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The complex alias pattern between main-effects and two-factor interactions for two-

level non-regular designs has been considered a problem for analysing these designs. If only a 

few two-factor interactions are active, however, the pattern induced into contrasts from active 

interactions may be very structured. This is in particular the case for the 12 run and the 20 run 

PB designs, probably the two most important ones for physical experimentation. This paper 

presents a graphical method for the analysis of non regular two-level orthogonal arrays. The 

method consists of two steps. The first step is called contrast plot interpretation and is directed 

towards revealing the cause for the pattern observed in the contrast plots. The second step is 

called alias reduction and aims at simplifying the interpretation of the plots by reducing the 

aliasing caused by effects that with a high degree of certainty may be considered active. The 

method is tested out on the 12 run and the 20 run PB designs with good results even for cases 

were the heredity principle does not hold.  
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                                                      1. INTRODUCTION 
  

Two-level non-regular designs include all orthogonal two-level designs that don’t 

belong to the 2  family, i.e. regulark p− 1 2 p , 0 1 1p , , k= −K , fractions of   factorials also 

called regular designs or sometimes just two-level fractional factorial designs.  

2k
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The importance of non-regular designs is mainly due to two reasons. One is their 

projective properties, i.e. their design properties when restricted to a subset of experimental 

factors, which clearly outperform the ones for the regular designs. (Lin and Draper 1993, Box 

and Tyssedal 1996, Cheng 1995). The other is that they exist for all n that fulfi 0  mo  

4  and thereby provide us with a lot more design alternatives than can be obtained from the 

2k p−  fam

ls d

ily.  

 n ≡

Their drawback is that they have a more complicated alias relationship. For instance in 

the 12 run Plackett-Burman (PB) design every main effect may be partially aliased with 45 

two-factor interactions and a single two-factor interaction will appear in the alias pattern of all 

main effects not involved with this two-factor interaction. As a result methods such as normal 

and half-normal plots or more quantitative methods such as Lenth’s method often used for 

analysing non-replicated two-level designs may be of little value since these methods are 

based on being able to separate active contrasts from contrasts estimating only noise.  

Still normal plots and Lenth’s method may be the only ones available in computer 

packages for analysing unreplicated non-regular designs, though several methods have been 

proposed in the literature.  These can mainly be classified as factor based or effect based 

search procedures. In a factor based search the goal is to identify a few active factors among 

many that are being considered and the performance of such a procedure depends heavily on 

the projective properties of the design used. Examples of such methods can be found in Box 

and Meyer (1993), Tyssedal and Samset (1997) and Box and Kulahci (2003). Examples of 

effect based procedures can be found in Hamada and Wu (1993) and Chipman et al (1996). 

These procedures assume effect sparsity and the heredity principle is a strong guidance in the 

search for active effects. The heredity principle requires excluding an interaction to be in a 

model unless at least one (weak heredity) or both (strong heredity) of the parent main effects 

also are included in the model.  In addition in order for the Hamada and Wu (1993) procedure 
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to work well there should be few two-factor interactions and their sizes should be small. It is 

the purpose of this paper to point out that graphical aids may be of great value also in 

analysing non-regular designs. The proposed graphical procedure will in many cases point to 

the most likely active factors or effects. In others it may point to the complexity of the 

problem and thereby guide the analyst how to proceed with more quantitative methods. For 

instance it should be of particular value for the regression based Hamada and Wu procedure 

(1993), since it will likely give a much better start to the identification of active effects than 

using normal plots. But it should also be beneficial for a factor based approach. These 

procedures typically measure the ability of all subsets of factors up to a given size, often 

determined by the projectivity of the design (see Section 2), to explain the variation in the 

data. The graphical procedure may point out how many main effects and two-factor 

interactions that likely are active or that certain effects should be included in every model 

under investigation. The search for the active factor space could then be changed to an 

investigation of all models of a given type, for instance all models with  main effects and 

 two-factor interactions and with some main effects or two-factor interactions included in 

every model. Thereby factor spaces of higher dimensions than the projectivity of the design 

could be identified. Probably it will always be wise to use more than one method for 

analysing non-regular designs.  

1m

2m

We start this paper by giving a short review of how to obtain non-regular designs and 

also point out some properties. Section 3 is devoted to the effect of aliasing in two-level non-

regular designs with particular emphasize on the 12 run PB design. The graphical procedure is 

explained in Section 4. In Section 5 we provide some examples and in Section 6 we give 

some orthogonal arrays for which the proposed procedure will be particular useful.  

Concluding remarks are given in Section 7.  
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               2. TWO-LEVEL NON-REGULAR DESIGNS AND SOME POPERTIES 

 Two-level non-regular designs are special cases of orthogonal arrays. They can 

be constructed from Hadamard matrices. A Hadamard matrix is a n n×  matrix with entries 1±  

where rows and columns are pairwise orthogonal. Given a Hadamard matrix,  an 

equivalent matrix with all elements in the first column equal to 

,H

1+  can be obtained by 

multiplying by  each element in every row of  whose first element is . The remaining 

 columns must have half 1’s and half -1’s and constitute an orthogonal two-level design 

that can accommodate  factors in  runs. Orthogonal designs with  is called 

saturated.  Except when , there are in general several design alternatives for each n . A 

list of Hadamard matrices is available on Neil Sloane’s web site: 

1− H 1−

1n −

1n −

≤n

n 1k n= −

12

www.research.att.com/~njas/index.html#TABLES. This list includes both regular and non- 

regular designs.  

Compared to regular designs two-level non-regular designs have very favourable 

properties when projected onto a subset of factor columns. Projectivity of two-level designs 

was introduced by Box and Tyssedal (1996) and defined as follows. A n  design with  

runs and k  factors each at two levels is said to be of projectivity P  if every subset of P  

factor columns out of possible  contains a complete 

k× n

k 2P  factorial design, possibly with some 

points replicated. It is convenient to describe such designs as ( ),Pn,k  screens. A thorough 

discussion of the importance of projective properties is beyond the scope of this paper. Here 

we just point out that using columns from regular designs can only provide us with ( )2 3n,n ,  

screens while most non-regular designs are ( )1 3,n,n −  screens. This makes these designs 

attractive for screening purposes.  

The most well known two-level non-regular designs are the PB designs (Plackett and 

Burman 1946) with 2kn ≠ . PB designs where 2kn =  coincide with the regular designs. One 
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particular design is especially worth mentioning. The 12 run PB design is a  design in 

11 factors. It has also the property that all the  projections onto three factors are of just 

one type. The same applies to all the ⎜  projections onto four factors. This very fair 

treatment of any set of k  factors, 

3P =

11
3

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎞
⎟

11
4

⎛

⎝ ⎠

4,k ≤ is a property that no other PB design has. The 

projections onto any three or four factors are also very favourable. For any three factors we 

get a full  design plus the very best half fraction of a  design. The projections onto any 

four factors allow all main effects and two-factor interactions to be estimated. Hence the 12 

run PB has very attractive screening properties and deserves to be frequently used for such 

purposes. A 12 run PB design is given in Figure 1.   

32 32

 
Run A B C D E F G H J K L 

1 + - + - - - + + + - + 
2 + + - + - - - + + + - 
3 - + + - + - - - + + + 
4 + - + + - + - - - + + 
5 + + - + + - + - - - + 
6 + + + - + + - + - - - 
7 - + + + - + + - + - - 
8 - - + + + - + + - + - 
9 - - - + + + - + + - + 
10 + - - - + + + - + + - 
11 - + - - - + + + - + + 
12 - - - - - - - - - - - 

Figure 1.  The 12 run PB design. 
 

For more on projective properties of non-regular designs we refer to Box and Tyssedal 

(1996), Lin and Draper (1993), Cheng (1995, 1998) , Bulugotlu and Cheng (2003) and  

Tyssedal (2007).  

 

 

 

 5



         3. THE ALIAS MATRIX of NON-REGULAR TWO-LEVEL DESIGN 

For the use of non-regular designs it is important to be aware of their alias relationship. 

The alias matrix was introduced by Box and Wilson (1951). Suppose we fit the model  

                                                    E( ) =y Xβ  

when the true expectation is given by 1 1E( ) = +y X Xβ β

( ) 1−

. Then the expected value of the 

estimator for the regression coefficient vector, ′ ′=
)

X Xβ X y , is given by 

                                                  ( ) 1= +
)

E Aβ β β  

where ( ) 1
1

−′= ′A X X X X  is called the alias matrix. The alias relationship will vary from 

design to design. For screening purposes the aliasing between main effects and two-factor 

interactions has received the greatest attention. How to obtain this aliasing in an efficient way  

for a general two-level  PB design is given in Lin and Draper (1993).   

Every non-regular design for which the number of run 4n m= ,  odd, shares the 

property that each main effect contrast may be partially aliased with all two-factor interactions 

for which it is not involved.  

m

The 12 run PB design has a special position among the non-regular PB designs in the 

sense that any two-factor interaction is partially aliased with every other main effect for which 

it is not involved with the same amount in absolute value, namely 1 3. Let the factors in a 12 

run PB design be labelled  and suppose there is only one active two-factor 

interaction, say AB. Assume further there is no noise. Every two-factor interaction column is 

orthogonal to the main effects columns involved with the corresponding interaction. Thus, 

with the factor columns contained in the matrix

A,B,C,…,K

X , the 11 1×  matrix, A , has zeroes in the 

positions corresponding to factor A and factor B, and hence the estimated main effects of 

these factors are not biased. The rest of the entries in A  are equal to 1 3±  (Lin and Draper 

1993). The main effect contrasts of  are then biased with the same amount in C,D,…,K
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absolute value. Thereby the absolute values of the estimated contrasts of the inert factors are 

identical. 

If two two-factor interactions are active, A  is a 11 2×  matrix with corresponding 

entries for the inert factors equal to 1 3± .  Thereby the absolute values of the estimated 

contrasts for the inert factors will fall in two groups.  More than two two-factor interactions 

will cause a more confuse pattern. For three two-factor interactions the absolute values of the 

bias for the inert factors will for the 12 run PB design fall in four groups.  

Now let μ  be the expected value of contrast with corresponding estimator μ) . 

Whenever noise is present there will be a difference between ( )μ)E  and ( )μ)E . Assuming 

normally distributed data it can be shown that ( ) ( ) 1 17E E .μ μ ≈) )  when 1μμ σ =)  and that 

( )E μ) decreases towards ( )E μ)  when μμ σ )  increases. Hence provided the standard 

deviation of the contrasts is small compared to the size of the contrasts it is to be expected that 

the absolute values of the estimated contrasts of the inert factors behave quite similar to the 

non noise case. 

  We now have the basis to introduce our graphical procedure.  

 
 
4. A GRAPHICAL PROCEDURE BASED on CONTRAST PLOTS and ALIAS 
REDUCTION  
 

There are two basic elements in our graphical procedure. These are contrast plots 

interpretation and alias reduction.  By a contrast plot we will mean a graphical representation 

of the absolute value of estimated contrasts. The contrasts for estimating the main effects are 

given by:  ( ) 1 12 2
2n

−′ ′= = ′
)

X X X y X yβ . A plot of the absolute values of these estimated 

contrasts will be called a main effect contrast plot. The bias in these contrasts are given by 
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( ) 1
1 1 1

12 2
2n 1 1A X X X X X X−′ ′ ′= =β β β   where the columns for the active interactions are 

contained in 1X . When only a few of the higher order effects are active this bias may create 

groups of contrasts that are approximately equal in absolute value as pointed out in Section 3. 

This can be used to anticipate the number of active two-factor interactions.  

Similarly we can make contrast plots of absolute values of two-factor interactions 

involved with each factor, two-factor interaction contrast plots. The  two-factor 

interaction columns associated with a factor, say A, are all mutually orthogonal and 

orthogonal to the main effect effect column for factor A, and will together with this column 

make a new essentially equivalent PB design. For an orthogonal saturated design it is possible 

to construct  such plots.  

2n −

1n-

Two-factor interaction contrast plots can be generated with very little additional effort. 

Let  be the design matrix obtained by multiplying entrywise each column in aX X with the 

column for factor A. Then from ( )1
2n

aX y′ we get an estimate of the  two-factor 

interactions involved with factor A and 

2n −

2 y  since the first column in aX now will contain 

only pluses. Exactly the same result, however, may be obtained by multiplying  entrywise 

by  to obtain  and then compute 

y

a ay ( )1
2n

X ay′ . 

For PB designs the aliasing between two-factor interactions with no common factors 

follows the same basic pattern as the aliasing between main effects and two-factor interactions 

not involved with these main effects and the possible values for the aliasing are identical in 

both cases (Samset and Tyssedal 1999). In particular for the 12 run and 20 run PB designs this 

means that the same pattern induced into inert main effects by active two-factor interactions 

will also be induced into inert two-factor interactions by active main effects and two-factor 

interactions. The simple way to interpret contrast plots for main effects and two-factor 
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interactions is to consider contrasts that cluster in groups likely to be due to aliasing and those 

who don’t cluster in groups to represent  the active factors.  

With many estimated contrasts, cluster analysis may be a valuable tool to identify the 

clusters. For two estimated pairs of contrasts ( ) 1 2 1 2i jx , y ,i , , ,k , j , , ,k= =K K  their 

Euclidean distance is defined as  

                           = −ij i jd x y  

 Let the distance matrix be a k k×  matrix with the ( )i, j element equal to . Single 

linkage (Johnson and Wichern, 2007) is a hierarchical clustering method that starts with 

merging the two closest items. These form a cluster that is treated as one object. Thereby the 

number of objects is reduced by one. Distances between the other objects and this new object 

are updated as the smallest distance to an object in the cluster. The procedure continues until 

all objects are clustered and the obtained result is pictured in a dendrogram.  

ijd

Contrast plots and two-factor interaction plots supported by dendrograms will in many 

cases provide significant aid in identifying active factors and effects. However, several 

situations may arise that causes ambiguity in the interpretation. Large noise may cause inert 

effects with the same bias to appear unequal.  The amount of aliasing can be approximately 

equal to an active effect. More than two active interactions may cause many groups.  This 

complicates the interpretation of these plots. The orthogonalization procedure given below is 

a way to reduce the aliasing and thereby simplify the interpretation. We shall call this 

procedure for alias reduction.  

Consider again a model where ( ) 1 1E y X X= +β β . This model can be rewritten as 

follows: 

                 ( ) ( ) ( )1 1E y X A X XA= + + − 1β β β  
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where A  is the alias matrix. The columns in 1X XA−  are orthogonal to the columns in X . 

Thereby an unbiased estimate of 1β  may be obtained by regression of y onto 1X XA− .  

Denoting 1β̂ the corresponding estimator, an unbiased estimate of β  may be obtained from 

1
ˆˆ ˆ A= −β θ β ' where ( ) 1ˆ 'X X X y−=θ , the least square estimator in the model ( )E y X= θ , or 

by interchanging the role of X and 1X .  

If the columns for the active main effects and interactions are contained in X and 1X , 

the procedure above could be used to obtain unbiased estimate for these effects. There is a lot 

of freedom in choosing X  and 1X . X could contain main effects columns and 1X  interaction 

columns or the other way around. A mixture of main effect and interaction columns could be 

used in both X and 1X . The important thing is that there are no linear dependencies between 

the columns in X and 1X . The total number of columns allowed can never exceed , but 

will in general depend on the alias pattern for the design. The obvious choice of columns to 

put in 

1n-

X  (or 1X ) would be the columns for the main effects and two-factor interactions that 

stand out as clear candidates for being active from the contrast-plots and then iteratively 

increase the number of columns in X  (or 1X ), as the reduced aliasing enables us to find more 

potentially active candidates.   Before we show some examples we summarize the basic steps 

in our procedure. 

1. Perform a main effect contrast plot. Consider contrasts that cluster in groups likely 

to represent inert factors and those who don’t likely to represent the active ones.  

2. Perform two-factor interaction plots and interpret them the same way as for the 

main effect contrast plot. Normally these plots are made for interactions involved  

      with main effects that potentially has been judged active from step 1.  For step 1  

      and 2, be aware of that if a contrast who don’t cluster in groups came out with a  
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      value close to zero a possible explanation may be that the contrast is orthogonal to 

      some active effect. Hence small values of contrasts may point to potentially active  

      effects.   

3. Whenever interpretation of main effect and two-factor interaction contrast plots  

      becomes difficult due to masking of effects, large noise or many active two- 

      factor interactions, perform alias reduction possibly in several steps. This is a  

      very powerful procedure that in a few operation may reveal the complexity of the 

      problem at hand.    

 
                                                      5. EXAMPLES 
 

For the 12 run PB design the pattern induced into contrasts from active two-factor 

interactions or main effects is especially simple if just one or two two-factor interactions are 

active.  One active two-factor interaction causes expected absolute value of inert factor 

contrasts to be approximately equal. If there are two active two-factor interactions the 

expected absolute value of inert factor contrasts will approximately fall in two groups. 

 
Example1. For the 12 run PB design given in Figure 1, let the response be given by 

. Main effect contrast plot and dendrogram are 

shown in Figure 2. Both the main effect contrast plot and the dendrogram pick out two large 

main effects, A and C. The rest of the contrasts cluster in two groups. This indicates that in 

addition to the main effects of A and C, there are two active two-factor interactions.  

(2 2  0 0 25Y A C AB BC , ~ N , .ε ε= + + + + )

Since A has the greatest estimated contrast in absolute value, one way to proceed is to 

make a two-factor interaction contrast plot of the two-factor interactions involved with factor 

A. This is shown in Figure 3 a). Now eight of the ten two-factor interactions seem to cluster in 

two groups each of size 4, while the two-factor interactions AB and AC separate out. The two 

clusters can be explained by the main effect of C and one more two-factor interaction. The 
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Figure 2. Main effect contrast plot and dendrogram for the model 2 2Y A C AB BC ε= + + + + ,   

. ( )0 0 25~ N , .ε
 

small value of AC indicates that this interaction is involved with factor C and that AC likely is 

inert. Performing alias reduction in two steps, first with [ ]X = a,c  and 

[ ]1X , , , ,= ab ac ad ae af  and thereafter with [ ]X ,= a,c ab  and [ ]1X , ,= ag ah aj, , ,ak al  gives us 

the results presented in Figure 3b). This plot supports that AB is active. We have then three 

likely active effects, A, C, and AB.  
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Figure 3a). Contrast plot of two-factor inter-   Figure 3b). Plot of two-factor interactions 
actions involved with A.                                   involved with factor A, after alias reduction 
                                                                          starting with [ ]X = a,c . 
 
When alias reduction is performed with [ ]X ,= a,c ab  and [ ]1X , , , , ,= ac bc cd ce cf cg  and 

thereafter with [ ]X , ,= a,c ab bc  and [ ]1X , , ,= ch cj ck cl  the results in Figure 4a is produced. 

Finally, with [ ]X = ab,bc , new estimates of main effects can be provided by performing alias 
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reduction in t ere a  and c  are included in wo steps wh X  in step 2. These are shown in Figure 

4b, and support that A, C, AB nd AC  are the active effects. 
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Figure 4a). Plot of two-factor interactions         Figure 4b). Plot of main effects after alias 
involved with factor C, after alias reduction      reduction starting with 

A

[ ]X = ab,bc . 

starting with [ ]X ,= a,c ab .                                                                                                     
 

Exam ll now try with a model that does not obey the heredity restrictionple 2: We wi s.  

 

 effect contrast plot and dendrogram 

 Y = ( )1 5  0 0 25. A AB CD , ~ N , .ε ε+ + + . We notice that the model has four active factors. Let

Main are shown in Figure 5. The dendrogram roughly 

indicates three clusters. One with E, F, G, H and K, one with J and L and one with C and D. 

The contrast of A is larger than the others and also factor B seems to weakly separate out 

from the others. Several hypothesis about active factors are now possible.  
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Figure 5. Main effects contrast plot and dendrogram for the model 1 5Y . A AB CD ε= + + + , 
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The safest way to proceed is to make a two-factor interaction contrast plot of the two-

factor interactions involved with factor A.  This is shown in Figure 6. Here AB, AC and AD 

separate out from the others which seemingly seem to be due to one other effect. Since AC 

and AD both are small, this effect is probably not aliased with these two-factor interactions.  
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                     Figure 6. Contrast plot of two-factor interactions involved with factor A. 
 

Now, assuming that A and AB are active, we may perform alias reduction with 

[ ]X = a,ab  and estimate two-factor interactions involved with factor C. As in the previous 

example the procedure had to done in two steps and cd was included in X  after the first step. 

A plot of these is shown in Figure 7a). Then with [ ]X = ab,cd , new estimates of main effects 

can be provided, Figure 7b). These estimates were also calculated in two steps and a was  
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Figure 7a) Plot of estimated two-factor inter-   Figure 7b) Plot of estimated main effects after  
actions involved with factor C after alias          alias reduction starting with [ ]X ,= ab cd . 

reduction starting with [ ]X = a,ab .              
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included in X  after the first step. Clearly a very plausible explanation of the variation in the 

data is that, A, AB and CD are active.  

Figure 8 and 9 show four plots for the same model with ( )0 0 5~ N , .ε .  Except for 

factor A, very little can be said about the other factors from the main effect contrast plot. Still 

we easily end up with a correct suggestion for the active effects after a plot of two-factor 

interactions with A and alias reduction is performed.  
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Figure 8a) Contrast plot of main effects and two-factor interactions involved with factor A for 
the model 1 5Y . A AB CD ε= + + + , ( )0 0 5~ N , .ε . 
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Figure 9a) Plot of estimated two-factor inter-    Figure 9b) Plot of estimated main effects after 
actions involved with factor D after alias          alias reduction starting with [ ]X ,= ab cd . 

reduction starting with [ ]X ,= a ab . 
.    
                       

Example 3.  A 20 run PB design is given in Figure 10. For this design any two-factor 

interaction is partially aliased with 17 main effects. For 16 of them it is aliased with the same 

amount, 0.2 in absolute value and for one the aliasing is 0.6.  Hence the same arguing about 
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effects clustering in groups can be applied to this design too. The only difference is that k 

two-factor interactions, creates k spurious main-effects. These may have to be 

considered as potentially active. 

1 2= Kk , ,

Run A B C D E F G H J K L M N O P Q R S T 
1 + - + + - - - - + - + - + + + + - - + 
2 + + - + + - - - - + - + - + + + + - - 
3 - + + - + + - - - - + - + - + + + + - 
4 - - + + - + + - - - - + - + - + + + + 
5 + - - + + - + + - - - - + - + - + + + 
6 + + - - + + - + + - - - - + - + - + + 
7 + + + - - + + - + + - - - - + - + - + 
8 + + + + - - + + - + + - - - - + - + - 
9 - + + + + - - + + - + + - - - - + - + 
10 + - + + + + - - + + - + + - - - - + - 
11 - + - + + + + - - + + - + + - - - - + 
12 + - + - + + + + - - + + - + + - - - - 
13 - + - + - + + + + - - + + - + + - - - 
14 - - + - + - + + + + - - + + - + + - - 
15 - - - + - + - + + + + - - + + - + + - 
16 - - - - + - + - + + + + - - + + - + + 
17 + - - - - + - + - + + + + - - + + - + 
18 + + - - - - + - + - + + + + - - + + - 
19 - + + - - - - + - + - + + + + - - + + 
20 - - - - - - - - - - - - - - - - - - - 
Figure 10. The 20 run PB design. 

Now suppose that in a 20 run PB design the model is given by 

        1 5 1 5 2 1 5 2 ,Y = . A+ . B+ C+ . AB+ AC+ε ( )0 0 5~ N , .ε   

In the main-effect contrast plot in Figure 11 the factors A, C and N have the largest estimated 

contrasts in absolute value. The other contrasts approximately cluster in two groups. N is a 

spurious effect created by the two two-factor interactions. The other is R. Both B and R is 

difficult to distinguish from the rest of the factors. The contrast plot of two-factor interactions 

involved with factor C indicates that both AC and CO may be active. Figure 12a) shows 

estimated two-factor interactions with factor C obtained by alias reduction with [ ]X , ,= a c n  

and [ ]1X , , , , , , , ,= ac bc cd ce cf cg ch cj ck and thereafter with [ ]X , , ,n ac= a c  and 
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[ ]1X , , , , , , , ,= cl cm cn co cp cq cr cs ct . The effect of CO is now considerably smaller and not 

clearly distinguishable from CK and CM. 
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Figure 11. Contrast plot of main effects and two-factor interactions involved with factor C   
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A similar two-step procedure was performed for the two-factor interactions involved 

with factor A, Figure 12b). Again AC stands out as clearly active, but also AB seems to 

separate from the rest. Finally with [ ],X ab ac= , new estimates for the main effects and 
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CT

CS

 Figure 12a). Plot of estimated two-factor        Figure 12b). Plot of estimated two-factor  
 interactions involved with factor C after         interactions involved with factor A after  
alias reduction starting with [ ]X , ,= a c n .       alias reduction starting with [ ]X , ,= a c n . 
                                                                        .   
two-factor interactions with A can be computed in two steps. These are shown in Figure 13 a) 

and 13 b). The spurious effects are gone and the plots strongly support that the main effects of 

A, B and C and the two two-factor interactions AB and AC are active.  
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Figure13 a). Plot of estimated main effects    Figure 13b). Plot of estimated two-factor  
after alias reduction starting with                   interactions involved with A after alias 

[ ],X ab ac= .                                                    reduction starting with [ ], ,X a b c= . 

 

                         6. OTHER SUITABLE DESIGNS  

 From any  screen, , a ( 3n,n-1, ) nD ( )( )2 2 1 3−n, n ,  screen can be constructed the 

following way . Such a design will have the same type of alias structure as 

the design , part from some important differences, (Tyssedal and Kulahci 2005). Let 

2
⎡ ⎤

⎣ ⎦
n

n
n nD⎢
nD D

D =
D - ⎥

nD 1D = 

 and 
⎡ ⎤
⎢
⎣ ⎦

n

n

D
D ⎥ 2D  = . Two-factor interactions between two factors in 

⎡ ⎤
⎢ ⎥−⎣ ⎦

n

n

D
D 1D   or between two 

factors in 2D  are only aliased with main effects in 1D , and are orthogonal to interactions 

between one factor in 1D  and one factor in 2D . These two-factor interactions are only aliased 

with main effects in 2D .  Thereby the same rules for detecting potentially active effects that 

applies to , can also be used for , treating  nD 2nD 1D  and 2D  separately. For these designs, 

however, one has to be aware of that an interaction between two-factors in 1D  is always fully 

confounded with a two-factor interaction in 2D .  

Non-regular PB designs with the number of runs equal to 24, 28, 36, 44, 60, all  have 

two-factor interactions whose aliasing  with main effects in absolute value can take two 

values. The 24 run PB design and the 32 run Paley design (1933) both obeys that one of these 
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values are zero. If one two-factor interaction is present this means that the inert factors are 

divided into two groups. If more than one two-factor interaction is present, the pattern 

induced into inert contrasts may be difficult to interpret. However like in our Example 2 with 

0 5σ = . , experience has shown that the interpretation of this pattern, though useful, is seldom 

crucial for identifying the active factors.                        

 

                        7. CONCLUDING REMARKS 

Non-regular two-level designs offer a lot more design alternatives than the regular 

two-level designs and have far better projective properties than these. Therefore they are very 

important screening designs that deserve to be used much more often than they are. An 

obstacle for the use of these designs has been the lack of methods offered by computer 

packages for their analysis. In this paper we have presented a graphical method based on 

contrast-plot interpretation and alias reduction for identifying the active effects in cases  

where it can be assumed that few two-factor interactions are active. The method is simple to 

implement and will in many cases be possible to use as a stand alone method. For more 

complex models it will provide valuable support for other more quantitative methods. The 

method has been tested out on the 12 run and the 20 run PB design with good results even for 

cases were the heredity principle does not hold. For these designs the pattern induced into 

contrasts from active interactions is very structured. But also for other types of two-level 

designs the suggested procedure should be beneficial since once an effect is found to likely be 

active its aliasing into other effects may be reduced.  
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