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Abstract

A block composite likelihood model is developed for estimation and prediction in large spatial datasets.
The composite likelihood is constructed from the joint densities of pairs of adjacent spatial blocks. This allows
large datasets to be split into many smaller datasets, each of which can be evaluated separately, and combined
through a simple summation. Estimates for unknown parameters as well as optimal spatial predictions under
the block composite model are obtained. Asymptotic variances for both parameter estimates and predictions
are computed using Godambe sandwich matrices. In addition to the considerable increases in computational
efficiency it achieves, the composite structure also obviates the need to load entire datasets into memory at
once, completely avoiding memory limitations imposed by massive datasets. Moreover, computing time can
be drastically reduced even further by distributing the operations using parallel computing. A simulation
study shows that composite likelihood estimates and predictions, as well as their corresponding asymptotic
confidence intervals, are competitive with those based on the full likelihood. The procedure is demonstrated
on one dataset from the mining industry and one dataset of satellite retrievals. The real-data examples show
that the block composite results tend to outperform two competitors; the predictive process model and fixed
rank Kriging.
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1 Introduction

In recent years there has been a tremendous increase in the magnitude and pervasiveness of massive geocoded
scientific datasets. The growth in size is to a large extent driven by new technologies such as GPS and remote
sensing, as well as by the ever-increasing storage capacity of digital databses. The explosion of interest in
climate research has brought these types of datasets into the spotlight. These developments have triggered
demand for more sophisticated statistical modeling and methodology for such data. The computations required
for inference and prediction in spatial Gaussian process models, the central construct in spatial statistics, are
challenging for large datasets because they require manipulations of large covariance matrices. In particular,
evaluation of the likelihood function necessitates performing inverse and determinant operations, both of which
are computationally intractable for large matrices.

Several approaches have been proposed to mitigate this computational burden. For instance, Fuentes (2007)
approximates the likelihood using the spectral representation of the spatialprocess. Furrer et al. (2006), Kauf-
man et al. (2008), and Shaby and Ruppert (2011) use covariance tapering, where the full covariance function
is multiplied by a compactly-supported correlation function, yielding a sparse covariance matrix, which enables
specialised algorithms to be leveraged. Another strategy is to represent the spatial process in a lower-dimensional
subspace using low-rank models (e.g. Stein, 2008; Cressie and Johannesson, 2008; Banerjee et al., 2008). Gaus-
sian Markov random fields are also useful for fast computation of Gaussian processes (Lindgren et al., 2011).
Finally, there is a large literature on high-dimensional Gaussian distributions in machine learning (Rasmussen
and Williams, 2006) and numerical linear algebra (Higham, 2008).

In this paper we implement a unified framework for parameter estimation and prediction based on the
composite likelihood (Lindsay, 1988; Varin, 2008). The composite likelihood (CL) is a product of several joint
likelihoods of subsets of the data. One important special case is the pairwise likelihood, which is the product of
all bivariate marginal likelihoods. Here, we use a form of the CL function defined as the product of joint density
functions of pairs of spatial blocks. The motivation behind the spatial blocking strategy is that it captures
much of the spatial dependence, while still providing the divide and conquer aspect of the CL, which reduces
computational complexity and facilitates fast parallel computing.

In the parameter estimation context, the asymptotic properties of the CL are well-understood. Maximum
CL estimates are consistent and asymptotically normal under similar conditions as corresponding maximum
likelihood estimates (MLEs). The asymptotic covariance for maximum CL estimates is given by a sandwich
matrix (Godambe, 1960; Godambe and Heyde, 1987) rather than the usual Fisher information matrix for MLEs.

In addition to parameter estimation for Gaussian random field models, we show how to use the CL for the
crucial complementary problem of spatial prediction, which has not previously been considered. We demonstrate
how to construct predictions at unobserved sites that are optimal under the block CL, the composite analogue
to Kriging. This prediction approach allows fast computing and follows the same approach as the methods we
use for parameter estimation. We derive asymptotic prediction variances under the CL model, which have the
familiar sandwich form.

The earliest use of the CL for random fields seems to be Curriero and Lele (1999), who used the pairwise
form of the CL to estimate covariance parameters, and establish consistency. Several attempts have been made
to utilise spatial blocking. Among them is Caragea and Smith (2007), who do not use the CL likelihood in the
way we do here. Stein et al. (2004) use a restricted likelihood version of the telescoping conditional probability
approximation of Vecchia (1988), which achieves fast computations by reducing the conditioning set to a small
subset of the data. This is similar in spirit to the CLs, but it is not obvious how to either use it for spatial
prediction or implement it in parallel. Also similar is the notion of pseudolikelihood (Besag, 1974), which uses
the product of all full conditional distributions for parameter estimation.

The block CL model reduces the computational burden to O(n), where the hidden constant would depend on
the block sizes. Moreover, the usual memory restrictions for large datasets are avoided since the blocks of data
can be loaded into memory separately. Finally, the CL approach allows parallel computing. We implement the
estimation procedure on a Graphical Processing Unit (GPU) and achieve a many-fold increase in computational
efficiency. This speed-up comes on top of the efficiency gains resulting from the structure of the CL function.
Graphics cards have evolved into massively-parallel computational engines, which can be appropriated for scien-
tific applications. Statisticians are beginning to exploit the technology (Suchard and Rambaut, 2009; Suchard
et al., 2010; Lee et al., 2010), though there is a great deal of room for further development. To date we are not
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aware of any examples of exploiting GPUs in the context of spatial statistics or composite likelihoods.
The paper is organised as follows. Section 2 defines the block CL function. Methods for estimation and

prediction are presented in Section 3, and computational methods and parallelisation issues are described in
Section 4. Section 5 provides simulation studies. Section 6 presents two data examples. The computational
details related to the CL function and to parallel implementation are in the Appendix.

2 Block composite likelihood for spatial data

2.1 Geostatistical model

Geostatistical settings typically assume, at locations s ∈ D ⊆ ℜd, d = 2 or 3, a Gaussian response variable Y (s)
along with a p×1 vector of spatially-referenced explanatory variables x(s) which are associated through a spatial
regression model

Y (s) = x′ (s)β + w (s) + ǫ(s), (1)

where β = (β1, . . . , βp)
′ is the regression parameter, and ǫ(s) ∼ N(0, τ2) is independent error. The spatial residual

w(s) provides structural dependence, capturing the effect of unobserved covariates with spatial pattern. The
covariance structure of the Gaussian process w(s) is typically characterised by a small number of parameters. We
denote the collection of all covariance parameters θ, which includes the nugget effect τ2. Some common models
for Cov(w(s), w(s′)) = C(s′, s) are the exponential, Matérn, and Cauchy covariance models (see Banerjee et al.,
2004, e.g.).

We assume data are available at n locations {s1, . . . , sn}, and denote the collection of data Y = (Y (s1), . . . , Y (sn))
′.

Then Y ∼ N(Xβ,Σ), whereΣ = Σ(θ) = C+τ2In, with C(i, j) = Cov(w(si), w(sj)). Moreover, row i of matrix
X contains the explanatory variables x′(si). Ignoring a scalar that does not depend on β or θ, the log likelihood
is

ℓ(Y ;β,θ) = −
1

2
log |Σ| −

1

2
(Y −Xβ)′Σ−1(Y −Xβ). (2)

Noting that Σ is n × n, the difficulty with the usual maximum likelihood methods is apparent; evaluating the
log-likelihood requires computing |Σ| and a quadratic form that includes Σ−1, both of which are computationally
intractable for large n.

2.2 Composite likelihood

In contrast to the full joint likelihood (2), the CL function (Lindsay, 1988) is constructed as the product of
marginal likelihoods of subsets of the data, proceeding as though these subsets were independent. If the CL model
ignores the less important interactions in data Y , it can provide a good approximation to the full likelihood.
One version of a composite log likelihood for the geostatistical model (1) is the pairwise likelihood

ℓPCL(Y ;β,θ) =

n−1
∑

i=1

∑

i′>i

ℓ(Y (si), Y (si′);β,θ), (3)

where ℓ(Y (si), Y (si′);β,θ) is the log of the bivariate normal density of Y (si) and Y (si′) (Curriero and Lele,
1999).

Instead, we next present a block CL, where we partition the region D into M blocks D1, . . . ,DM , with
∪kDk = D, Dk ∩ Dl = ∅, for all pairs of blocks k, l. Denote the response in block k = 1, . . . ,M as Y k =
{Y (si); si ∈ Dk}. The number of sites in block k is nk,

∑

k nk = n. Let Y kl = (Y ′k,Y
′
l)
′ be the collection of

data in block k and l. We define the block composite log likelihood as

ℓCL(Y ;β,θ) =

M−1
∑

k=1

∑

l>k

ℓ(Y kl;β,θ)

=
M−1
∑

k=1

∑

l>k

[

−
1

2
log |Σkl| −

1

2
(Y kl −Xklβ)

′Σ−1kl (Y kl −Xklβ)
]

. (4)
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Here, Xkl = (X ′k,X
′
l)
′ is the collection of all covariates in block k and l, and Σkl is the (nk +nl)× (nk +nl)

covariance matrix

Σkl =

[

Σkl(1) Σkl(1, 2)
Σkl(2, 1) Σkl(2)

]

. (5)

This covariance matrix is thus partitioned into four blocks, where Σkl(1) is the nk × nk covariance matrix of
Y k, Σkl(2) is the nl × nl covariance matrix of Y l, and Σkl(1, 2) = Σ′kl(2, 1) is the nk × nl cross-covariance
between Y k and Y l. If M = 1 or 2, the block CL (4) is equal to the full likelihood (2); if M = n, we get the
pairwise likelihood (3). The block CL (4) is a natural compromise for spatial models, as the number of blocks
M represents a trade-off between computational and statistical efficiency.

The CL expression is simplified by omitting distant pairs of blocks from expression (4), assuming negligible
dependence between blocks if they are not neighbours. Let Nk denote the neighbours of block k. Figure 1(a)
shows an illustration of a regular block design with M = 5 · 5 = 25 blocks on a 2D domain, while Figure 1(b)
shows a Voronoi / Delaunay design. Blocks are neighbours if they share a common border. The Voronoi /
Delaunay design allows the block sizes to adapt in domains with non-uniform data densities, and the number of
neighbouring blocks vary. In any event, the neighbour structure is easy to represent as a graph. The edges of
block 12 are shown in Figure 1. In Figure 1(b) block 7 has a border with 14, and this prevents block 8 from
being a neighbour of 12. Many alternative blocking designs are possible.
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Figure 1: Observation sites illustrated by ’.’ and predictions sites by ’x’. A block CL splits the spatial domain
into regular (a) or irregular (b) blocks. Each block communicates pairwise with each of its neighbours. For
the regular grid (a), an interior block has eight neighbours. For a random or adaptive grid (b), the number of
neighbours varies. In both displays the block indexed 12 has four neighbours with higher indices (black edges).

This neighbour set Nk can be split into a forward part N→k = {l > k} ∩ {l ∈ Nk} and a backward part
N←k = {l < k} ∩ {l ∈ Nk}. These two are displayed using black and gray edge lines in Figure 1. By only
considering these neighbouring blocks, the second sum in (4) is only evaluated over l ∈ N→k , so that

ℓCL(Y ;β,θ) =
M−1
∑

k=1

∑

l∈N→

k

[

−
1

2
log |Σkl| −

1

2
(Y kl −Xklβ)

′Σ−1kl (Y kl −Xklβ)
]

(6)

=
∑

j

[

−
1

2
log |Σj | −

1

2
(Y j −Xjβ)

′Σ−1j (Y j −Xjβ)
]

.

Here, the shorthand notation with index j is used to represent the set of edges (k, l)|l ∈ N→k in the graph of
blocks and block neighbours. For instance, in Figure 1(a), the set of j = (k, l)’s is (1, 2), (1, 6), (1, 7), (2, 3),
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(2, 6), . . ., (24, 25). The edge notation induces the corresponding shorthand for the block-pair variables Σj = Σkl,
Y j = Y kl, and Xj = Xkl defined in (4) and (5). The neighbour structure implies a working assumption of
conditional pair dependence, proceeding as though block k was conditionally independent of blocks outside its
neighbourhood, given the pairwise block dependencies to k within the neighbourhood.

For data on a regular grid, the relative distances between sites in block-pairs are the same, giving identical
covariance matrices Σj for all equal-sized block pair neighbours j = (k, l), under stationarity and isotropy
assumptions on the random field. In this case the required determinants and inverses can be computed only once
per block CL evaluation.

3 Inference and prediction using block composite likelihood

3.1 Properties of the Maximum Composite Likelihood Estimator

The maximum CL estimates of θ and β are given by

(β̂CL, θ̂CL) = argmaxβ,θ [ℓCL(Y ;β,θ)] .

In general, the maximum CL estimators are known to be consistent and asymptotically normal under the same
conditions as MLEs (Lindsay, 1988). In the case of spatial Gaussian processes, conditions such as those in Mardia
and Marshall (1984) yield the desired asymptotic properties for the resultant maximum CL estimators (Curriero
and Lele, 1999, e.g).

A useful place to begin analytical exposition is with the vector-valued block composite score function, defined
as ∂ℓCL(Y ;β,θ)

∂θr
, r = 1, . . . , R, where R is the dimension of the parameter θ. For notational simplicity, we assume

here that Y is a mean-zero Gaussian random field. Differentiating (6) with respect to θr, the score (Appendix
A) can be expressed as

∂ℓCL(Y ;θ)

∂θr
=

∑

j

[

−
1

2
trace

(

Qj

∂Σj

∂θr

)

+
1

2
Y ′jQj

∂Σj

∂θr
QjY j

]

,

where Q = Σ−1j . Taking expectations and using E(Y ′BY ) = trace(BΣ) we see that

E

(

∂ℓCL(Y ;θ)

∂θr

)

=
∑

j

[

−
1

2
trace

(

Qj

∂Σj

∂θr

)

+
1

2
trace

(

Qj

∂Σj

∂θr

)

]

= 0,

revealing that the block composite score is an unbiased estimating function for θ for any blocking scheme.
As is typical of asymptotically-normal estimators resulting from unbiased estimating functions, the asymptotic

covariance of θ̂CL has a sandwich form (Godambe, 1960), θ̂CL ∼ N(θ,G−1), where

G = G(θ) = H(θ)J−1(θ)H(θ),

H(θ) = −E

(

∂2ℓCL(Y ;θ)

∂θ2

)

, J(θ) = Var

(

∂ℓCL(Y ;θ)

∂θ

)

.

We note that in the case of the full likelihood function, H(θ)J−1(θ) = I, so G(θ) is just the Fisher information.
For the block CL, analytical expressions are available for both H(θ) and J(θ). The negative expected Hessian
(Appendix A) has elements

Hrs(θ) =
∑

j

1

2
trace

(

Qj

∂Σj

dθs
Qj

∂Σj

dθr

)

, r, s = 1, . . . , R. (7)

The expression for J(θ) is more complicated (Appendix A). In practice we evaluate H(θ) and J(θ) at θ̂CL.
To re-introduce covariates into the model, we simply substitute (Y j −Xjβ̂CL) for Y j into the above expres-

sions. Analogously, the maximum block CL estimates of β and θ are obtained by maximizing (6). For fixed θ,
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the regression estimate β̂CL is analytically available by writing out the quadratic form in (6) in terms of β. This
gives

β̂CL = A−1b, A =
∑

j

X ′jQjXj , b =
∑

j

X ′jQjY j. (8)

The covariance matrix of the limiting normal distribution of β̂CL also has a sandwich form, which is computed
from the expected Hessian and the variance of the score. The negative expected Hessian is simply H(β) = A as
defined in (8). The variance of the score is

J = Var

(

∂ℓCL(Y ;θ)

∂β

)

=
∑

j

∑

j′

Cov(X ′jQjY j,X
′
j′Qj′Y j′)

=
∑

j

∑

j′

X ′jQjCov(Y j,Y j′)Qj′Xj′ . (9)

In practice, we only sum over terms with edges j = (k, l) and j′ = (k′, l′) that have common nodes among the
blocks (k, l, k′, l′). This means that Y j and Y j′ that do not have common elements are excluded from (9).

3.2 Prediction using block composite likelihood

Suppose that we want to predict the value of Y (s0) at an unobserved site s0. The best linear unbiased prediction
(BLUP) of Y (s0) given the data Y is

Ŷ (s0) = x′(s0)β +Σ0,1:nΣ
−1(Y −Xβ), (10)

where Σ0,1:n is the cross-covariance between s0 and all observation sites {s1, . . . , sn}. The prediction (10) is the
well-known Kriging equation, and it can be thought of as the conditional mean of the Gaussian process at s0
given the observations. In this sense, (10) is the optimal prediction based on the Gaussian likelihood. In this
section, we describe the optimal prediction based on the block CL. The composite prediction is fast to compute
and easily parallelised. Throughout this section, we will assume the parameters β and θ are known, but in
practice we use plug-in values β = β̂CL and θ = θ̂CL.

The computational difficulty encountered with the Kriging prediction (10) is matrix factorisation of a large
n× n matrix. The same challenge occurs for the prediction variance,

Var(Ŷ (s0)) = Σ0 −Σ0,1:nΣ
−1Σ0,1:n,

where Σ0 is the marginal variance Var(Y (s0)) of the field at the prediction site.
Consider the task of making predictions at nk0 ≥ 1 unobserved sites, all situated within block k. The first

step is to augment the data vector such that Y a
k = (Y ′k0,Y

′
k)
′. By including Y k0 as unobserved data in the CL

and setting the derivative of ℓCL in (6) equal to 0, we obtain the composite predictions Ŷ k0.
The contribution of the unobserved data Y k0 to the CL is given by block terms (k, l), l ∈ Nk, looking both

forward and backward in the graph of block-edges. We organise these pairs such that block k is always at the
top in every (k, l) block-pair, so that the (nk0 + nk + nl)× (nk0 + nk + nl) precision matrix for (Y ′ak ,Y

′
l)
′ is

Q0kl =





Q0kl(0) Q0kl(0, 1) Q0kl(0, 2)
Q0kl(1, 0) Q0kl(1) Q0kl(1, 2)
Q0kl(2, 0) Q0kl(2, 1) Q0kl(2)



 .

The block CL at the unobserved locations is thus

ℓCL(Y k0) =
∑

l 6=k

[

const−
1

2
(Y k0 −Xk0β)

′Q0kl(0)(Y k0 −Xk0β)

− (Y k0 −Xk0β)
′Q0kl(0, 1)(Y k −Xkβ)

− (Y k0 −Xk0β)
′Q0kl(0, 2)(Y l −X lβ)

]

, (11)
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now regarded as a function of Y k0, and where the nk0 × p matrix Xk0 collects the explanatory variables at
prediction sites in block k. Because the effect of nearby observations dominates the prediction, in practice we
save computational effort by only summing over l ∈ Nk in (11).

The first and second derivatives of ℓCL(Y k0) are easily obtained by differentiating the quadratic form in (11).
The first derivative is

dℓCL(Y k0)

dY k0
= −

∑

l∈Nk

[

Q0kl(0)(Y k0 −Xk0β) +Q0kl(0, 1)(Y k −Xkβ)

+Q0kl(0, 2)(Y l −X lβ)
]

. (12)

Setting the derivative (12) equal to 0 gives the block composite prediction Ŷk0 = Xk0β +A−10 b0, where

A0 =
∑

l∈Nk

Q0kl(0),

b0 = −
∑

l∈Nk

[

Q0kl(0, 1)(Y k −Xkβ) +Q0kl(0, 2)(Y l −X lβ)
]

. (13)

Since the mean of Y k is Xkβ, for any k, it is easily seen that (12) is an unbiased estimating function for Y k0

by checking that E
(

dℓCL(Y k0)
dY k0

)

= 0. Here, the expectation is taken over Y , including the random Y k0.

The asymptotic variance of the block composite prediction is described by a Godambe sandwich;

G0(Y k0) = H0(Y k0)J
−1
0 (Y k0)H0(Y k0), (14)

H0(Y k0) = −E

(

d2ℓCL(Y k0)

dY 2
k0

)

, J0(Y k0) = Var

(

dℓCL(Y k0)

dY k0

)

.

The prediction variances at locations s0 are the diagonal elements of G−10 (Y k0). The Hessian of (11), required

for the computation of (14), is the fixed quantity d2ℓCL(Y k0)
dY 2

k0

= −A0 defined in (13). The variance that defines

J0(Y k0) is computed over Y , including the random Y k0. By introducing the nk0 × (nk0 + nk) matrix Bk0 =
[

∑

l∈Nk
Q0kl(0),

∑

l∈Nk
Q0kl(0, 1)

]

from (12) we get

J0(Y k0) = Var

(

dlCL(Y k0)

dY 0,k

)

= Bk0Var(Y
a
k)B

′
k0 (15)

+ 2
∑

l∈Nk

B0kCov(Y
a
k,Y l)Q

′
0kl(0, 2)

+
∑

l∈Nk

∑

l′∈Nk

Q0kl(0, 2)Cov(Y l,Y l′)Q
′
0kl′(0, 2).

The derivations of the sampling properties of the composite prediction contained in this section are computed
from a somewhat different standpoint than the analogous derivations for parameter estimation in the previous
section. In Section 3.1, the parameters were considered fixed and unknown, while in this section we have
considered the prediction variable as a random quantity. This distinction resembles that between confidence
intervals and prediction intervals in traditional regression analysis.

We note that if we fix the block boundaries and allow the data density to increase to infinity, the block
CL prediction converges to the Kriging prediction, and thus enjoys the same infill asymptotic properties as the
BLUP.

4 Computation

4.1 Computing the block composite estimator

Optimisation of the block CL proceeds iteratively, alternately solving for β̂CL given θ̂CL, and for θ̂CL given β̂CL.
While each optimisation with respect to the regression parameters β can be expressed analytically (see (8)),
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the optimisation for θ must be done numerically. We define a starting value θ0 and use Fisher-scoring updates
according to

θb+1 = θb − E

[

∂2ℓCL(Y ;β,θb)

∂θ2

]−1
∂ℓCL(Y ;β,θb)

∂θ
. (16)

The score ∂ℓCL(Y ;β,θ)
∂θ and the expectation of the second derivative of the block CL can be derived analytically

(Section 3.1 and Appendix A). Convergence typically occurs in about 5 Fisher-scoring updates. The expressions
in (16) require the derivatives of the covariance function. For most covariance models in common use, the

derivatives
∂Σj

∂θr
are available in closed form. For instance, the exponential covariance function Σj(i, i

′) = τ2I(i =

i′) + σ2 exp(−φh), h = ‖si − si′‖ has derivatives

∂Σj(i, i
′)

∂σ2
= exp(−φh),

∂Σj(i, i
′)

∂φ
= −hσ2 exp(−φh),

∂Σj(i, i
′)

∂τ2
= I(i = i′).

Derivatives of the general Matérn covariance function are also available, but are considerably more complicated
(especially with respect to the smoothness parameter ν), as they require derivatives of modified Bessel functions
Kν(x) (Abramowitz and Stegun, 1964).

An efficient algorithm for the Fisher-scoring update is given in Algorithm 1. Note that many of the derivatives
and matrix factorisations are the same for the CL, the score, and the Hessian, and hence can be re-used.

Algorithm 1 Computation for a Fisher scoring update for the block composite likelihood

Require: θ = (θ1, . . . , θR)
′, initialise ur = 0 and Hrs = 0, r = 1, . . . , R, s = r, . . . , R.

1: for k = 1 to M − 1 do

2: for l ∈ N→k do

3: Build and factorise Σkl = LklL
t
kl. Qkl = Σ−1kl = L−tkl L

−1
kl

4: Compute qkl = Qkl(Y kl −Xklβ)
5: for r = 1 to R do

6: Compute W klr = Qkl
dΣkl

dθr

7: ur ← ur −
1
2trace(W klr) +

1
2q
′
kl

dΣkl

dθr
qkl

8: for s = r to R do

9: Hrs ← Hrs +
1
2trace(W klrW kls)

10: end for

11: end for

12: end for

13: end for

14: return dℓCL

dθ = (u1, . . . , uR)
′, −E

(

d2ℓCL

dθrdθs

)

=







H11 · · · H1R
...

. . .
...

H1R · · · HRR






, θ = θ +H−1u.

4.2 Computational efficiency and parallel computing

To study computational aspects of the block CL approach, we compare computing times for a variety of sites
per block, nk = c, and data sizes n = cM . Under the assumption of fixed c and increasing n, the computational
complexity of the block CL is O(n). This follows since the for-loop goes over n|N→k |/c steps, and at every step
the computation time is O(c3) for the smaller (fixed size c) matrix factorisation. This kind of linear order in
n is usually required for massive datasets. It holds for most knot-based models and basis representations such
as the predictive process model (Banerjee et al., 2008) and fixed rank Kriging (Cressie and Johannesson, 2008),
when the number of knots or basis functions are fixed at a low rank. In contrast, the Fourier approximations
(Fuentes, 2007) are O(n log n), while Gaussian Markov random fields (Lindgren et al., 2011) are O(n3/2) for
two-dimensional spatial data.

In addition to the order-n computational complexity, the block CL approach has no limit on data size due to
computer memory. Since the CL, score, and Hessian computations are sums over independent calculations for
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each pair of blocks, the only in-memory information is that pertinent to the current pair. Therefore computer
memory imposes a limit on the size of blocks, but not on the size of data.

The block CL approach is highly amenable to parallelisation. First, the CL expression is a sum over indepen-
dent calculations for each pair of blocks, and these can be performed in parallel. Second, the main computational
cost is due to linear algebra subroutines, e.g. matrix decompositions, which are also highly parallelisable (Ga-
loppo et al., 2005; Krüger and Westermann, 2005; Volkov and Demmel, 2008). We experimented with a parallel
sum over block pairs and no parallel matrix decompositions, and vice versa. We found that parallelising matrix
decomposition and not sums over block pairs lead to greater improvements because of issues with memory allo-
cation. Parallelising both of these computations simultaneously would likely give an even greater computational
improvement, especially for small and moderate block sizes, and is an area of future work.

Parallelisation has historically been dominated by CPU clusters which is just a group of linked computers,
called nodes. Typical clusters might have 8 or 16 nodes, while modern supercomputers have thousands. The
number of nodes determines the maximum speed-up due to parallelisation. These CPU parallelised systems are
capable of high parallelisation, but at a high cost for implementation and maintenance. CPU parallelisation
has advanced through the introduction of multithreaded CPUs which can efficiently execute multiple threads in
parallel on a single CPU. In contrast to the CPU cluster, these multithreaded systems share host CPU resources,
e.g. RAM.

More recently the development of highly parallelised general purpose GPUs provides a low cost, highly parallel
solution for many scientific computing applications. These affordable video cards ($2000 for the high-end cards
we are using) can be used in almost any desktop computer. These video cards provide speedups on the order of
100 or 200-fold for statistical applications (Li and Petzold, 2010; Suchard et al., 2010; Niemi and Wheeler, 2011).

Therefore, we investigate the use of GPUs to accelerate computation and allow for analysis of large data sets.
The two approaches we assessed were a MATLAB toolbox called Jacket and CUDA (Compute Unified Device
Architecture) C. Both approaches require CUDA-capable NVIDIA GPUs. MATLAB/Jacket utilise a gfor routine
which can be applied to run the CL sum in parallel. The current CUDA implementation uses parallel routines
for matrix factorisation. Computational details are presented in Appendix B.

5 Simulation study

In this section, we present a synthetic data example to study the sampling properties of parameter estimates and
predictions using the block CL. In addition, we examine the computational efficiency gains achieved by using a
GPU parallel computing environment.

5.1 Inference and prediction

We generate a spatial design with n = 2, 000 observation sites on a spatial domain (0, 1) × (0, 1). The selected
design is of a regular plus random infill type (Diggle and Lophaven, 2006). We generate 700 regular points, then
select 100 of these at random and draw 10 random points around each of them. The remaining sites are drawn
randomly within the unit square.

We compare properties of parameter estimates and predictions for various block sizes of the CL model. With
n as small as 2, 000 we can also compare with full likelihood results. Covariates are x′(si) = (1, si1), with true
regression parameters β = (−1, 1)t. We use a Matern covariance model with smoothness parameter 3/2, i.e.
Σ(i, i′) = τ2I(h = 0) + σ2(1 + φh) exp(−φh) for distance h = ||si − si′ || between two sites si and si′ . We use a
parameterisation on the real line, with log precisions and log range parameter: θ1 = − log(σ2), θ2 = log(φ), and
θ3 = − log(τ2). This parameterisation makes the Fisher-scoring optimisation robust. The scale parameters used
to generate the data are θ1 = 0, θ3 = 2, while the range is set to a short effective spatial correlation (θ2 = 3), or
to a long effective spatial correlation (θ2 = 2).

The results of mean square error (MSE), asymptotic relative efficiency, coverage probabilities and computing
time are given in Table 1 (short effective spatial correlation) and Table 2 (long effective spatial correlation). We
compare results of the full likelihood (L) and the block CL. For the CL, we use regular blocks (Figure 1(a)) of
lattice size 9 = 32, 25 = 52, 49 = 72 and 100 = 102. The results are averaged over 1, 000 replicates of n = 2, 000
data for the same spatial design. The prediction results are averaged over 500 prediction sites (not included in
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Table 1: Synthetic data: n = 2, 000 and a Matern (3/2) covariance function with short effective spatial corre-
lation. The asymptotic CL variances, relative to full likelihood, are shown in parantheses. Results are averages
over 1, 000 replicates.

L CL9 CL25 CL49 CL100

MSE β̂1 (Asymp. RE) 0.05 (1) 0.05 (0.81) 0.06 (0.77) 0.06 (0.74) 0.06 (0.79)

MSE β̂2 (Asymp. RE) 0.17 (1) 0.21 (0.82) 0.24 (0.77) 0.23 (0.74) 0.23 (0.79)

MSE θ̂1 (Asymp. RE) 0.014 (1) 0.018 (0.80) 0.019 (0.78) 0.019 (0.80) 0.018 (0.85)

MSE θ̂2 (Asymp. RE) 0.0036 (1) 0.0043 (0.80) 0.0048 (0.77) 0.0052 (0.76) 0.0054 (0.76)

MSE θ̂3 (Asymp. RE) 0.0007 (1) 0.0008 (0.86) 0.0008 (0.88) 0.0008 (0.88) 0.0008 (0.87)

Coverage (0.95) β̂1 0.96 0.95 0.96 0.96 0.96

Coverage (0.95) β̂2 0.93 0.92 0.93 0.92 0.92

Coverage (0.95) θ̂1 0.93 0.92 0.92 0.91 0.91

Coverage (0.95) θ̂2 0.94 0.94 0.93 0.91 0.91

Coverage (0.95) θ̂3 0.95 0.95 0.95 0.95 0.94

MSPE (Mean Asymp. RE) 193 (1) 195 (1) 198 (1) 200 (0.99) 204 (0.97)
Mean coverage (0.95) 0.95 0.95 0.95 0.95 0.95

Computing time (sec), no GPU 76 39 16 12 13

the n = 2, 000 data) per replicate. The asymptotic relative efficiency is defined by the ratio of the asymptotic
variances obtained by the Hessian (likelihood) and the Godambe sandwich (CL).

The increase in MSE for the block CL models is small over the full likelihood model, in particular for
predictions (MSPE). For all models the MSEs are higher for long effective spatial correlation (Table 2), while
the MSPE is smaller in this case. The relative MSE increase for the CL is largest for the long correlation case
(Table 2).

The asymptotic relative efficiencies (in parantheses) show that standard deviations of the parameter estimates
are larger for the CL models. Moreover, these asymptotic relative efficiencies are larger for a long correlation
range, except for the spatial correlation parameter θ2. For the 100 blocks case, with only 20 points per block on
average, the asymptotic efficiencies might not be very accurate. There is also some Monte Carlo error over the
1, 000 replicates. For all block CL models, the prediction efficiency is near 1.

The coverage probabilities are computed by, for every replicate, checking if the true value is within 1.96
standard deviations of the estimate. The results are averaged over all 1, 000 replicates. The coverages are about
the same for the full likelihood and the block CL models. They tend to be a little smaller than the nominal
level in our case with data size n = 2, 000, especially for the long correlation case (Table 2), and for θ1 and θ2.
Notably, the prediction coverages are excellent for all models.

The bottom row shows the computing times required for optimisation, asymptotic variance calculation, and
predictions, using no parallel implementation. This computing time is reduced by a factor 7 when using the 49
or 100 block CL models instead of the full likelihood. The computation time does not go down from 49 to 100
blocks because the relative computing time of looping over pairs of blocks becomes as large as the time required
for matrix factorisation.

We next study the performance by cross-plotting the CL and likelihood results. In Figure 2(a) we show the
parameter estimates for log precision (left), log range (middle) and log nugget precision (right) using maximum
likelihood (x-axis) versus that of CL with 100 blocks (y-axis). These plots show results for the situation with a
short effective spatial range. The points fall near the straight line with unit slope, showing that the maximum
CL estimates are very close to the MLEs. In Figure 2(b) we similarly show the asymptotic standard deviations
based on the Hessian of the likelihood and the Godambe sandwich for the 100-block CL model. The points are
above the straight line, visualising the slight decrease in efficiency when using the CL with 100 blocks. For θ1
and θ2 there is a tendency of greater loss of efficiency for larger values, while θ3 has a more constant decrease in
efficiency, which is related to a simpler sandwich expression for the nugget term.

Similarly, Figure 3(a) shows cross-plots of predictions, which fall tightly along the straight line with unit
slope. Figure 3(b) shows the prediction standard errors obtained by Kriging equations (x-axis) or the sandwich
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Table 2: Synthetic data: n = 2, 000 and a Matern (3/2) covariance function with long effective spatial correlation.
The asymptotic CL variances, relative to full likelihood, are shown in parantheses. Results are averages over
1, 000 replicates.

L CL9 CL25 CL49 CL100

MSE β̂1 (Asymp. RE) 0.14 (1) 0.13 (0.87) 0.14 (0.83) 0.15 (0.84) 0.15 (0.89)

MSE β̂2 (Asymp. RE) 0.42 (1) 0.51 (0.86) 0.57 (0.82) 0.59 (0.81) 0.61 (0.85)

MSE θ̂1 (Asymp. RE) 0.10 (1) 0.15 (0.81) 0.19 (0.80) 0.21 (0.82) 0.23 (0.87)

MSE θ̂2 (Asymp. RE) 0.020 (1) 0.029 (0.77) 0.040 (0.72) 0.051 (0.70) 0.065 (0.68)

MSE θ̂3 (Asymp. RE) 0.0006 (1) 0.0006 (0.87) 0.0006 (0.88) 0.0006 (0.88) 0.0006 (0.88)

Coverage (0.95) β̂1 0.92 0.93 0.92 0.91 0.91

Coverage (0.95) β̂2 0.87 0.85 0.86 0.85 0.84

Coverage (0.95) θ̂1 0.83 0.79 0.76 0.73 0.72

Coverage (0.95) θ̂2 0.86 0.82 0.79 0.75 0.72

Coverage (0.95) θ̂3 0.94 0.94 0.93 0.94 0.94

MSPE (Mean Asymp. RE) 151 (1) 153 (1) 155 (0.99) 157 (0.97) 161 (0.95)
Mean coverage (0.95) 0.95 0.95 0.95 0.95 0.95

Computing time (sec), no GPU 76 40 17 12 12
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Figure 2: Synthetic data (short effective spatial correlation): (a) Comparison of maximum likelihood estimates
(x-axis) and maximum CL estimates using 100 blocks (y-axis). (b) Comparison of asymptotic standard deviation
of maximum likelihood estimates (x-axis) and maximum CL estimates using 100 blocks (y-axis). The results are
computed over 1, 000 replicates of data at n = 2, 000 observation sites. θ1 is a precision parameter, θ2 is a range
parameter and θ3 is a nugget precision parameter.

calculation (y-axis). The points are near the straight line, indicating that the CL model does not lose much
prediction efficiency. The clusters of points off above the y = x line in Figure 3(b) correspond to predictions
near the block boundaries. The increased prediction variance in these regions is caused by edge effects, where
the CL ignores some of the dependency effects outside the block-pair interactions. The sandwich standard errors
correctly account for this effect.

The results show that the statistical efficiency decreases moderately with increased number of blocks. For
prediction purposes the effect is very small. We also tried other covariance functions, and the type of correlation
model does not seem to affect the results much, while the correlation length has the effects indicated by Table
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(a) (b)

Figure 3: Synthetic data (short effective spatial correlation): (a) Comparison of predictions based on the full
likelihood model (x-axis) and the composite likelihood model using 100 blocks (y-axis). (b) Comparison of
asymptotic prediction standard deviations using full likelihood model (x-axis) and the CL model using 49 blocks
(y-axis). The number of prediction sites is 500, and results are computed over 1, 000 replicates of data at
n = 2, 000 observation sites.

1 and 2. In practice the selection of a blocking scheme might depend on the spatial correlation range and the
design of observation and prediction sites. For both parameter estimation and prediction it might be helpful to
use overlapping blocks or to include some points outside the block (similar to suggestions in Stein et al., 2004).
We have focused on disjoint blocks here, but extensions are possible.

5.2 Computing time

To assess the computational aspects of the CL algorithm and parallel computing environments, we perform
simulation studies with varying block sizes and numbers of observations and recorded the total run time. For
easier comparison we fix the number of points in the blocks nk = c, for all k. This entails a spatial design with
c random sites in every block. We study performance for various c and data sizes n. For simplicity we use
regular quadratic grid blocks covering the spatial domain (0, 1) × (0, 1). We use a Matern covariance function
with smoothness parameter 3/2 and an effective correlation range of about 0.4.

First, we instructed MATLAB/Jacket to utilise the gfor loop. The best performance gain we attained using
gfor was less than ten-fold relative to MATLAB code without Jacket. It may be possible to increase these gains
with a thorough understanding of how Jacket interfaces with the GPU, and the associated memory allocation.

Instead, we study the computational gain when using parallel computing for matrix decomposition using
CUDA C. We next show the resulting CUDA C computing times for the Fisher-scoring algorithm on synthetic
datasets of varying sizes and CL models. The points in blocks c ranges from 128 to 4096 on the CPU, the largest
block size available on a 32-bit machine, and 6464 on the GPU, the largest available block size within the GPU
memory constraints, and for different dimension n. Thus, using quadratic regular grids of blocks, the smallest
dataset has 128×3×3 = 1152 observations and the largest dataset has 6464×13×13 = 1, 092, 416 observations.

Figure 4(a) shows GPU computation times as a function of data size for different block sizes. This display
clearly shows the linear scaling of the algorithm with data size for fixed number of points c per block. Figure
4(b) shows the associated computation times for fixed data sizes and varying block sizes on both the CPU and
GPU. The computation times are plotted on a cube-root scale to emphasize that the Fisher scoring algorithm
has cubic complexity in c, the number of points per block. The speed-up when running the equivalent algorithm
on the GPU compared with the CPU is linear in block size and essentially constant within a given block size.
The speedup was 1.4-fold at c = 128, 13-fold at c = 512, 29-fold at c = 1024, and 112-fold at c = 4096. In
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Figure 4: (a) Computation times for a single Fisher scoring iteration on a NVIDIA C2050 GPU as a function of
data size for a variety of block sizes. (b) Computation times, plotted on a cube-root scale, on both the CPU and
GPU for a single Fisher scoring iteration as a function of block size for specific data sizes.

our experience, the Fisher scoring algorithm takes about 5 iterations to reach convergence. This speed-up would
allow a one million observation dataset to be fully analyzed in half a day using c = 1024 or about two days using
c = 4096. Of course, one could also use parameter estimates from smaller block sizes as starting values for larger
blocks, etc.

A more sophisticated implementation on the GPU would allow more speed-up for the CL model, utilising
a parallel for-loop and running matrix decomposition in parallel. This is future work. Good block design
might reasonably depend on two competing factors: computing time and statistical efficiency. On one hand,
computation time increases cubicly with block size, so to obtain fast results, smaller blocks are preferable. On
the other hand, increasing block size increases the fidelity of the CL to the full likelihood as shown in Tables 1
and 2.

6 Real data examples

To study the performance of the block CL in real-world settings, we test it on one dataset from the mining
industry and one of total column ozone generated from satellite retrievals. The block CL model is compared to
the predictive process model and fixed rank Kriging.

6.1 Mining dataset

We study a joint frequency dataset acquired in an iron mine in Norway. Clusters of joints represent zones of
weakness in the rock mass. Data are useful for predicting the stability requirements in the mine and for avoiding
rock-fall. Joint frequency data are acquired from boreholes. The mining company collects this type of data
before developing a new part of the mine. The raw data are aggregated to 4m blocks along these boreholes, and
the total number of measurements is n = 11, 107. Ellefmo and Eidsvik (2009) analysed a subset of this dataset.

In Figure 5(a) we display the three dimensional locations of the measurements. The boreholes are recognised
as contiguous measurements that line up in the (north, east and depth) coordinates. The joint frequency data
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Figure 5: Mining data: (a) Data sites in a Norwegian iron mine. The data size is n = 11, 107, collected in about
200 boreholes. (b) Histogram of shifted log transformed data of joint frequencies. (c) Empirical variogram.

are transformed using a shifted log transformation, and the resulting data are shown in Figure 5(b). The mean is
transformed to 0, and we apply a standard Gaussian geostatistical model to these transformed data. Figure 5(c)
displays the empirical variogram, showing that the nugget is about τ2 = 0.2/2 = 0.322, the correlation range is
about 100 m, and the variance of the structured effect is about σ2 = (0.5− 0.2)/2 = 0.392.

We use the block CL model with different block sizes. The blocks are constructed by a Voronoi / Delaunay
tesselation adapted to the (north,east) coordinates of the data, with cells extending for all depths. The tesselation
is made by random sampling, without replacement, among all data sites, which on average gives smaller area
blocks where sampling locations are dense. We compare the CL results with the predictive process model
(Banerjee et al., 2008; Finley et al., 2009), a dimension-reduction technique using a fixed set of knots. The
predictive process is a linear (Kriging) combination of the observed data at the knots. Here, we draw the knot
locations at random, without replacement, from among the data locations.

Table 3 shows the parameter estimates, the average MSPE and coverage probabilities for a hold-out set
of 1000 prediction sites. We compare three common covariance functions: the exponential model specified by
Σ(h) = σ2 exp(−φh)+ τ2I(h = 0), Cauchy(3) which is Σ(h) = σ2(1+φh)−3+ τ2I(h = 0), and Matern(3/2) with
Σ(h) = σ2(1 + φh) exp(−φh) + τ2I(h = 0). The parameter estimates are very similar for all three CL models,
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Table 3: Mining data: Parameter estimates, mean square prediction error (MSPE) and coverage probabilities
for prediction distributions. The different columns correspond to different number of blocks for the CL model
and different knot sizes for the predictive process (PP) models.

CL, 200 CL, 40 CL, 10 PP, 1000 PP, 1500

σ̂ 0.42 0.42 0.42 0.44 0.45

Exponential φ̂ 0.031 0.030 0.028 0.013 0.015
τ̂ 0.30 0.30 0.30 0.32 0.31

MSPE 145 144 144 182 171
Pred cov (0.95) 0.95 0.95 0.95 0.94 0.94

σ̂ 0.41 0.42 0.42 0.45 0.47

Cauchy φ̂ 0.013 0.013 0.012 0.004 0.004
τ̂ 0.29 0.29 0.29 0.34 0.33

MSPE 145 144 143 182 174
Pred cov (0.95) 0.95 0.95 0.95 0.95 0.95

σ̂ 0.38 0.39 0.39 0.39 0.41

φ̂ 0.074 0.073 0.069 0.033 0.036
Matern (3/2) τ̂ 0.33 0.33 0.33 0.35 0.35

MSPE 148 148 147 173 168
Pred cov (0.95) 0.95 0.95 0.95 0.94 0.94

but different between the CL and predictive process models. In particular, the range parameter φ is smaller for
predictive process models. This implies a larger effective spatial correlation, imposing a smoother process. To
some extent, the predictive process models compensate for this with larger estimated variance terms.

The MSPE is clearly smaller for the CL models than for the predictive process models. Even with 1500 knots,
the MSPE for the predictive process model is 15% larger than the CL models. There are small differences between
the various spatial covariance functions. The coverage probabilities are very good for all models considered. The
computation times required for obtaining the results of Table 3 range from a few seconds to a few minutes. The
fastest is the CL model with 200 blocks, which takes about 10 seconds using no GPU resources, while the slowest
model is the predictive process with 1500 knots, which takes a few minutes.

6.2 Total column ozone dataset

We next analyze total column ozone (TCO) data acquired from an orbiting satellite mounted with a passive
sensor registering backscattered light. The dataset we consider here was previously analyzed by Cressie and
Johannesson (2008), and is displayed in Figure 6. The dataset consists of n = 173, 405 measurements. Cressie
and Johannesson (2008) used fixed rank Kriging (FRK) in their analysis. This approach is based on a basis
representation of the spatial Gaussian process. They use 396 local bisquare basis functions at various resolutions
recovered from a discrete global grid (Sahr, 2011). The computation time for FRK is O(n), which is highly
desirable, but the trade-off is that the low-rank basis representation imposes possibly unrealistic smoothness on
the results.

We compare the block CL models using 15 and 24 latitude / longitude blocks, and one based on the dis-
crete global grid of resolution 3 consisting of 272 blocks (Sahr, 2011). We use a fixed and constant mean β1,
and a Cauchy (3) type covariance function. The block CL parameter estimates are very similar: (σ̂2, φ̂, τ̂2) is
(712, 0.030, 4.82) using 15×15 blocks, (652, 0.033, 4.72) using 24×24 blocks, and (642, 0.032, 4.62) for the discrete
global grid.

We predict on a 180 × 288 grid, corresponding to the so-called NASA ‘level 2’ data product. The latitude
ranges from −89.5 to 89.5 in 1◦ steps, while longitude ranges from −179.375 to 179.375 in 1.25◦ steps. In total,
this entails 51, 840 prediction sites. Prediction maps of TCO for the three different block CL models are nearly
indistinguishable. Figure 7(a) shows the prediction map of TCO using 15 × 15 blocks. The marginal prediction
standard deviations of TCO are displayed in Figure 7(b).

We notice that the prediction standard deviations are much higher near the arctic because there is no data
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Figure 6: Total column ozone data: Number of measurements is n = 173, 405. Note the patches of missing data,
and the denser sampling of data near satellite orbits. There is less data at the poles due to limited reflection.

Table 4: Total Column Ozone data: Mean square prediction error (MSPE) and coverage probabilities (95 %) for
a 25, 000 hold-out set. The results are for fixed rank Kriging (FRK), composite likelihood model with 15 × 15
(CL, reg15), 24× 24 blocks (CL, reg 24), and for a resolution 3 discrete global grid (CL, dgg).

FRK CL, reg 15 CL, reg 24 CL, dgg

MSPE 88.0 28.1 28.2 28.5
Pred cov (0.95) 0.71 0.96 0.95 0.96

there. We further note the increased estimated uncertainty in regions of missing data, and light-coloured lines
going south-southwest, where there is less dense satellite coverage. In addition, there are visible artifacts of the
15× 15 block CL model in the prediction standard deviations. These regions of increased estimated uncertainty
where data is lacking and on the border of spatial blocks are desirable—indeed, they indicate that the sandwich
variance calculations are correctly accounting for sparse data and block boundary effects. As is also desirable,
these block boundary effects are not seen on the prediction map.

We next compare the CL with FRK results. Here, we follow Cressie and Johannesson (2008) in using multi-
resolution bisquare basis functions centered at resolution 1, 2 and 3 of the discrete global grid. Resolution 4 of
the discrete global grid is used to construct the binning for the moment-based parameter estimation approach
(Cressie and Johannesson, 2008). Figure 7 shows the FRK predictions (c) and prediction standard deviations
(d) with the nugget effect properly accounted for. Notably, the predictions obtained by FRK are much smoother
than the block CL results. Moreover, the estimated prediction standard deviations are smaller for FRK and vary
less around the globe. The patches of missing data are not visible in Figure 7(d). Similar to the block edge
effects in the CL model, the locations of the basis functions are easily seen as artifacts in the estimated FRK
standard error map. In contrast to the CL, these basis function artifacts seem to be the dominant feature in the
FRK standard error estimates.

To compare prediction and coverage accuracy, we use a hold-out set of 25, 000 randomly-selected data locations
around the globe. We estimate the model parameters based on the remaining data and predict at the hold-out
locations. Table 4 shows the comparison of the block CL and FRK. All block CL models obtain coverages
close to the nominal rate and have similar prediction error. FRK shows a much larger prediction error and it
under-covers conspicuously. These results show that for this dataset, the low-dimensional representation in FRK
is over-smoothing. One could improve the FRK results by adding more basis functions, with added computation
time. The computation time, using no GPU resources, is 5-10 minutes for FRK and around an hour for the
various CL models.
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(a) CL predictions with 15 blocks (b) CL standard errors

(c) FRK predictions (d) FRK standard errors

Figure 7: Total Column Ozone data: Top displays are based on the CL model with 15×15 regular longitude and
latitude blocks. Bottom displays are based on fixed rank Kriging. Predictions (a & c) and prediction standard
deviations (b & d).

7 Closing remarks

In this paper we use a block composite likelihood model for parameter estimation and prediction in large Gaussian
spatial models. The properties of the composite likelihood are well-understood in the context of parameter
estimation. Here we also present a method for spatial prediction using the block composite likelihood.

We have shown through a simulation study that the block composite likelihood performs well for reasonably-
sized blocks, especially for spatial prediction. The required computation time is reduced considerably relative
to likelihood-based calculations using the divide and conquer strategy inherent in the composite likelihood. We
recommend testing results with a couple of choices of block sizes (hundreds to thousands sites per block) and
blocking designs. The optimal blocking strategy would depend on the spatial correlation and the design of data
points. Note that the block composite likelihood model is not restricted to disjoint spatial blocks like we have
used for illustration here.

We tested the block composite likelihood on one large dataset from the mining industry (n = 11, 107) and
one massive dataset from satellite measurements (n = 173, 405). For these datasets we compared the block
composite likelihood with predictive process models and with fixed rank Kriging, both of which rely on knot or
basis representations for reducing the computational burden of matrix factorisations. The composite likelihood
provides better results in terms of both mean square errors and coverage probabilities in the examples we
considered.

In addition to increases in accuracy of prediction and uncertainty quantification, the block CL methods we
have described have other advantages over FRK and predictive process approaches. What we have not high-
lighted is that unlike FRK and predictive processes, the CL effectively separates modeling and computational
considerations. That is, with the CL one may choose whatever covariance model captures the important fea-
tures of the data and proceed from there, obtaining asymptotically unbiased estimates of the spatial covariance
parameters for the chosen model. In contrast, for low-rank methods, the covariance model itself is induced by
computational compromises, choice and number of basis functions in the case of FRK, and knot placement and
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density in the case of predictive processes. For these methods, computational and modeling considerations are
inexorably connected.

We implemented parallel versions of the block CL model on a GPU. A parallelisation of the matrix decompo-
sition seems more promising than running the CL for loop over block pairs in parallel, given the current software
for GPU parallelisation. For moderate to large block sizes this parallel implementation gives two-three digit
speed-ups, on top of the speed-up achieved by the CL construction. A topic for future work is to tailor the
distribution of block data to the GPU for maximum reduction of the computing time, in a software package.
CPU and GPU examples of code are available from the authors.

In this paper we considered only spatial Gaussian processes. In future work we aim to look at spatio-temporal
processes as well. For example, the satellite data in Section 6.2 is from just one day of retrievals. It is more
useful to analyze these types of data over several days. Another extension involves non-stationary processes. For
instance, we have started to look at seismic data (n ∼ 1, 000, 000), which typically exhibit larger variability or
higher correlations in layered parts of the earth. A Bayesian analysis using the composite likelihood model could
also be envisioned. Data dimensions will likely become even larger in the future. We foresee a larger future
interest in O(n) approximations for spatial and spatio-temporal applications, as well as in the use of parallel
computing environments.
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A Score function and Hessian

Let the response Y j = (Y ′k,Y
′
l)
′ at block pair k, l be a zero mean Gaussian vector with covariance matrix Σj .

The score is expressed as

dℓCL(Y ;θ)

dθr
=

∑

j

[

−
1

2

d log |Σj |

dθr
−

1

2

d(Y ′jΣ
−1
j Y j)

dθr

]

.

The derivative of the log determinant and the quadratic form are

dlog |Σj|

dθr
=

1

|Σj |
|Σj|trace

(

Qj

dΣj

dθr

)

= trace

(

Qj

dΣj

dθr

)

,

d(Y ′jQjY j)

dθr
= −Y ′jQj

dΣj

dθr
QjY j.

Here, the precision matrix is Qj = Σ−1j . The score function then becomes

dlCL(Y ;θ)

dθr
=

∑

j

−
1

2
trace

(

Qj

dΣj

dθr

)

+
1

2
Y ′jQj

dΣj

dθr
QjY j . (17)

The Godambe sandwich requires the variance of this score. We can ignore the non-random trace terms. The
computation involves several variances and covariances of quadratic forms Y ′BY . We have

Var(Y ′BY ) = 2trace(BΣBΣ), Cov(Y ′BrY ,Y ′BsY ) = 2trace(BrΣBsΣ).

Define next Bjr = Qj
dΣj

dθr
Qj. The variance of the score becomes

J = Var

(

dlCL

dθr

)

= Var(
∑

j

1

2
Y ′jBjrY j) =

∑

j

∑

j′

1

4
Cov(Y ′jBjrY j ,Y

′
j′Bj′rY j′)

=
1

4

∑

j

Var(Y ′jBjrY j) +
1

2

∑

j

∑

j′>j

Cov(Y ′jBjrY j,Y
′
j′Bj′rY j′). (18)
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The sum of the variance terms is directly available:

1

4

∑

j

Var(Y ′jBjrY j) =
1

2

∑

j

trace (BjrΣjBjrΣj) =
1

2

∑

j

trace

(

Qj

dΣj

dθr
Qj

dΣj

dθr

)

,

when inserting for Bjr. This is the same as the negative expected Hessian in (7). Hence, if we just use the
variance parts for the computation of J , we get J = H , which gives under-estimation of the variance.

For moderate-size datasets we can compute the covariance in (18) for all block variables directly. For larger
datasets it is convenient to look only at neighbouring edges, and introduce Y jj′ = (Y ′j,Y

′
j′)
′. Whenever edges

j and j′ have a common node, two of the sub-blocks of Y jj′ are copies. The quadratic forms are

Y ′jBjrY j = Y ′jj′B̃jrY jj′, Y ′j′Bj′rY j′ = Y ′jj′B̃j′rY jj′ ,

where B̃jr is 0 except at the upper left block containing Bjr, while B̃j′r is 0 except in the lower right block
containing Bj′r. We let Σjj′ = Var(Y jj′). Then,

Cov(Y ′jBjrY j ,Y
′
j′Bj′rY j′) = Cov

(

Y ′jj′B̃jrY jj′,Y
′
jj′B̃j′rY jj′

)

= 2trace
(

B̃jrΣjj′B̃j′rΣjj′

)

= 2trace
(

BjrΣjj′(1, 2)Bj′rΣjj′(2, 1)
)

,

where only the cross-covariance Cov(Y j,Y j′) = Σjj′(1, 2) enters the equation.
This exercise can similarly be done for the off-diagonal entries of J . In summary, we get entries J(r, s),

r, s,= 1, . . . , R given by

Cov

(

dlCL

dθr
,
dlCL

dθs

)

=
1

2

∑

j

trace

(

Qj

dΣj

dθr
Qj

dΣj

dθs

)

+
∑

j

∑

j′>j

trace
(

BjrΣjj′(1, 2)Bj′sΣjj′(2, 1)
)

.

In practice we do not sum over all other vertices j′ > j, but only over vertices j′ that have nodes in common
with j.

For second derivatives we need to differentiate (17), involving a trace expression with derivative dtrace(AB) =
trace(dAB) + trace(AdB), and the former quadratic form. The Hessian becomes

d2lCL(Y ;θ)

dθrdθs
=
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trace(Qj
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.

The expected Hessian becomes
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B GPU implementation

MATLAB/Jacket defines a set of GPU-friendly data types and a host of new GPU-friendly functions. Modifying
existing MATLAB code for compatibility with Jacket can be as simple as updating data types and functions to
GPU-friendly versions. At a cost of $350 for a perpetual, academic, Jacket Base license, this provides easy access
to the vast power of GPU-computing. The Jacket command gfor is a for loop which simultaneously launches all
iterations on the GPU, provided the iterations are independent. This has been a large success for Monte Carlo
computations. The gfor routine allows parallelisation of the CL expression, if we can allocate data effectively
on the GPU. Few function names need modification since most standard functions such as sqrt and lu already
run on the GPU if given GPU-friendly arguments. The ease of implementation using MATLAB/Jacket obscures
how MATLAB software interfaces with the GPU hardware. It is sometimes hard to go beyond the standard
outlook and streamline the code for your purposes.

CUDA C is a NVIDIA extension to the C language that allows code to run in parallel on a CUDA-enabled
GPU. At a high level, CUDA C defines a way to execute functions on the GPU and copy variables to the GPU,
but otherwise looks similar to standard C code. We used the CUBLAS library, an extension of the BLAS library
for GPUs, to implement efficient calculation of determinants and quadratic forms in the Fisher scoring algorithm.
This kind of parallelisation speeds up all terms in the CL expressions, but (at current) no parallelisation is applied
to the CL sum. Specifically a parallelised Cholesky decomposition, based largely on (Bouckaert, Bouckaert), was
developed. This decomposition has two main kernels: one to perform Cholesky decomposition down the block
diagonal and the second to perform the Cholesky decomposition below each block diagonal. The block diagonal
was chosen to fit within a single thread-block, i.e. 32× 32 on CUDA 2.0 devices and 16× 16 on previous devices.
In addition, kernels were required for each parameter derivative of the Fisher scoring algorithm.
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