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Abstract

In order to compute the log-likelihood for high dimensional Gaussian models, it is necessary
to compute the determinant of the large, sparse, symmetric positive definite precision matrix.
Traditional methods for evaluating the log-likelihood, which are typically based on Choleksy
factorisations, are not feasible for very large models due to the massive memory requirements.
We present a novel approach for evaluating such likelihoods that only requires the computation
of matrix-vector products. In this approach we utilise matrix functions, Krylov subspaces, and
probing vectors to construct an iterative numerical method for computing the log-likelihood.

1 Introduction

In computational and, in particular, spatial statistics, increasing possibilities for observing large
amounts of data leaves the statistician in want of computational techniques capable of extracting
useful information from such data. Large datasets arise in many applications, such as modelling
seismic data acquisition (Buland and Omre, 2003); analysing satellite data for ozone intensity,
temperature and cloud formations (McPeters et al., 1996); or constructing global climate mod-
els (Lindgren et al., 2011). Most models in spatial statistics are based around multivariate Gaussian
distributions, which means that random vector x = (x1, . . . , xn)T has probability density function

p(x|µ,η) = (2π)−n/2 det(Qη)1/2 exp

(
−1

2
(x− µ)TQη(x− µ)

)
,

where the mean vector is µ, and the precision matrix Qη is the inverse of the covariance matrix,
which depends on the parameters η. For short, we write x ∼ N (µ,Q−1

η ). In this paper, we assume
that the precision matrix is sparse, that is, most of its entries are zero. For our purposes this
sparseness arises from a Markov property on the random vector x, which gives computational
advantages (Rue and Held, 2005). Moreover, the sparse structure also has strong physical and
statistical motivations (Lindgren et al., 2011). We note that Rue and Tjelmeland (2002) showed that
it is possible to approximate general Gaussian random fields on a lattice by multivariate Gaussians
with sparse precision matrices.

Throughout this paper, we will consider the common Gauss-linear model, in which our data
y = (y1, . . . , yny)T is a noisy observation of a linear transformation of a true random field, that is

y = Aθx +N (0,Q−1
ε,η), (1)

where the matrix Aθ connects the true underlying field x to observations. We assume that
Aθ and Qε,η are sparse matrices. In the simplest case they are diagonal, or block diagonal.
Under this Gauss-linear model assumptions the conditional distribution of x, given y, is Gaussian
with x|y ∼ N (µx|y,Q

−1
x|y), where Qx|y = Qη + AT

θ Qε,ηAθ and µx|y = Q−1
x|y(Qηµ + AT

θ Qε,ηy).
Estimating the parameters, η,θ, in the frequentist way amounts to maximising the following
likelihood

p(y|η,θ) ∝ p(y|x,η,θ)p(x|η)

p(x|y,η,θ)
. (2)

In the Bayesian setting, we look at the posterior distribution of model parameters, p(η,θ|y), which
decomposes similarly, and we often need to compute the mode of this distribution. In both cases,
we minimise the function Φ(η,θ) = −2 log(f(η,θ)) for f = p(y|η,θ) or f = p(η,θ|y). These
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expressions involve the log-determinant of matrices. When we evaluate (2) at the conditional mean
µx|y = µx|y(η,θ), the likelihood is available as

2 log p(y|η,θ, σ2, λ2) =ny log(2π) + log det Qη + log det Qε,η − log det(Qη + AT
θ Qε,ηAθ)

− (µx|y − µ)TQη(µx|y − µ)− (y −Aµx|y)TQε,η(y −Aµx|y). (3)

Thus, the main computational requirement is the evaluation of three log-determinants, where
log det Qε,η usually is trivial to compute.

We consider the situations when n and ny are very large, say 106. In such high dimensions the
direct determinant evaluations of the terms in (3) often become infeasible due to computational costs
and storage limitations. For instance, the standard method of computing the determinant through
the Cholesky factor is in most situations impossible due to enormous storage requirements. We
suggest to use ideas from numerical linear algebra to overcome this problem, and present methods for
likelihood evaluation or Bayesian computations that are useful for massive datasets. Our approach
relies on fast evaluation of sparse matrix-vector products.

Previous approaches have tried to circumvent the determinant evaluation by constructing
approximate likelihood models. A determinant-free approach is investigated in Fuentes (2007), based
on estimated spectral densities. Pseudo-likelihood methods (Besag, 1974), composite likelihood and
block composite likelihood (Eidsvik et al., 2011) combine subsets of the data to build an approximate
likelihood expression. What these methods generally have in common is that they change the
statistical model; i.e. they make simplifying assumptions about the model to reduce the computing
dimensions. Our approach differs from these in that we do not approximate the likelihood model,
but rather approximate the log-determinants expressions directly.

In Section 2 we outline the main concepts behind our log-determinant evaluation and the different
challenges involved. Section 3 presents solutions to these different challenges, using a number of
results from numerical linear algebra, complex analysis and graph theory. Results are shown for
real and synthetic datasets in Section 4.

2 Log-determinant evaluations

Precision and covariance matrices are characterised by being symmetric, positive definite; that
is Q = QT and for all z ∈ Rn, zTQz > 0. For this class of matrices, the log-determinant can
be found through the Cholesky factor of Q in the following manner: Let Q = LLT , where L is
lower triangular. Then log det Q = 2

∑
i logLii. This is the most common way to compute the

log-determinant. It takes only a few lines of code using a library for computing the Cholesky factor,
such as CHOLMOD (Davis and Hager, 1999; Chen et al., 2008).

If Q is dense, computing L is an O(n3) operation, and this quickly becomes infeasible for large
n. If Q is sparse, much lower computational complexities may be obtained. In particular, if x is a
one dimensional random field, such as an random walk or characterised through some stochastic
differential equation, the computational complexity for computing L is O(n). Similarly, for a 2-D
Markovian field, the complextiy is O(n3/2) and for a 3-D Markovian field O(n2) (Rue and Held,
2005). These order terms are obtained after reordering the elements in the precision matrix. The
fill-in is defined by the number of extra non-zero terms in L, compared with Q. This fill-in becomes
large for higher dimensional processes. In Figure 1 we plot the number of non-zero entries of L
versus that of Q on a log-scale. The Cholesky factor (second axis) grows quickly in 3-D, causing
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memory requirements to explode. The precision matrices used to display this figure come from
discretization of the Laplacian in 1-D, 2-D and 3-D.

Figure 1: Loglog-plot of nonzero elements in the precision matrix Q (first axis) versus nonzero
elements in the Cholesky factor L (second axis). The precision matrices are constructed from a
discretized Laplacian in 1-D, 2-D and 3-D.
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In Figure 2 an illustration of fill-in in the Cholesky factor is depicted. Here, the precision
matrix Q of the 3-D Laplacian is used (lower triangular part of Q shown in left display). The
lower triangular Cholesky factor L (right display) is obtained using METIS reordering (Karypis and
Kumar, 1999).

In this paper we suggest methods to overcome the prohibitive storage requirements of the
Cholesky approach by using ideas from different areas of numerical mathematics, namely

• a matrix identity stating that log-determinants are equal to the tr log Q, where log Q is the
matrix logarithm,

• Cauchy’s integral formula along with rational approximations for computing the log matrix
times a vector (Higham, 2008),

• Krylov subspace methods for solving linear systems (Saad, 2003),

• stochastic probing vectors (Hutchinson, 1989; Bekas et al., 2007; Tang and Saad, 2010).
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Figure 2: Illustration of fill-in for a 3-D Laplacian. The black dots indicate the non-zero structure of
matrices. The lower triangular part of the precision matrix (left) is very sparse, with 2048 non-zero
elements. In contrast, the Cholesky factor (right) contains 18530 non-zero elements.
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We next outline these main concepts for evaluating log-determinants. Section 3 presents several
useful extensions for practical use.

It appears that approximating the determinant of a large sparse matrix to sufficient accuracy is
a hard problem. Nevertheless, several approximating techniques exist in the literature, the most
useful of which is the approximation developed in Hutchinson (1989). This is the method extended
in this paper.

The Hutchinson estimator was originally developed for calculating the trace of the inverse of a
matrix, but the method easily generalises to our situation by the following observation (Bai and
Golub, 1997):

log det Q = tr log Q. (4)

In the symmetric positive definite case, this identity is proved noting that det Q =
∏n
i=1 λi where

{λi} are the eigenvalues of Q and that log Q = U log(Λ)UT with Λ = diag(λ) and U contains
the eigenvectors of Q. Furthermore, tr (U log(Λ)UT ) = tr (UUT log Λ) = tr log Λ, which gives the
identity.

For practical implementation of this result we note the following;

tr log Q =
n∑
j=1

eTj log(Q)ej , (5)

where ej = (0, . . . , 1, . . . , 0)T and the 1 entry is in position j. The unit vectors extract the diagonal of
log Q in (5). From this we can recover the Hutchinson estimator by introducing probing vectors vj as
follows: Let vj , j = 1, . . . , s be vectors with random entries at element k defined by P (vkj = 1) = 1/2,
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Figure 3: Illustration of 1-distance colouring. Nodes sharing an edge cannot have the same colour.
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P (vkj = −1) = 1/2, independently for all k = 1, . . . , n. Next, let

tr log Q ≈ 1

s

s∑
j=1

vTj log(Q)vj . (6)

It is possible to compute confidence regions for the estimator in (6), using either Monte Carlo
techniques or the Hoeffding inequality (Bai and Golub (1997)). This can give guidelines for choosing
s < n. The memory requirements are low, but since this is a Monte Carlo method, the Hutchinson
estimator requires a large s to be sufficiently accurate.

One method for keeping the number of probing vectors to a reasonable number is to choose the
vjs in a clever way, so that we require far fewer vectors than a Monte Carlo method. In recent
publications, Bekas et al. (2007) and Tang and Saad (2010) explored the use of probing vectors
for extracting the diagonal of a matrix or its inverse. Bekas et al. (2007) extract the diagonal of
a sparse matrix under mild conditions. Tang and Saad (2010) relies on an approximate sparsity
pattern of Q−1, determined by a power of the original matrix, i.e. Qp, p = 2, 3, . . . ,. That it is
always true for large enough p can be seen using polynomial approximation. It turns out that if the
sparsity structure of Q−1 can be approximated by that of Qp, then a set of probing vectors can be
computed that takes this into account by using a colouring of the adjacency graph of Qp.

In this paper, we are considering Gaussian random vectors that have an approximate Markov
property, which, equivalently, means that their precision matrices are approximately sparse. We
can, therefore, associate with each precision matrix a graph, such as the one shown in Figure 3.
We can use this graph structure, and the idea that Q−1 or log(Q) can be well approximated by
a matrix with the same sparsity structure as Qp to design a good set of probing vectors. Ideally,
we would chose vj ≡ ej , however, as that is not possible, we will relax our requirements and chose
a set of probing vectors that are sums of ejs. In order to not lose too much accuracy with this
approximation, we need to make sure that the non-zero elements of vj are sufficiently separated in
some appropriate sense. Using the fact that our desired matrix function is well approximated by

5



Figure 4: Illustration of log(Q)vi for different probing vectors. Right: log(Q)vi in the situation with
few probing vectors. Left: Situation with more probing vectors. Bottom: The same computation
for the 1-D problem.
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Qp, Tang and Saad (2010) suggested that a good choice of probing vectors would have the property
that if both the kth and `th element of vj were non-zero, then the (k, `)-entry of Qp is zero. A set
of probing vectors with this property can be constructed using a graph colouring of Qp.

A neighbourhood colouring of the graph induced by Qp associates with each node a colour, c, such
that no adjacent nodes have the same colour. While constructing good graph colourings is generally
a difficult problem, sufficiently good colourings can be generated easily using greedy algorithms
(Culberson, 1992). Figure 3 illustrates the concept with three colours inducing three probing vectors.
Here, the probing vectors are defined by v1

1,2,3,4,5 = 1, v2
6,7,8,9,10 = 1, v3

11,12,13,14,16 = 1, with the
remaining entries equal to zero.

A heuristic method suggested in Tang and Saad (2010) is to find the power, p in Qp by solving
Qx = ej and setting p = min{d(l, j)||xl| < ε} where d(·, ·) defines the graph distance. In our case,
we may compute log(Q)ej and apply the same heuristic. Figure 4 illustrates how ones in a probing
vector influence neighbors. This is illustrated on a grid, where the size is 32× 32, i.e. n = 1024. We
discuss some issues with using this kind of probing vectors in Section 3.4, and propose a potential
remedy. Note that the probing vectors need not be stored, but may be computed cheaply on the fly.
If we pre-compute them, they are sparse, and do not need much storage. Since what we need for
each probing vector is vTj log(Q)vj , we observe that the computation is highly parallel with low

communication costs. Each node gets one probing vector, and computes vTj log(Q)vj and sends
back the result. In essence, this leads to linear speedup in the amount of processors available with
proportionality close to unity.

The procedure described above requires the evaluation of log(Q)vj . The matrices we consider
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have real positive spectrum, and it is possible to evaluate log(Q)vj through Cauchy’s integral
formula,

log(Q)vj =

∮
Γ

log(z)(zI−Q)−1vjdz, (7)

where Γ is a suitable curve enclosing the spectrum of Q and avoiding branch cuts of the logarithm.
Discretizing this integral leads to a rational approximation of log(Q)v of the following form

log(Q)vj ≈ fN (Q)vj =

N∑
l=1

αl(Q− σlI)−1vj , αl, σl ∈ C, (8)

where N ∈ {8, . . . , 20} in our case, and αl, σl, l = 1, . . . , N are integration weights and shifts
respectively.

In Davies and Higham (2005) it is shown that direct quadrature on (7) can be extremely inefficient,
but through clever conformal mappings, Hale et al. (2008) developed midpoint quadrature rules
that converge rapidly for increasing number of quadrature points. The maps needed depend on the
extremal eigenvalues of the matrix Q and therefore need to be estimated. For the quadrature rules
resulting from these mappings, the following theorem holds

Theorem 1. (Hale et al., 2008) Let Q be a positive definite matrix with eigenvalues in [λmin, λmax],
then the N -point discretization formula developed in Hale et al. (2008) (equation 3.2) converges at
the following rate

‖ log Q− fN (Q)‖ = O(e−2πN/(log(λmax/λmin)+6)) (9)

with fN as in (8).

By the inequality ‖ log(Q)v− fN (Q)v‖ ≤ ‖ log Q− fN (Q)‖‖v‖, the theorem holds for functions
of a matrix times a vector as well. This theorem can be used to determine the needed number
of terms, N , in (8) required to achieve a certain accuracy. An example of the contour and shift
produced by this method is illustrated in Figure 5. The conformal maps required for computing this
quadrature rule, require the evaluation of the Jacobi elliptic functions, sn(·|k), cn(·|k) and dn(·|k)
for complex arguments. These functions are in general difficult to compute. We use an approach
similar to that in Driscoll (2009) to compute these.

The approximation of log(Q)v in (8) is based on solving a family of shifted linear systems. The
method of choice for computing fN (Q)vj is problem dependent, but in high dimensions, we usually
have to rely on iterative methods, such as Krylov methods. Conjugate gradients (CG) is the most
famous such method for solving Qx = v, for a sparse Q. This method solves for x by iteratively
computing Qw, many times, for different w. Generally, a Krylov subspace, Kk(Q,v) is defined
by Kk(Q,v) = span{v,Qv,Q2v, . . . ,Qkv}, see e.g. Saad (2003). The Krylov method of choice is
highly dependent on the condition number K(Q) = λmax/λmin of Q, and the performance can often
be improved by preconditioning the matrix Q. The following inequality (Saad (2003)) illustrates
the convergence of CG-type methods based on the condition number K:

‖x∗ − xk‖Q ≤ 2

(√
K− 1√
K + 1

)k
‖x∗ − x0‖Q (10)
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Figure 5: Contours (left) and shifts (right) for fN in (8), with N = 200.

where x∗ is the true solution of Qx∗ = y and xk is the kth approximation coming from the
CG-method.

If the condition number K(Q) is not too large, there are Krylov methods that are particularly
well suited to compute the approximation in (8). These methods are based on the fact that
Kk(Q,v) = Kk(Q− σlI,v). This means that we can obtain the coefficients for the shifted systems
in (8) without computing new matrix-vector products, see Jegerlehner (1996) and Frommer (2003)
for details. We have employed the method CG-M in Jegerlehner (1996) for our implementation. One
possible difficulty in employing the method is that we have complex shifts - this is remedied by using
a variant, Conjugate Orthogonal CG-M (COCG-M), which entails using the conjugate symmetric
form (v,y) = vTy instead of the usual inner product (v,y) = vTy in the Krylov iterations. See
van der Vorst and Melissen (1990) for a description of the COCG method. In practice, little complex
arithmetic is needed, since the complex, shifted coefficients are computed from the real ones obtained
by the CG method used to solve Qv = y. Note that for large K, this particular method may have
poor convergence behaviour and it is difficult to precondition this method. In these cases, one is
better of by solving the shifted systems in (8) in sequence using good preconditioners for Q− σlI.

This method also allows for an elegant way of computing the generalised log-determinant if we
have an essentially intrinsic (singular) precision matrix. That is, the evaluation of

˜log det Q =
∑

λi∈σ(Q)
λi>0

log λi. (11)

To do this, we will need to implicitly deflate the eigenvectors corresponding to the zero eigenvalues.
More, specifically, if uj , j = 1, . . . , r are the eigenvectors of Q associated with zero eigenvalues,
we orthogonalise the probing vectors vi to these eigenvectors by a Gram-Schmidt process and use

these new probing vectors for computing ˜log det Q. While we need accurate approximations to these
eigenvectors for this procedure to work, they are often known from the modelling assumptions (see,
for example, Chapter 3 in Rue and Held (2005)).

It is also possible to use this technique if we have a small cluster of eigenvalues that are
very different (on a relative scale) to the other eigenvalues. Then we use the same approach as
above, but we include the eigenvalues in our determinant evaluation, which leads to log det Q =
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(log det Q)probe +
∑r

j=1 log λj . While this approach has sound theory, one has to be careful so that
round-off errors due to loss of orthogonality do not start to dominate. One remedy is to orthogonalise
current estimator of fN (Q)vj in the Krylov method to the known eigenvectors at regular intervals.
The cost of this orthogonalisation small.

3 Tools for effective approximation of the log-determinant

The method outlined in Section 2 can be used as a black-box procedure for well-conditioned matrices,
for which COCG-M only requires a few iterations to converge. For not so well-conditioned matrices,
the method is not a particularly fast one; solving hundreds of linear systems for computing one
determinant approximation can be very time consuming, and therefore we should make the effort of
tuning the method to the application at hand. Indeed, if it is possible to solve one set of shifted
systems using fewer Krylov iterations, we should do so. Additionally, if we are able to shave off
some probing vectors for a sufficiently accurate approximation, we should do so as well.

In the following subsections we propose various extensions of the basic methodology presented
in Section 2 to facilitate special problems that may arise. These tricks are useful both for evaluating
the potential of the approach and in practical implementations. First, we give some general advice
on using the proposed log-determinant approximations. This advice also apply when using the
numerous extensions proposed.

The most obvious way to reduce the number of Krylov iterations for convergence, is if Q is on
some product form, Q =

∏K
i=1 Qi. If there are repeated factors in the product, ij , j = 1, . . . , J , we

note that log det
∏J
j=1 Qij = J log det Qi1 , and the conditioning of Qj1 is better than that of the

product. Additionally, some matrices may have determinants that are easy to compute, such as
diagonal or tridiagonal matrices and can be separated from the approximation.

To shave off some probing vector, start using the approach above, looking at log(Q)ej for some
js to find a k-distance colouring that is sufficient. Then compute the log-determinant, for a worst
case scenario Q use a (k − 1)-distance colouring for the probing vectors and see if the resulting
determinant is (almost) the same as for the k-distance version. If they are, use the (k − 1)-distance
colouring instead, which should decrease the number of probing vector by a significant amount.

There are many situations in which Q does not depend on parameters, but rather is fixed. When
this is the case it is obviously a good idea to precompute log det Q to high accuracy and use this
stored value in the optimisation routine. In this case, only one or two determinant evaluations
per iteration in the optimisation routine is needed, which greatly reduces the computational effort
needed to find an optimum.

3.1 Off-diagonal compression using time-frequency transforms

The most common matrix functions have the property that the elements of f(Q) decay quickly as
they get farther from the diagonal (Benzi and Golub, 1999; Benzi and Razouk, 2007). However,
the rate of decay often depends on the basis - that is, the elements of f(WQW−1) = Wf(Q)W−1

may decay faster than those of f(Q). In our context the rate of decay is very important: the faster
the diagonal elements decay, the smaller we can take p. Therefore, the efficiency of our method is
intimately tied to the decay properties of f(Q) and, in this section, we consider some options for
finding a good basis W.

In particular, we can change the basis through a wavelet transform. The continuous wavelet
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transform of a function g ∈ L2(R) is defined by through shifts and scalings of a mother wavelet
φ ∈ L2(R), namely φu,s(t) = 1√

s
φ((t− u)/s), by

Wg(u, s) =

∫
R
g(t)φu,s(t)dt, (12)

provided that
∫
R φ(t)dt = 0 and that

∫
R |φ̂(ω)|2/ω dω <∞. This transform can be discretized and

has a fast version if g has compact support, called the fast wavelet transform. In the discretized
setting, this corresponds to a basis change with another orthonormal basis (i.e. W−1 = W T ).
This can also be generalised to multiple dimensions and on general manifolds. An introduction to
wavelets can be found in Mallat (1998). Now, the properties of this transform that are interesting
for our setting is exactly this: if the off-diagonal entries of f(Q) possess some smoothness, which
they almost always will when Q corresponds to a spatial prior, the entries in the transformed basis
will have good decay. This is essentially the compression property of wavelet bases. While we
consider wavelets here, the approach naturally extends to other transforms which may compress the
off-diagonal entries and at the same time has a fast transform and inverse transform. Examples
include curvelet transforms and Gabor frames (see Gröchenig (2001) and Candés et al. (2006)).

In our setting, we are not interested in using this as a preconditioner for solving linear systems,
as is done in e.g. Chan et al. (1997), but rather to find a basis in which we need fewer probing
vectors to make a sufficiently good log-determinant approximation. Since W (Q − σI)−1W T =
(WQW T − σI)−1 we do not need to modify our rational approximations to facilitate this new basis.
The probing vectors do, however, need to be computed with respect to the new basis, which may be
difficult to facilitate in a computationally efficient way. An empirical observation, however, suggests
that it may be possible to use the probing vectors computed from the original precision matrix.

To illustrate how the decay behaviour may change, we compute log(Q)e256 and log(WQW T )e256

for a 1-D lag-2 random walk model using the Daubechies 2 wavelet (the compact wavelet with
fewest non-zero entries with vanishing moments of order 0, 1 and 2). The result is illustrated in
Figure 6. In this RW -2 model, the log det Q = 2.8347 · 103, the 1-distance colouring in the wavelet
approximation, corresponding to 27 colours gives log det Q ≈ 2.8318 · 103, while the 17-distance
colouring (30 colours) in the original basis gives log det Q ≈ 2.6893 · 103. In the original basis, we
require a 169-distance colouring, corresponding to 172 colours in order to match the approximation
accuracy in the wavelet basis.

Now, computing WQW Tv for arbitrary vs can be done without forming the matrix WQW T

by using the fast wavelet transform, and while we need to form an approximation to WQW T in
order to compute the probing vectors, it will be faster to use the fast wavelet transform in the
matrix vector product case. This certainly suggests that for specific problems, where log Q has
some smoothness in its off-diagonal terms, this may be an approach to pursue.

3.2 Nodal nested dissection reordering and recursive computation

When computing the log-determinant of a precision matrix using the Cholesky approach, we should
always do a fill-in reordering of the precision matrix before computing the Cholesky factor. In
effect, we then compute chol(PQP T ), where P is a permutation matrix. A particularly well-suited
reordering is the METIS nodal nested dissection reordering (Karypis and Kumar (1999)). Figure 7
illustrates a typical sparsity structure coming from employing this reordering.

While this type of reordering allows for fill-in that is close to minimal, it also allows for recursive
computation of the log-determinant via a nested Schur-complement technique. Take the following
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Figure 6: Decay behaviour of wavelet basis versus normal basis.
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Figure 7: Example of nested dissection reordering. The non-zero elements are very centered near
the diagonal, except for a small number of variables that are coupled with all predecessors.
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block matrix, corresponding to the general block form of a matrix that has undergone nodal nested
dissection reordering,

Q =


A1 F1,1 O F2,1

F T
1,1 B1 O F2,2

O O A2 F2,3

F T
2,1 F T

2,2 F T
2,3 B2

 , (13)

and let F2 =
(
F T

2,1 F T
2,2 F T

2,3

)T
, Q1 =

 A1 F1,1 O
F T

1,1 B1 O

O O A2

 and let the block Schur complements

be S1 = B1 − F T
1,1A

−1
1 F1,1 and S2 = B2 − F T

2 Q−1
1 F2. Then we can compute the log-determinant

of Q in the following recursive manner,

log det Q = log det Q1 + log detS2 = log det A1 + log detS1 + log det A2 + log detS2. (14)

This obviously extends to arbitrary levels of recursion, say k. The key elements in this recursive
way of computing the log-determinant are 1) we can use Krylov methods to compute F T

2 Q−1
1 F2

and its upper level counterparts. This requires the solution of some linear systems that do not
need to be stored. 2) S1,S2, . . . ,Sk are typically low dimensional, and we can use direct methods
for computing their log-determinants, and 3) we can use the determinant approximations of the
previous section for computing log det Ai, and the condition numbers and the distance colourings
required for the Ais are typically much smaller than for the original system.

The question then is: when do we need to use this recursive approach rather than using the
matrix function approach directly? The obvious situation in which to apply this extension is when,
after reordering the matrix Q, the last block matrix Bk is very small, and the conditioning of Q1 is
much better than the original Q. Then this approach should be orders of magnitude faster than
using the direct approximation on Q. Another situation is when it is very hard to compute log det Q
or log det Q− log det(Q + λ2ATA). Then this approach may be prudent, in this case to increase
the accuracy of the log-determinant approximations without them taking much more time.

3.3 Subtractive cancellation for log-determinants

Suppose that the quantity of computational interest is given by

f(η, λ2) = log det(Qη)− log det(Qη + λ2K) + q(η, λ2) (15)

for some well conditioned K, and where q(η, λ2) is shorthand for the quadratic forms and po-
tential prior distributions involving η, λ2. This happens when we have noisy observations of a
Gaussian field of some sort and we want to find the posterior distribution or compute the maximum
likelihood estimate for η, λ2, as in (3). When computing f(η), it appears that log det(Qη) is over-
/underestimated while log det(Qη +λ2K) is under-/overestimated comparatively, so that the relative
error in log det(Qη) − log det(Qη + λ2K) is greater than for each of the quantities individually.
There also appears to be additional effects, as can be seen for the case where κ = 0.001, λ2 = 0.5.
In the numerical litterature, this is known as subtractive cancellation. This effect may lead to
problems in optimisation procedures where this difference needs to be computed several and wildly
different η, λ2. In computational terms, it essentially means that we will need more probing vectors
to accurately compute this difference than to accurately compute its individual ingredients.
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Table 1: Relative accuracy for log-determinants of precision matrices, perturbations of these and
their differences.

log det Q2
κ log det(Q2

κ + λ2I) Difference

κ = 0.001, λ2 = 0.1 1.01411 0.99997 0.75638
κ = 0.005, λ2 = 0.1 1.00714 0.99996 0.85185
κ = 0.01, λ2 = 0.1 1.00468 0.99996 0.89247
κ = 0.05, λ2 = 0.1 1.00098 0.99995 0.96623
κ = 0.001, λ2 = 0.05 1.01410 0.99980 0.68790
κ = 0.005, λ2 = 0.05 1.00714 0.99980 0.79878
κ = 0.01, λ2 = 0.05 1.00468 0.99980 0.84818
κ = 0.05, λ2 = 0.05 1.00098 0.99984 0.94338
κ = 0.001, λ2 = 0.5 1.01411 1.00001 0.87264
κ = 0.005, λ2 = 0.5 1.00714 1.00001 0.92890
κ = 0.01, λ2 = 0.5 1.00468 1.00001 0.95090
κ = 0.05, λ2 = 0.5 1.00098 1.00001 0.98751

To illustrate this effect, we utilise a 2-D Matérn field with indirect observation on each discretiza-
tion point; i.e. we discretize

(κ−4)x =W (16)

and add upon it i.i.d noise to obtain our observations. Here 4 =
∑

i ∂/∂x
2
i is the Laplacian

operator on Rd. If Q2
κ denotes the discretized precision obtained from (16), the perturbed matrix

becomes Q2
κ + λ2I. In Table 1 we can see this effect, and this is typical for these type of models.

Better conditioning of both matrices (corresponding to higher κ and λ2) leads to less subtractive
cancellation and worsening of the conditioning leads to greater amounts of subtractive cancellation.
Specifically, when κ = 0.001, λ2 = 0.05, the differences of the log-determinants are too inaccurate to
perform optimisation on the parameters, and we need to have sufficient accuracy in the entire range
of possible values for the parameters for an optimisation routine to stably find the correct optimum.

3.4 Random sign flipping of entries of probing vectors for monotone covariance
functions

In spatial modeling, it is common to in advance know if the precision matrix induces a monotone,
decreasing function off the diagonal of the covariance matrix. This is the case for Matérn type
covariance functions and many other used in a wide range of spatial models (see e.g. Cressie (1993)).
It may also be known in graphical models that the correlation of nodes remain positive throughout
the graph. In this particular setting, it is possible to refine the probing vectors in order to achieve
greater accuracy with fewer vectors. To see this, note that if uk = −ek,

uTk fN (Q)uk = eTk fN (Q)ek, (17)

and we could have replaced all probing vectors with their negatives and recovered the same
approximation. Now, let vk, k = 1, . . . , s be the probing vectors computed with the graph colouring
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Table 2: Relative accuracy for log-determinants of precision matrices, perturbations of these and
their differences. Now using random flipping in probing vectors.

log det Q2
κ log det(Q2

κ + λ2I) Difference

κ = 0.001, λ2 = 0.1 1.00262 1.00008 0.95061
κ = 0.005, λ2 = 0.1 1.00227 1.00008 0.95446
κ = 0.01, λ2 = 0.1 1.00200 1.00009 0.95766
κ = 0.05, λ2 = 0.1 1.00113 1.00011 0.96962
κ = 0.001, λ2 = 0.05 1.00262 1.00020 0.93674
κ = 0.005, λ2 = 0.05 1.00227 1.00021 0.94097
κ = 0.01, λ2 = 0.05 1.00200 1.00021 0.94470
κ = 0.05, λ2 = 0.05 1.00113 1.00024 0.95969
κ = 0.001, λ2 = 0.5 1.00262 0.99989 0.97432
κ = 0.005, λ2 = 0.5 1.00227 0.99989 0.97679
κ = 0.01, λ2 = 0.5 1.00200 0.99990 0.97871
κ = 0.05, λ2 = 0.5 1.00113 0.99991 0.98539

approach, and let some of the entries of vk be flipped to −1. We propose the following approach:
If vj(i) = 1, set vj(i) = −1 with probability 1/2. We motivate this heuristic as follows: Given a
non-zero entry in a probing vector, e.g. vj(i) = 1, then surrounding ones in the same probing vector
will all contribute positively or negatively to the entry so that (fN (Q)vj)(i) = fN (Q)ii + ε, where ε
denotes errors accumulating from nearby ones. If, however, some of the surrounding ones are flipped
to minus one, some of this error will cancel locally. Moreover, since we are interested in the sum of
many quadratic forms vTj fN (Q)vj , a global cancellation also occurs. One can see this approach as a
synthesis of the original Hutchinson estimator (Hutchinson (1989)), in which the vectors have entries
+1 or −1 with probability 1/2 and the basic probing approach in Tang and Saad (2010). It appears
that this synthesis greatly improves upon the accuracy of the log-determinant approximations, and
it also seems to partially remove the effect of subtractive cancellation. To illustrate this, we use the
same model as in Section 3.3, and reproduce Table 1 and give them in Table 2. We also note that
producing this table requires a 4-distance colouring, whereas the previous one required a 14-distance
colouring, so using randomised entries in the probing vectors both reduces the number of probing
vectors required and eliminates some of the subtractive cancellation.

Even though the heuristic suggested above does not immediately carry over to precision matrices
inducing oscillating covariance functions, it appears that using this randomised approach still gives
better approximations than not using it. We illustrate this by using the a stationary covariance
function that oscillates and induces a sparse precision matrix. In Figure 8, we see the effect of
using randomised probing vectors vs. the standard ones. Considering these observations, it becomes
quite clear that randomly flipping entries in the probing vectors should be the default behaviour
for computing these log-determinant approximations. It may be that in some cases, it is possible
to compute the optimal distribution of +1 and −1 in the probing vectors, but how to do this is
not obviously clear in all situations. The randomised version is therefore a good default choice.
The observations made here also suggests that randomised probing vectors is compatible with the
wavelet approach discussed in Section 3.1.
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Figure 8: Standard versus random probing vectors for an oscillating covariance function.
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3.5 Model variants with precision (K + κ2C)B−1
1 (K + κ2C) · · ·B−1

k (K + κ2C)

When doing optimisation using high-dimensional determinant approximations, it is important to use
whatever structure that is available in order to speed up computations. The approach outlined in
this article is not always fast, and if it is possible optimise some aspects of computation for special
models, we should do so.

In particular, for precision matrices of the kind

Q = (K + κ2C)B−1
1 (K + κ2C) · · ·B−1

k (K + κ2C), (18)

which for instance arises in the SPDE approach in Lindgren et al. (2011), it is possible to compute
the partial derivative with respect to κ2 at almost no extra cost. To see this, note the following
calculations

∂

∂κ2
log det(K + κ2C)B−1

1 (K + κ2C) · · ·B−1
k (K + κ2C)

=
∂

∂κ2

(k + 1) log det(K + κ2C) +

k∑
j=1

log detBj


= (k + 1) tr ((K + κ2C)−1C). (19)

First note that the matrix vector products, (K + κ2C)vi are exactly those needed to compute
the log-determinant. The trace approximation then follows directly from the diagonal inverse
approximation in Tang and Saad (2010). If Cvi is relatively cheap to compute, as happens if C is,
e.g. diagonal, this partial derivative comes at essentially no extra cost.
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Similarly, if we have an observation matrix, A after which i.i.d. noise is added, we need to
compute log det(Q + η2ATA). Then we obtain the following partial derivatives

∂

∂κ2
log det(Q + η2ATA) = tr

(
(Q + η2ATA)−1 (k + 1)C(K + κ2C)k

k∏
i=1

B−1
i

)
(20)

by the cyclic property of the trace operator for symmetric matrices, and

∂

∂η2
log det(Q + η2ATA) = tr

(
(Q + η2ATA)−1ATA

)
. (21)

In computations, the matrix vector product (Q+η2ATA)v needs to be computed for the determinant
approximation. Hence ATAv needs to be cheap if the second expression is to compute at low costs.
The first of these, however, is a bit more complicated, but observe that if k = 1 and B−1

1 is diagonal,
we can have (K + κ2C)v from (19), provided that the probing vectors are equal, and by definition
the B−1

1 v is cheap to compute. Hence it is possible to compute the gradient in an optimisation
routine on the fly while computing the objective function at little extra cost, and the computational
requirements for a Newton-type algorithm is easily decreased to a fraction between 1/2 and 1/3
compared to the one where finite differences are used for gradient computations. We also note that
these observations are compatible with the wavelet compression approach discussed in Section 3.1,
and the random flipping of entries in probing vectors in 3.4.

4 Examples

In this section we apply the approximate log-determinant methods to parameter estimation on three
examples. The examples are chosen to emphasise both the nice properties and challenges that occur
in practical implementations. In the notation here, we assume that x ∼ N (µ, (σ2/λ2)Q−1

η ), and
y = Aθx + σN (0,Q−1

ε,η), with essentially Aθ = A, Qη = Qκ2 , Qε,η = I in subsequent sections.
This corresponds to a SPDE model with iid observations on top of it.

We compare the estimates using the approach explored in the previous sections with those
obtained by a block composite likelihood approach, see Eidsvik et al. (2011). The main idea behind
composite likelihoods is to replace the computationally demanding likelihood expression with several
block-type expressions. Each term requires less memory and computational time. Thus, rather than
working with the full likelihood function log p(y|η,θ, σ2, λ2), which in the Gaussian setting is given
by (3), the block composite likelihood approach adds up Gaussian composite terms built from block
interactions.

In essence, partition the domain D into pairwise disjoint subdomains; Di ∩ Dj = ∅, i 6= j and⋃M
i=1Di = D. Thereafter, assume that the only interaction terms are between neighboring blocks.

Let yk and yl be the data in domains Dk and Dl. Then, the block composite likelihood is available
by

2 log pCL(y|η,θ, σ2, λ2) =

M−1∑
k=1

∑
l>k

2 log p(ykl|η,θ, σ2, λ2) (22)

=
M−1∑
k=1

∑
l>k

(
log det Qy,kl − (ykl − µy,kl)TQy,kl(ykl − µy,kl)

)
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where µy,kl is the mean of block variables (yTk ,y
T
l )T and Q−1

y,kl = Cov(yk,yl) is the covariance
matrix for this block pair.

The maximum composite likelihood estimators are the parameter values (η,θ, σ2, λ2) that
optimize expression (23). Theoretical considerations and computational approaches for this block
composite likelihood model can be found in Eidsvik et al. (2011).

4.1 3-D Matérn field with direct and indirect observations

In spatial statistics, it is fairly common to assume that an underlying spatial field comes from the
Matérn family or to use a Gaussian prior coming from the same family. The underlying field or
prior field is then described by the fractional Laplacian

(κ2 −4)α/2x =W, (23)

where W is spatial white noise. The connection of this representation and Matérn covariance
functions, can be found in Lindgren et al. (2011). We mention that from a physical point of view,
the same article makes good arguments for using Neumann boundary instead of imposing artificial
boundary conditions corresponding to completely unchanging marginal variances at each site. If we
observe x directly, we have direct observations, and we only need to compute one log-determinant
for the likelihood evaluation and we avoid the previously discussed effects of subtractive cancellation.
If we have an observation process on top of x, we are in the setting of (3), and we have the problem
described in Section 3.3. In Figure 9 we see a slice of the direct observations and a slice of the
corresponding indirect observations, as well as a reconstruction from the indirect observations.

In our example, we assume that we gradually observe more sites of the total field, from 153 sites
to 1203 sites.
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Table 3: Estimation of precision parameters in a Matérn field with respect to distance colouring
and observed part of field. This is for the situation with direct observations.

4-distance 8-distance 16-distance
τ2 κ2 τ2 κ2 τ2 κ2

153 0.98362 0.23740 1.00158 0.17137 1.00675 0.15188
303 0.97116 0.18467 0.99003 0.11396 0.99783 0.08355
603 0.97135 0.18442 0.99147 0.10676 1.00067 0.06988
1203 0.96716 0.18112 0.98759 0.10131 0.99741 0.06152

Figure 9: Direct (left) and indirect (right) observations of Matérn field, and a reconstructed field
(bottom).
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4.1.1 Direct observations

For the rare case where direct (non-noisy) observations are available, the log-likelihood for the
Gaussian represents the objective function, presuming no prior information on the parameters to
estimate is available. In this setting, two parameters need to be estimated, κ2, representing the
range and a scaling parameter τ2 representing the level of the realisation. In Table 3, we see the
effect of using different distance colourings of the precision matrix and observing smaller and larger
parts of the field. The true parameters were τ2 = 1, κ2 = 0.05.
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Table 4: Estimation of precision parameters in a Matérn field with respect to distance colouring
and observed part of field. This is for the situation with indirect observations.

4/5-distance 8/9-distance 16/17-distance
λ2 κ2 σ2 λ2 κ2 σ2 λ2 κ2 σ2

153 0.0822 0.2714 0.0966 0.1179 0.1423 0.1040 0.1286 0.10587 0.1055
303 0.0667 0.2431 0.0925 0.0941 0.1193 0.1001 0.1042 0.07595 0.1020
603 0.0633 0.2559 0.0906 0.0906 0.1189 0.0984 0.0989 0.06943 0.1007
1203 0.0601 0.2603 0.0894 0.0861 0.1191 0.0972 0.0968 0.06520 0.0994

4.1.2 Indirect observations

Suppose that the discretized field x generated by (23) has the observation process y = x + σ2ε
attached to it, where ε ∼ N (0, I). Then we optimise (3) for the parameters η = (κ2, τ2, σ2) in the
corresponding precision matrices. In addition to generating a table of the estimated parameters for
different distance colourings, we compare them with parameters obtained from the block composite
likelihood method. In order to obtain comparable accuracy between for the two log-determinant
evaluations in (3), we needed to use a larger distance colouring for the perturbed matrix, reflected
by n1/n2 in Table 4. In addition, we use the reparametrisation λ2 = τ2 σ2, since this is beneficient
in the optimisation routine. The true parameters are σ2 = 0.1, λ2 = 0.1 and κ2 = 0.05, and we see
that we recover these well by observing more of the field and using more probing vectors. In order
to compare our results with those resulting from the block composite likelihood procedure, some
care must be taken: the parameter we estimate in this model are not completely equivalent to those
coming from using covariance functions. In our case, we have the SPDE from the previous section,
given by (23) for α = 2 and the corresponding exponential covariance function in three dimensions,

C(r) = γ2e−r/φ. (24)

In particular, the marginal variance parameter, γ2 for the field is estimated in the composite
likelihood approach, while in the SPDE model, using the natural Neumann boundary conditions,
the entries of Q−1

ii differ, depending on how far i is from the boundary. Now, tr (Q−1)/n gives a
natural estimate for the marginal variance parameter for the overall field and should be comparable
to that coming from the composite likelihood approach. Similarly, the range parameter φ has its
relative in the parameter κ2, but here there is also no direct correspondence. A natural surrogate
in this case is the correlation length, `, which can be computed from the probing vectors. The
parameter σ2 is directly comparable between the two models.

A comparison of estimates achieved by approximating the log-determinant and the composite
likelihood estimation is shown in Table 5. The estimates are very similar. It appears as if
the composite likelihood returns slightly larger range values ` and signal to noise γ2, while the
measurement noise level σ2 is a little smaller. For the log-determinant approach there seems to be a
monotone trend in all the parameters when observing more of the field. This is a desirable property
that does not seem to hold for the composite likelihood approach. In Table 5, there is a bad value
for the correlation distance in dimensions 153 - this is a consequence of the discretization being so
coarse that it is impossible to properly adjudicate it.
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Table 5: A comparison of block composite likelihood and the determinant approximation. The γ
relates to signal to noise ratio, the ` is the correlation range parameter and σ is the measurement
noise standard deviation.

Comp. lik. log-det approx.
γ2 ` σ2 γ2 ` σ2

153 0.4552 9.86 0.3022 0.4852 27.3 0.3252

303 0.4642 11.3 0.3092 0.4672 10.7 0.3192

603 0.4532 11.2 0.3092 0.4372 10.5 0.3172

1203 0.4502 10.7 0.3062 0.4252 10.3 0.3152

4.2 Ozone column estimation

In this example, we analyse total column ozone (TCO) data acquired from an orbiting satelite. This
is a popular dataset that has been analysed in Cressie and Johannesson (2008) using a fixed rank
Kriging approach and in Eidsvik et al. (2011) using the block composite likelihood method. The
dataset has also been modeled using a nested SPDE approach in Bolin and Lindgren (2011). What
is special about this dataset is that it is 1) on the sphere and 2) since the data is acquired along the
transects of the satelite and therefore a rather special sampling pattern is obtained.

We use the SPDE approach as in the previous sections, only this time on a sphere. We use a
uniform triangulation on the sphere for discretizing the SPDE. This gives us a different observation
process than in the previous section: the observed data is given by y = Ax + ε, where the matrix
A interpolates from the uniform triangulation on the sphere to the observation pattern given by the
satelite. Our discretization consists of 324 002 points on the sphere, and we have 173 405 observations.
Since the observations are not snapshots of the globe at a given time, we also get temporal effects
in the data. We do not model this temporal effect. An illustration of the observations is given in
Figure 10.

The estimated parameters are λ2 ≈ 0.01172, κ2 ≈ 1.612 and σ2 ≈ 5.0152. Using the same tricks
as in the last section, this converts to, γ2 ≈ 55.3, ` ≈ 10 567 km. In comparison, the block composite
likelihood model, with 15× 15 blocks in latitude and longitude, gives the γ2 ≈ 73.62, ` ≈ 7028 km,
and σ2 ≈ 4.72, which is not very dissimilar. We mention that the blocking in the block composite
likelihood may not be sufficient to capture all large scale variations.
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Figure 10: Total column ozone observations (dots) acquired along satellite orbits. There are 173 405
measurements in total.
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5 Discussion

In this paper, we have presented a new method for performing statistical inference on Gaussian
models that are too large for conventional techniques to work. Focussing on the problem of computing
likelihoods for large Gaussian random vectors, we have shown that by combining a number of
approximation techniques, we can evaluate the likelihood of truly large models in a reasonable
amount of time with reasonable accuracy. In particular, we have shown that a combination of
function approximation, graph theory, wavelet methods, modern numerical linear algebra, and
problem specific tricks are necessary when a problem is so large that Cholesky factorisations are
no longer feasible. This explosion of complexity, which indicative of the difficulty of the problem,
comes at the advantage that we can actually solve these models, which is not possible using standard
techniques. Furthermore, when combined with the work of Simpson et al. (2008); Simpson (2008);
Aune et al. (2012), this work completes a suite of methods for performing statistical calculations
with large Gaussian random vectors using Krylov subspace methods.

5.1 Extensions and future work

An article that inspired this work in many ways is the work on using probing vectors for finding
the diagonal of the matrix inverse (Tang and Saad (2010)). In this approach, the entire diagonal is
wanted - not just its sum - and hence a variant expression is needed, namely

diag f(Q) =

 n∑
j=1

vTj � f(Q) vj

�
 n∑
j=1

vj � vj

 , (25)
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where � and �, respectively, are elementwise division and multiplication of vectors. Using the same
probing vectors as those needed for the determinant, and f(t) = t−1 will then yield an estimate
for the diagonal of the inverse of the precision matrix, i.e. the marginal variances. Note that it is
much easier to compute the diagonal of the inverse using probing vectors, since in this case we are
dealing with the matrix inverse. Preconditioning can therefore be applied directly, and in since we
need to compute Q−1v for quite some vectors, traditionally expensive preconditioners can be worth
it. Specifically, combination of AINV (see. Huckle and Grote (1997)) and wavelet compression
may be well suited for extracting this diagonal. In this situation, we get a dual benefit from the
wavelet compression: it may both improve upon the AINV preconditioner and decrease the number
of probing vectors needed.

The marginal variances together with the log-determinant (required for optimisation) are
components needed in doing inference by the integrated nested Laplace approximation (INLA) (Rue
et al. (2009)), and the approach given in this paper may be a way to extend the INLA approximation
to larger models than can be handled with the current direct methods.

Another potential application of (25) is the computation of communication in graphical models,
such as social networks and networks of oscillators (Estrada et al. (2011)). Using the matrix
exponential or relatives as the map, the diagonal of this is a measure for self-communicability or
subgraph centrality, which is used in analysis of complex networks. Naturally, a matrix-vector type
method is needed for the action exp (αQ) v, and an innovative approach for this can be found in
Al-Mohy and Higham (2011). This approach is well suited for computing the matrix exponential
times several probing vectors in parallel.

Using rational approximations for the square-root or inverse square-root with random vectors
(v ∼ N (0, I)) with Krylov is another venue which has been pursued in Aune et al. (2012) and
Simpson et al. (2008). In these articles, the authors demonstrate that in circumstances where
the Cholesky factorisation is impossible to compute due to memory constraints, using rational
approximations with Krylov methods is a good substitute, and also show that it is competitive in
other circumstances.

In some cases, we may be interested in other entries of f(Q) than its diagonal ones. For
f(t) = t−1, we obtain correlations between specific nodes and for f = exp we can obtain an estimate
of the communicability between two nodes in an undirected graph. Looking at (25), we note that if
we change vTj � f(Q) vj to wj � f(Q) vj , it may be possible to extract other entries of the matrix

f(Q). The question that remains is how to choose {wi}knj=1 corresponding to the set {vj}nj=1. A
heuristic that may help in forming the set of wis is that if vj is given, the corresponding wis should
be those corresponding to the neighbours of the nonzero entries of vj . We do not pursue this idea
in here, but it is an interesting topic for future research.

5.2 Software

The software package KRYLSTAT by Aune, E. contains an implementation of the log-determinant
approximation outlined in Section 2 with the extension in Section 3.4. For ease of use, MATLAB
(MATLAB (2010)) wrappers for the relevant functions are included. It also contains implementations
of one of the sampling procedures found in Aune et al. (2012) and a refined version of the marginal
variance computations found in Tang and Saad (2010). The package can be found on http:

//www.math.ntnu.no/~erlenda/KRYLSTAT/.
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