-
ing a cascade of conditioning approximations to the exact extreme value
distribution. When this cascade has converged, an estimate of the exact
distribution has been obtained. In this paper it will be shown how the
univariate ACER method can be extended in a natural way to also cover
the case of bivariate data. In fact, the ACER method can in principle
be extended to multivariate time series of any dimension. However, the
requirements to the requisite statistical analyses would severely hamper a
practical implementation for higher dimensional cases.

KEYWORDS: Extreme value estimation; bivariate time series; approx-
imation by conditioning; average conditional exceedance rate.
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1 Introduction

The extension of extreme value statistics from the univariate to the bivariate
case meets with several challenges. First of all, there is no direct generalization
of the univariate extreme value types theorem to the bivariate case. The general
result on possible bivariate asymptotic extreme value distributions is in a sense
too general to be of much practical value. More specifically, there are no precise
estimation tools that allows us to decide on the joint distribution of the bivariate
extremes from a given set of bivariate data. Of course, the marginal data sets
can be used to derive estimates of the marginal extreme value distributions,
but the joint distribution is still a long way off.

A popular method of trying to cope with the problem of bivariate extremes
is to adopt a copula to represent the joint distribution. For this purpose a
range of different copulas have been proposed. The main problem with this
approach is that it is rather ad hoc. That is, there is no theoretical justification
for choosing one particular copula over the other in a specific case, but rather
a more or less subjective decision about which copula that seems to better fit
the data.

Efforts have also been invested in trying to extend the peaks-over-threshold
(POT) method to the bivariate case. This has not yet resulted in a method of
the same prediction capabilities as the univariate POT.

In this paper we shall show that the recently developed average conditional
exceedance rate (ACER) method has a direct extension to the bivariate case
without the need to introduce any approximations or simplifications. Thus, in
principle, the bivariate ACER has the possibility to provide exact estimates of
the bivariate extreme value distribution that is given by the data.

2 Cascade of Conditioning Approximations

Consider a bivariate stochastic process Z(t) = (X(t), Y (t)) with dependent
component processes, which has been observed over a time interval, (0, T ) say.
Assume that the sampled values (X1, Y1), . . . , (XN , YN ) are allocated to the
(usually equidistant) discrete times t1, . . . , tN in (0, T ). Our goal in this paper
is to accurately determine the joint distribution function of the extreme value
vector (X̂N , ŶN ), where X̂N = max{Xj ; j = 1, . . . , N}, and with a similar defi-
nition of ŶN . Specifically, we want to estimate P (ξ, η) = Prob(X̂N ≤ ξ, ŶN ≤ η)
accurately for large values of ξ and η.

In the following we outline the implementation of a cascade of approxima-
tions based on conditioning, where the first is a one-step memory approxima-
tion, which may be considered a Markov-like approximation. This approxima-
tion concept is described in [1, 2]. However, it is emphasized that it is not a
Markov chain approximation.



From the definition of P (ξ, η) it follows that

P (ξ, η) = Prob
(

X1 ≤ ξ, Y1 ≤ η . . . , XN ≤ ξ, YN ≤ η
)

= Prob
(

XN ≤ ξ, YN ≤ η |X1 ≤ ξ, Y1 ≤ η . . . , XN−1 ≤ ξ, YN−1 ≤ η
)

·Prob{X1 ≤ ξ, Y1 ≤ η . . . , XN−1 ≤ ξ, YN−1 ≤ η}

=

N
∏

j=2

Prob
(

Xj ≤ ξ, Yj ≤ η |X1 ≤ ξ, Y1 ≤ η, . . . , Xj−1 ≤ ξ, Yj−1 ≤ η
)

·Prob
(

X1 ≤ ξ, Y1 ≤ η
)

(1)

We shall start the development of the cascade of conditioning approxima-
tions by first looking at the following basic case.

2.1 Independent sample points

In this special case we obtain

P (ξ, η) =
N
∏

j=1

Prob(Xj ≤ ξ, Yj ≤ η)

=
N
∏

j=1

{1 − Prob(Xj > ξ) − Prob(Yj > η) + Prob(Xj > ξ, Yj > η)} (2)

We now introduce the notation α1j(ξ) = Prob(Xj > ξ), β1j(η) = Prob(Yj > η),
and γ1j(ξ, η) = Prob(Xj > ξ, Yj > η) for j = 1, . . . , N . Eq. (2) can then be
rewritten as

P (ξ, η) =

N
∏

j=1

{1 − α1j(ξ) − β1j(η) + γ1j(ξ, η)}

≈ exp{−
N

∑

j=1

(

α1j(ξ) + β1j(η) − γ1j(ξ, η)
)

} ; ξ, η → ∞ . (3)

2.2 Conditioning on one previous sample point

The first genuine conditioning approximation is obtained by neglecting all pre-
vious conditioning events except the immediate predecessor in Eq. (1). That
is, the following one-step memory approximation is adopted,

P (ξ, η) =
N
∏

j=2

Prob
(

Xj ≤ ξ, Yj ≤ η |Xj−1 ≤ ξ, Yj−1 ≤ η
)

·Prob
(

X1 ≤ ξ, Y1 ≤ η
)

(4)



This may be rewritten as,

P (ξ, η) =
N
∏

j=2

{

1 − Prob
(

Xj > ξ |Xj−1 ≤ ξ, Yj−1 ≤ η
)

− Prob
(

Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η
)

+ Prob
(

Xj > ξ, Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η
)

}

·
{

1 − Prob(X1 > ξ) − Prob(Y1 > η) + Prob(X1 > ξ, Y1 > η)
}

(5)

By introducing the notation α2j(ξ; η) = Prob
(

Xj > ξ |Xj−1 ≤ ξ, Yj−1 ≤ η
)

,
β2j(η; ξ) = Prob

(

Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η
)

, and γ2j(ξ, η) = Prob
(

Xj >
ξ, Yj > η |Xj−1 ≤ ξ, Yj−1 ≤ η

)

, we obtain as in Eq. (3) that,

P (ξ, η) ≈ exp{−
N

∑

j=2

(

α2j(ξ; η) + β2j(η; ξ) − γ2j(ξ, η)
)

}

exp{−
(

α11(ξ; η) + β11(η; ξ) − γ11(ξ, η)
)

} ; ξ, η → ∞ . (6)

2.3 Conditioning on several previous sample points

It has been observed in the univariate case that conditioning on one previous
data point is sometimes enough to capture the effect of dependence in the
time series to a large extent [3]. However, there are also cases where this
is not sufficient. This can only be ascertained by having available a method
that displays the complete picture concerning the importance of dependence
on the extreme value distribution. Our proposed solution to this is obtained
by introducing a cascade of conditioning approximations beyond the one-step
approximation above.

We start by defining the following set of events,

Ckj(ξ, η) =
{

Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , Xj−k+1 ≤ ξ, Yj−k+1 ≤ η
}

(7)

Going back to Eq. (1), and conditioning on not more than k − 1 previous
data points, where k = 2, . . . , N and j ≥ k, it is obtained that

P (ξ, η) =
N
∏

j=k

Prob
(

Xj ≤ ξ, Yj ≤ η | Ckj(ξ, η)
)

· Prob
(

Ckk(ξ, η)
)

, (8)

where

Prob
(

Ckk(ξ, η)
)

= Prob
(

Xk−1 ≤ ξ, Yk−1 ≤ η | Ck−1,k−1(ξ, η)
)

·Prob
(

Ck−1,k−1(ξ, η)
)

. (9)

By introducing the notation αkj(ξ; η) = Prob
(

Xj > ξ | Ckj(ξ, η)
)

, βkj(η; ξ) =
Prob

(

Yj > η | Ckj(ξ, η)
)

, and γkj(ξ, η) = Prob
(

Xj > ξ, Yj > η | Ckj(ξ, η)
)

, it can



now be shown that,

N
∏

j=k

Prob
(

Xj ≤ ξ, Yj ≤ η | Ckj(ξ, η)
)

≈ exp{−
N

∑

j=k

(

αkj(ξ; η) + βkj(η; ξ) − γkj(ξ, η)
)

} ; ξ, η → ∞ . (10)

Similarly, it is found that,

Prob
(

Ckk(ξ, η)
)

≈ exp{−
(

αk−1,k−1(ξ; η) + βk−1,k−1(η; ξ) − γk−1,k−1(ξ, η)
)

}
·Prob

(

Ck−1,k−1(ξ, η)
)

≈ exp{−
k−1
∑

j=1

(

αjj(ξ) + βjj(η) − γjj(ξ, η)
)

} ; ξ, η → ∞ . (11)

Hence, we finally end up with the result,

P (ξ, η) ≈ exp{−
N

∑

j=k

(

αkj(ξ; η) + βkj(η; ξ) − γkj(ξ, η)
)

}

· exp{−
k−1
∑

j=1

(

αjj(ξ; η) + βjj(η; ξ) − γjj(ξ, η)
)

} ; ξ, η → ∞ . (12)

For most applications, N >> k, so that the following approximation can be
adopted,

P (ξ, η) ≈ exp{−
N

∑

j=k

(

αkj(ξ; η) + βkj(η; ξ) − γkj(ξ, η)
)

} ; ξ, η → ∞ . (13)

3 Empirical Estimation of the Average Exceedance

Rates

To get a more compact representation, it is expedient to introduce the concept
of k’th order average conditional exceedance rate (ACER) functions as follows,

αk(ξ; η) =
1

N − k + 1

N
∑

j=k

αkj(ξ; η) , k = 1, 2, . . . , (14)

βk(η; ξ) =
1

N − k + 1

N
∑

j=k

βkj(η; ξ) , k = 1, 2, . . . , (15)

and

γk(ξ, η) =
1

N − k + 1

N
∑

j=k

γkj(ξ, η) , k = 1, 2, . . . . (16)



Hence, when N >> k, we may write

P (ξ, η) ≈ exp{− (N − k + 1)
(

αk(ξ; η) + βk(η; ξ) − γk(ξ, η)
)

} ; ξ, η → ∞ .
(17)

From this equation follows the result for e.g. Prob(ŶN ≤ ξ | X̂N ≤ ξ) by
writing,

Prob(ŶN ≤ ξ | X̂N ≤ ξ) =
P (ξ, ξ)

Prob(X̂N ≤ ξ)

≈ exp{− (N − k + 1)
(

αk(ξ; ξ) + βk(ξ; ξ) − εk(ξ) − γk(ξ, ξ)
)

} ; ξ → ∞ , (18)

where εk(ξ) is the k’th order univariate ACER function for the time series Xj

[3].
A few more details on the numerical estimation of the ACER functions are

useful. We start by introducing a set of random functions. For k = 2, . . . , N ,
and k ≤ j ≤ N , let

Akj(ξ; η) = 1{Xj > ξ, Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , Xj−k+1 ≤ ξ, Yj−k+1 ≤ η} , (19)

Bkj(η; ξ) = 1{Yj > η, Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , Xj−k+1 ≤ ξ, Yj−k+1 ≤ η} , (20)

Gkj(ξ, η) = 1{Xj > ξ, Yj > η, Xj−1 ≤ ξ, Yj−1 ≤ η, . . . , Xj−k+1 ≤ ξ, Yj−k+1 ≤ η} ,
(21)

where 1{A} denotes the indicator function of some event A. Also, let Ckj(ξ, η) =
1{Ckj(ξ, η)}.

From these definitions it follows that,

αkj(ξ; η) =
E[Akj(ξ; η)]

E[Ckj(ξ, η)]
, (22)

βkj(η; ξ) =
E[Bkj(η; ξ)]

E[Ckj(ξ, η)]
, (23)

γkj(ξ, η) =
E[Gkj(ξ, η)]

E[Ckj(ξ, η)]
, (24)

where E[·] denotes the expectation operator.
Assuming an ergodic process, then obviously αk(ξ; η) = αkk(ξ; η) = . . . =

αkN (ξ; η), and it may be assumed that for the bivariate time series at hand

αk(ξ; η) = lim
N→∞

∑N
j=k akj(ξ; η)

∑N
j=k cjk(ξ, η)

. (25)

where akj(ξ; η) and ckj(ξ, η) are the realized values of Akj(ξ; η) and Ckj(ξ, η),
respectively, for the observed time series.

For multiply recorded stationary time series, the sample estimate of αk(ξ; η)
would be,

α̂k(ξ; η) =
1

R

R
∑

r=1

α̂
(r)
k (ξ; η) , (26)



where R is the number of realizations (samples), and

α̂
(r)
k (ξ; η) =

∑N
j=k a

(r)
kj (ξ; η)

∑N
j=k c

(r)
kj (ξ, η)

, (27)

where the index (r) refers to realization no. r.
Clearly, limξ,η→∞ E[Ckj(ξ, η)] = 1. Hence, limξ,η→∞ α̃k(ξ; η)/ αk(ξ; η) = 1,

where

α̃k(ξ; η) = lim
N→∞

∑N
j=k E[Akj(ξ; η)]

N − k + 1
. (28)

The advantage of using the modified ACER function α̃k(ξ; η) for k ≥ 2 is that
it is easier to use for non-stationary or long-term statistics than αk(ξ; η). Since
our focus is on the values of the ACER functions at the extreme levels, we may
use any function that provides correct predictions of the appropriate ACER
function at these extreme levels. Exactly the same kind of arguments apply to
the other ACER functions as well, with the obvious changes.

To see why Eq. (28) may be applicable for nonstationary time series, it is
recognized that when ξ, η → ∞,

P (ξ, η) ≈ exp{− (N − k + 1)
(

αk(ξ; η) + βk(η; ξ) − γk(ξ, η)
)

}
≈ exp{− (N − k + 1)

(

α̃k(ξ; η) + β̃k(η; ξ) − γ̃k(ξ, η)
)

}

= exp
{

−
N

∑

j=k

(

E[Akj(ξ; η)] + E[Bkj(η; ξ)] − E[Gkj(ξ, η)]
)

}

. (29)

If the nonstationary time series can be segmented into K blocks such that
E[Akj(ξ; η)], E[Bkj(η; ξ)] and E[Gkj(ξ, η)] remain approximately constant within
each block and such that

∑

j∈Ci
E[Akj(ξ; η)] ≈

∑

j∈Ci
akj(ξ; η),

∑

j∈Ci
E[Bkj(η; ξ)] ≈

∑

j∈Ci
bkj(η; ξ) and

∑

j∈Ci
E[Gkj(ξ, η)] ≈

∑

j∈Ci
gkj(ξ, η) for a sufficient range

of ξ, η-values, where Ci denotes the set of indices for block no. i, i = 1, . . . , K,
then

∑N
j=k E[Akj(ξ; η)] ≈

∑N
j=k akj(ξ; η). Hence, for a nonstationary bivariate

time series it is obtained that (ξ, η → ∞),

P (ξ, η) ≈ exp{− (N − k + 1)
(

α̂k(ξ; η) + β̂k(η; ξ) − γ̂k(ξ, η)
)

} , (30)

where

α̂k(ξ; η) =
1

N − k + 1

N
∑

j=k

akj(ξ; η) , (31)

β̂k(η; ξ) =
1

N − k + 1

N
∑

j=k

bkj(η; ξ) , (32)

γ̂k(ξ, η) =
1

N − k + 1

N
∑

j=k

gkj(ξ, η) . (33)



Now, let us look at the problem of estimating confidence intervals for the
ACER functions. The sample standard deviation ŝα,k(ξ; η) can be estimated
by the standard formula,

ŝα,k(ξ; η)2 =
1

R − 1

R
∑

r=1

(

α̂
(r)
k (ξ; η) − α̂k(ξ; η)

)2
. (34)

Assuming that realizations are independent, for a suitable number R, e.g. R ≥
20, Eq. (27) leads to a good approximation of the 95 % confidence interval CI
=

(

CI−(η), CI+(η)
)

for the value αk(ξ; η), where

CI±(η) = α̂k(ξ; η) ± 1.96 ŝα,k(ξ; η)/
√

R . (35)

An entirely similar procedure is adopted for the other ACER functions.

4 Concluding remarks

In this paper the bivariate ACER method has been described. It is based on
an extension of the univariate concept of average conditional exceedance rate
(ACER) to the case of bivariate data sets. It has been demonstrated that this
leads to a cascade of conditioning approximations to the exact bivariate extreme
value distribution. When this cascade has converged, the exact extreme value
distribution given by the data can be captured within the inherent statistical
uncertainty by using the ACER functions.

To provide predictions of the high quantiles in the extreme value distribu-
tion, a representation of the ACER functions by a particular class of parametric
functions has to be adopted. This problem has not been pursued in this paper.
It will be the focus of future research.
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