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Abstract

A challenge in multivariate problems with discrete structures is the inclusion of prior
information that may di↵er in each separate structure. A particular example of this is seismic
amplitude versus angle (AVA) inversion to elastic parameters, where the discrete structures
are geologic layers. Recently, the use of systems of linear stocastic partial di↵erential equations
(SPDEs) have become a popular tool for specifying priors in latent Gaussian models. This
approach allows for flexible incorporation of nonstationarity and anisotropy in the prior
model. Another advantage is that the prior field is Markovian and therefore the precision
matrix is very sparse, introducing huge computational and memory benefits. We present a
novel approach for parametrising correlations that di↵er in the di↵erent discrete structures,
and additionally a geodesic blending approach for quantifying fuzziness of interfaces between
the structures.

Keywords: Gaussian distribution, multivariate, stochastic PDEs, discrete structures

1 Introduction

In spatial statistics, the need for specifying di↵erent behaviour in di↵erent regions in space is
crucial for making a good prior model. The litterature is abundant with methodologies for
this. In the multivariate setting, this generalises to having di↵erent correlations between the
fields in di↵erent regions and di↵erent cross-di↵erentiability properties.

A particular model problem where this is important is the seismic AVA inversion problem,
which well studied in the geophysical litterature. There are several incarnations of this
problem with varying degrees of complexity. In this article, our primary example is the
inversion problem studied in Buland and Omre (2003); Buland et al. (2003); Rabben et al.
(2008), using the wavefield propagation approximations in Aki and Richards (1980), which
results in linear systems of equations to solve. Variants and extensions of these equations are
found in Stovas and Ursin (2003), including nonlinear approximations that may yield better
inversion results in some situations. We exemplify our contributions using this example
explicitly throughout the article.

The model we adopt in this text is the same as in Buland and Omre (2003), which is
essentially

d(s) = w ? r

PP

(m)(s) + ✏, (1)

where ? denotes convolution in time, w is an approximation to the source wavelet – i.e.
the shape of the wave traveling through the subsurface, and r

PP

(m) denotes a reflectivity
operator. The reflectivity operator takes relative di↵erences in elastic parameters to reflection
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coe�cients for the wave. We adopt the following elastic parameters,

m1 =
4v

P

v

P

, m2 =
4v

S

v

S

, m3 =
4⇢

⇢

. (2)

I.e. m1,m2,m3 denotes the relative di↵erence of P -velocity (pressure wave velocity), S-
velocity (shear wave velocity) and density respectively, and the reflectivity operator is defined
by

r

PP

(✓) =
m1

2
(1 + tan2 ✓)� 4m2�

2 sin2 ✓ +
m3

2
(1� 4�2 sin2 ✓), (3)

there ✓ is the reflection angle and �

2 denotes a background (v
S

/v

P

)-ratio. Rewriting this in
matrix notation yields

d = WAm+ ✏, (4)

where d are observations, W is the discretized wavelet operator, A, the discretized reflectivity
operator, m the elastic parameters and ✏ ⇠ N (0,�2I) an error term which is often assumed
to be normally distributed.

In this text, we will explore a novel method for designing a good prior for m using linear
systems of stochastic partial di↵erential equations. We emphasize, however, that while the
approach developed here is designed with seismic AVA inversion in mind, it is very flexible
and can be adopted in any setting where we have multivariate fields with separate regions
where we would like to incorporate prior information.

All the figures that appear in this text have comparative scales, so that the colour schemes
have the same min-max values in each individual figure. Hence, the figures makes sense,
without cluttering them with additional colourbars.

2 Prior specification

The choice of prior in the inversion problem is of great importance when it comes to the
performance of the inversion. It is vital to choose a “good” prior to emphasise the properties
of m that we know it has. For us, m will denote the parameters of interest, and it depends
on position. We construct the prior by combining heuristics and expert knowledge of the
spatial model. For a Gaussian prior model, the standard way of specifying the prior model is
through the covariance function, which is often assumed to be stationary (see, e.g. Buland
and Omre (2003)). A stationary covariance function is defined by a correlation function
that defines how much a point is correlated with its neighbours and a marginal variance
parameter, %2 through

%

2
c(kx� ykA) = Cov(x,y), (5)

where A is a positive definite matrix that defines the non-changing anisotropy of the field.
In the Gaussian case, this defines a strictly stationary process if the mean is constant. There
is a list of widely used covariance functions in Cressie (1993). We will throughout this text
assume that the prior is from the Gaussian family. This family is defined by having density

p(x|Q,µ
x

) = (2⇡)�n/2 det(Q)1/2 exp

✓
1

2
(x� µ

x

)TQ(x� µ
x

)

◆
, (6)

where Q = ⌃�1 is the precision matrix – the inverse of the covariance matrix ⌃ – and µ
x

is
the expectation, E(x|µ

x

).
Moreover, the fields m1,m2,m3 are assumed correlated with correlations specified by well

data and/or other local knowledge. In the discretized domain, this allows for the following
decomposition of the total covariance matrix

⌃
m

= ⌃space ⌦⌃0 (7)
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where ⌃space denotes the spatial covariance matrix, typically defined through a covariance
function, and ⌃0 the correlations between the elastic parameters. Since seismic observations
typically are on a regular grid, either in 2-D or 3-D, it possible to let ⌃space be circulant by
extending the grid by as many points as is needed to get the correlation below a threshold –
typically 0.1 or 0.05. This allows us to use fast Fourier transforms for computing quantities
of interest related to the covariance matrix. This, together with the Kronecker structure
of ⌃

m

allows for fast computations. See Buland et al. (2003); Rue and Held (2005); Gray
(2006) for details. This approach also has very low memory requirements; since ⌃space is
circulant it may be stored using only one vector. Hence storage is O(n) and computations
(of any kind) are at most O(n log n), where n is the number of nodes in the extended lattice.

2.1 SPDE formulation

While this decomposition is sensible, it is also very inflexible and requires stationarity for low
storage requirements. Another way of pursuing good prior models with fast computations
and low memory requirements is through the use of elliptic (pseudo) di↵erential operators
(Ruzhansky and Turunen (2009), part 2 is an accessible source). The theory of pseudo
di↵erential operators is closely related to Weyl transforms and short-time Fourier transforms
or Gabor transforms (Feichtinger et al. (2008)) and usual spectral considerations is seismology
apply. In this approach, it is the sparsity of the resulting precision matrices that makes
storage and computation manageable. Recently, Lindgren et al. (2011), studied how to apply
such operators in a statistical setting. They studied a Riesz-Bessel operator, (�4+ )↵/2

and its relation to computation and Matérn covariance models (Matérn, 1960; Whittle, 1963).
The main lessons are firstly, if

M

,↵

x(s) := (2 �4)↵/2x(s) = W(s), (8)

where W is spatial Gaussian white noise, then x(s) has Matérn type covariance function, i.e.,

⇢(r) =
%

2

�(↵� d/2)2↵�d/2�1
(r)↵�d/2

K

↵�d/2( r), (9)

%

2 =
�(↵� d/2)

�(↵)(4⇡)d/22(↵�d/2)
, (10)

where K

s

is the modified Bessel function of the first kind. Secondly, fast computations
through finite element methods or other discretisations of the di↵erential operator in (8) are
available through the induced Markov properties of the discretisation matrix, Qspace. That
essentially means that Q

m

= Qspace ⌦Q0 is (very) sparse and with a structure ameanable to
Cholesky factorisation. An alternative requirement is that we can construct the matrix vector
product Q

m

v and det(Q
m

) relatively quickly through some iterative or direct procedure,
see Simpson (2008); Aune et al. (2012a,b)

When addressing the “stationarity” of the field defined by (8), it is only stationary in
the sense of (5) if it is defined on the whole of Rk, where k = 2, 3 in our case – alternatively
when the corresponding operator is defined on a manifold without boundary. In our case the
domain on which (5) is defined is merely a subset, namely a square or box in R2 or R3. Hence
boundary e↵ects resulting from boundary conditions may destroy its direct interpretability in
terms of this equation. It is, of course, possible to specify boundary conditions in such a way
that you retain the property in (5), but usually there are more natural physical boundary
conditions that in our opinion improves upon the specification through SPDEs compared to
the model defined by covariance matrices through stationary covariance functions also in the
stationary case.

There are two properties that are desirable to have in the prior model in AVA inversion.
The first is being able to have di↵erent correlation length at di↵erent points in space. If a
geologist have sound reasons to believe that a layer is very inhomogeneous, it may warrant
putting a lower correlation length here than in a layer that is thought to be very homogeneous
with very similar properties. Facilitating this is trivial - one merely lets 2 = 

2(s) vary with
space. The other property that is very desirable to have is anisotropy. Letting the correlation
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Figure 1: Realisations from stationary model given by (8) (left) and non-stationary model given by (11)
(right). The non-stationary model has a curved interface, and the field below the interface has anisotropy
directed along the curve, while above the interface it is almost isotropic.
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length vary with direction is very natural given that the layers are typically not flat but are
deformed in a specific way. The SPDE resulting is the following variant of (8):

M

,↵,s

x(s) = (2(s)�r ·H(s)r)↵/2x(s) = W(s), (11)

where A is a 3 ⇥ 3 symmetric positive definite matrix defining the anisotropy angle and
principal correlation length in the three directions defined by the eigenvectors of the matrix.
Realisations of the stationary model and the nonstationary model is given in Figure 1. Here
we have illustrated the “layer” flexibility mentioned above, where the top layer is isotropic,
and the bottom layer is anisotropic with deformation defined by the layer.

To see how this relates to the usual approach, consider Q0 = ⌃�1
0 and say that m1,m2,m3

have equal Matérn covariance models (this includes the widely used exponential and Gaussian
models), then the prior given as in (7) is given by the following system of stochastic di↵erential
equations:

(M
,↵,s

⌦Q0)m = W (12)

where W is vector Gaussian spatial white noise. The experience in AVA-inversion is that
at least one component of m worse resolved than the others, with m1 being resolved the
best (see Rabben et al. (2008) or any other article treating this problem). The obvious next
question then is whether or not (12) specifies the best way of lending strength to the least
resolved parameters. If not, can we find better operators on the diagonal in (12), and/or
replace the o↵-diagonals with other operators that have better properties in the inversion
problem? The answer to this question is not obvious, but we investigate some alternatives
and see how they perform in our inversion problem; the criterion for a better prior in the
synthetic case being that E((mtrue�mnew

est )2) < E((mtrue�mbase
est )2), where mbase

est is given
by the prior model (7).

It is possible to replace the operator M

,↵

in (12) by more general pseudo-di↵erential
operators. Representations of such operators in terms of its symbol are given by

(K
�

f)(x) =

Z

Rd

�(x, ⇠)f̂(⇠)e2⇡ix·⇠d⇠, (13)

where f̂ is the Fourier transform of f , and � is the symbol of the operator. The symbol can be
interpreted as defining the local spectrum of the operator. A deep theorem given in Rozanov
(1977) states that a stationary random field is Markov (in the continuous sense) if and only if
�

�1 is a symmetric positive polynomial. Hence Markov fields are represented by di↵erential
operators. Now, if the field in question is not Markov, it is possible to approximate � by
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a rational approximation, �(x, ⇠)�1 ⇡ �

�1
rat(x, ⇠) =

P
k

j=0 aj(x)(2⇡i⇠)
j . To find the a

j

s one
can, for instance, use optimisation techniques. This is one way to do it, but we suspect that
the time-frequency localisation of such an approach may be suboptimal, and discretization
of the non-Markov operator may be better suited for time-frequency compressing approaches
inducing approximate Markovity. We do not pursue these type of ideas here, but mention
them as they are good candidates for future research.

3 Systems of SPDEs – generalising “Q0”

It is easy to write the form the generalised approach must have. First, for i, j = 1, . . . , 3, let

K

ij

= q

ij

(s)(
ij

(s)�r ·A
ij

(s)r)↵ij/2 (14)

and define the following system of SPDEs

Km(s) =

0

@
K11 K12 K13

K12 K22 K23

K13 K23 K33

1

Am(s) = W(s) (15)

For q

ij

(s) = Q

0
ij

and K

ij

= M

,↵

we recover the structure in the previous section with
stationarity. For convenience, we call q

ij

(s) the blending coe�cients. In Hu et al. (2012), they
study the properties of this model in the stationary case, and give the link to the multivariate
Matérn fields in Gneiting et al. (2010). Any choice of K

ij

defines a valid Gaussian Markov
random field, both in the continuous sense and when discretized. In our treatment, we
restrict ourselves to the case where ↵

ij

= ↵,A
ij

(s) = A(s) and 

ij

(s) = (s).

3.1 Parametrising the blending coe�cients

In general, it is both hard to interpret a local precision matrix, Q0(s) = {q
ij

(s)}
ij

defining
how the individual parts of the multivariate fields is related to each other at position s, and to
ensure that this matrix is positive definite. It is much more natural to work with the inverse,
namely the correlation matrix defining the local correlation of the fields, ⌃0(s) = Q�1

0 (s).
The q

ij

(s) is then simply given by the corresponding matrix elements. In the AVA inversion
problem, information about correlation in di↵erent layers may come from geologists or
geophysicists for who may know of phase changes when going from one layer to another in
the di↵erent layers, or other, more complex phenomena. It may also come from well-logs
that may contain information about such matters.

Suppose that ⌃0(s) = ⌃0,1 for s 2 S1 ⇢ Rd and ⌃0,2 for s 2 S2 ⇢ Rd. Then we have
a model that has specific correlations in one spatial region of the multivariate fields, and
di↵erent correlations in another spatial region. There is obviously a transition between these
two states. If the transition is discontinuous, this may be seen as a discontinuity of the
correlations in the realisation of the multivariate random field, which may make sense in
some situations.

In order to visualise what this means, we give realisations of the four major prior models
we have discussed. In Figure 2, no prior information about the geometry of the subsurface
can be included. In Figure 3, geometric information has been incorporated, but no change in
the correlation between the parameters in space can be included. In Figure 4, an example
realisation from the full model is given. Pay attention to the rightmost field – here the
correlation to the other two fields changes from being positive in the top layer to being
negative in the bottom layer.

3.2 Geodesic blending

There are obviously many ways of making a smooth transition between ⌃0,1 and ⌃0,2, but
one key consideration is that ⌃0(s) must remain positive definite for all s in some transition
domain S

T

. One thing is certain - it is not necessarily enough to let the o↵-diagonals element
in ⌃0,1 change linearly in R3 to the corresponding o↵-diagonal elements in ⌃0,2.
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Figure 2: Stationary model given by (7). The field looks the same wherever we are.
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Figure 3: Nonstationary model with fixed Q0. Here the bottom layer has anisotropy along the curve of
the interface, and the correlation between the fields is fixed through space.
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Figure 4: Full nonstationary model with varying q
ij

(s) according to (20). The bottom layer has anisotropy
along the curved interface, and the correlation between the fields changes between interfaces. In particular,
the rightmost field is positively correlated to the others above the interface and negatively correlated below
the interface.
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A very natural way of making such a transition between ⌃0,1 and ⌃0,2 is by considering
geodesics on the manifold of symmetric positive definite matrices, denoted P

d

. The natural
metric on this space has a reasonable statistical interpretation, closely related to information
entropy and Kullback-Leibler divergence, and an accessible account for the theory is given in
Bhatia (2007). Di↵erent treatments are given in (Ohara et al., 1996; Hiai and Petz, 2009).
For completeness, we give a small account of the definition and properties we need related to
this manifold. This exposition is based on Hiai and Petz (2009); Bhatia (2007).

The Boltzmann entropy of the Gaussian distribution (6), defining an information potential,
is given by

B(p(x|Q,µ
x

)) = B(Q) =
1

2
log det⌃+ C, (16)

where C is an arbitrary constant and ⌃ = Q�1 is any positive definite matrix. The
Riemannian metric based on this information potential is the Hessian

gQ(H,M) =
@

2

@s@t

�����
s=0,t=0

B(Q+ sH+ tM) = trQHQK, (17)

and where H,S 2 S
d

, the tangent space of symmetric matrices, S
d

= {V 2 Rd⇥d|V = VT }.
This defines the line element

ds =
⇣
tr
h
(Q�1/2

dQQ�1/2)2
i⌘1/2

. (18)

Hence, if we have a curve in P
d

, i.e. � : [a, b] ! P
d

, its length can be calculated as

L(�) =

Z
b

a

⇣
tr
h
(�(t)1/2�0(t)�(t)1/2)2

i⌘1/2
dt (19)

A nice property that follows from this is that lengths of curves are invariant under congruence
transformations. That is, if g(t) = XT

�(t)X, L(�) = L(g). The geodesic, the curve with
minimal length, between two matrices, A and A can from this be deduced to be

gA,B(t) = A#
t

B = A1/2
⇣
A�1/2BA�1/2

⌘
t

A1/2
, t 2 [0, 1]. (20)

Obviously, gA,B(0) = A and gA,B(1) = B. It is this curve we use when we go from

A = Q0,1 = ⌃�1
0,1 to B = Q0,2 = ⌃0,2 in di↵erent discrete structures in our prior model,

and this ensures that we are within the realm of positive definite matrices in a natural way.
Noting that (A#

t

B)�1 = A�1#
t

B�1, we see that it is unproblematic to work with precision
matrices rather than covariance matrices. Integrating gA,B(t) yields the distance between
the two matrices,

dPd(A,B) =

Z 1

0
gA,B(t) =

⇣
tr
h
(logA�1/2BA�1/2)2

i⌘1/2
. (21)

A potential drawback of using this strategy is that if Q0,1,Q0,2 are correlation matrices,
and what you want is a continuum of correlation matrices, gQ0,1,Q0,2

(t) are not correlation
matrices for t 2 (0, 1). It is possible to correct for this by using geodesics on the submanifold
of correlation matrices in P

d

. In practice, however, gQ0,1,Q0,2
(t) are very close to being

correlation matrices in most cases. We do not have any counterexamples.

3.2.1 Fuzzy interfaces

In some situations, we may actually have a hard interface in our multivariate field, but even
in this situation, experts may place the interface incorrectly, which may lead to imprecise
interpretation of the field. The geodesic blending strategy discussed in the previous section
gives us a way to handle this situation in a specific way: the blending range may serve as
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Figure 5: Illustration of blend range. Guessed interface (left), true interface (right), blend range
illustrated in grey (bottom)
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quantifying the uncertainty or fuzziness of this interface. This range may then be estimated
based on realisations of the field, possibly requiring a strong prior for identifiability.

To illustrate this, suppose that an expert says that the interface is as in the upper left
part of Figure 5, while the real interface is given on the right. The bottom illustration in
Figure 5 shows what the geodesic range should be in this case (grey area) – it should cover
the true interface properly, showing that there actually is a fair amount of uncertainty in the
placement of the interface. In Section 4, we investigate whether this range may be estimated
purely from data or if a strong prior on the range is needed. It is, of course, possible to
combine this idea with procedures for actually estimating the interface, but, as always, this
increases the complexity of the model that is to be estimated. Additionally, the blend range
may easily confound with potential parameters needed to estimate the actual location of the
interface.

3.3 Modified parametrisations

There are many ways to modify the parametrisation described above to reduce parametrisation
demand or incorporate di↵erent flexibility. A possible way to reduce the parametrisation
demand further is to do the modeling in the Cholesky domain. This is a simplification, but
it is one we believe should increase interpretability and possibly estimation properties. To
motivate this approach, consider the following: Suppose that the Cholesky factorisation of Q0

is given by Q0 = L0L
T

0 , and that Qspace = Bs

1(Q
s

2)
⇤, for some matrices Bs

1,B
s

2. Generating
the matrices {Bs

i

}1,2 can for instance be done by using ↵

s

= ↵/2 in (8) and discretizing this
operator, but there exist many other factorisations that may behave in better way for the
problem at hand. By a Kronecker product identity, Qspace ⌦Q0 = (Bs

1 ⌦ L0)((Bs

2)
⇤ ⌦ LT

0 ).
The intuition stemming from this identity carries over to the more general case in a natural
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way: Let l
ij

(s) be entry i, j of the Cholesky factor of the matrix {q
ij

(s)}
ij

locally, and define
locally operators that will correspond to some square root of its original form in (14). It is
possible to define the operators in such a way that we get back (15), but this is of minor
concern in practice as long as we get the interpretability we want. This is remniscient to the
triangular approach mentioned in Hu et al. (2012).

4 Parameter estimation and conditional expectation

In order to show that our proposed model is useful with confidence in the realm of seismic
AVA inversion, we must show that estimation of hyper-parameters in the prior model is
feasible and that the conditional expectation, E(m|d,✓), is better than in the simpler model.
A natural way to see if the hyper-parameters are identifiable is to simulate from the prior
fields and do maximum likelihood estimates on these. If this works well, one may go one
level higher and assume noisy observations of the form

y = WAx+ ✏, (22)

where W denotes a convolution matrix defined by the wavelet, and A denotes the reflectivity
matrix, and ✏ ⇠ N (0, I). It is also here possible to do maximum likelihood estimates. For
more information on estimating this type of model, consult your favourite treatise that
discusses latent (Gaussian) models for, e.g. Rasmussen and Wiliams (2006); Rue and Held
(2005); Cressie and Wikle (2011). In treating this estimation problem, we use the simpler
anisotropic model where the correlation changes from positive to negative at an interface
defined by a straight line. It is, of course, possible to estimate the geometry as well, but this
is beyond the scope of this text.

When estimating the q
ij

, supposing it changes between layers, we must impose constraints
to enforce the interpretability we want – namely that of its local inverse being the correlation
matrix of the multivariate field at that point. Now, the matrix consisting of ones on its
diagonal with three free parameters o↵ its diagonal uniquely specifies these constraints
through its eigenvalues: they must all be greater than zero. Hence we have three constraints,
depending only on the o↵-diagonal elements of the local correlation matrix. The same type
of restriction would apply if we were to use general local 3⇥ 3 covariances instead. In that
scenario, however, the three constraints would depend on six parameters instead of three. In
this section, we will denote the di↵erent models as follows

1. Model 1 is the simple stationary Q0 ⌦Qspace as in (7)
2. Model 2 is stationary in space using the extended q

ij

(s) parametrisation as in Section
3.1, equation (15), using interpretability constraints

3. Model 3 is nonstationary in space and using the extended q

ij

(s) parametrisation as in
Section 3.1, equation (15). Additionally, we use a blending of two correlation matrices
at the interface, so that the correlation change is not discontinuous.

4.1 Identifiability

We show that the parameters in ⌃0,⌃1 are identifiable through simulation. To do this, we
simulate from many multivariate fields and estimate the parameters by maximum likelihood.
If the estimated maximum likelihood density – which is estimated from several realisations –
is unimodal, the parameters are identifiable. Suppose that ⌃0,⌃1 are given by

⌃0 =

0

@
1 0.7 0.2

1 0.4
1

1

A
, ⌃1 =

0

@
1 0.7 -0.9

1 -0.85
1

1

A
, (23)

using 

2 = 0.1, and ⌧

2Q, with ⌧

2 = 50. Using 200 realisations from the field, we get
maximum likelihood density estimates for the parameters – these are illustrated in Figure
6. For obtaining the parameters, we used a quasi-Newton method with initial correlation
parameters being zero. Judging from this figure, since all density estimates are unimodal, all
parameters seem to be identifiable.

11



Figure 6: Maximum likelihood density estimates for correlation parameters, 

2 and ⌧

2 using direct
observations of 200 fields
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Figure 7: Maximum likelihood density estimates for correlation parameters, 2 and ⌧

2 using indirect
observations of 600 fields
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L2

In the case where we have noisy observations, we use profile likelihood to estimate the
noise level, �2, and a quasi-Newton method to estimate �

2 = ⌧

2
�

2, 2 and the correlation
parameters. In this case we used the correlation matrices

⌃0 =

0

@
1 0.7 0.6

1 0.95
1

1

A
, ⌃1 =

0

@
1 0.75 -0.9

1 -0.85
1

1

A
. (24)

In Figure 7 the corresponding estimates for a hidden field is given. Of course, it is much
more di�cult in this situation, which is reflected through the broad distributional tails in
the figure. Overall, however, the estimates seem to recover the true values quite well. One
odd observation is the bimodality of ⌃0(2, 3). We believe it may come from observing rather
small fields, from a 64⇥64-grid, and that it may go away for larger ones. The values over one
on the left part of the figure are artefacts coming from using a kernel smoother for estimating
the density.

4.2 Conditional expectation

The real test on whether it is wise or not to use this advanced parametrisation of the
model is essentially the reconstruction problem: based on noisy observations, are we able to
reconstruct the original fields with higher fidelity?

In the following subsections, we give several reconstructions examples, and we use two
observations schemes. The first one is based on identity observations with i.i.d. noise, and
the second is based on the AVA model, giving the observation matrix WA followed by i.i.d.
noise.
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Figure 8: Kriging for identity observations with signal-to-noise ratio 1/50. True parameters (left),
kriging using true Model 2 (center), using Model 1 (right)
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4.2.1 Identity observations

First, we present a reconstruction example where the observation matrix is the identity,
followed by iid. noise, and with two signal-to-noise ratios. One with �

2 = 50 and one with
�

2 = 0.5. For these two models, we use the following true correlation matrices

⌃0 =

0

@
1 0.99 0.99

1 0.99
1

1

A
, ⌃1 =

0

@
1 -0.99 -0.99

1 0.99
1

1

A
. (25)

In Figure 8, we illustrate reconstruction of the first of the three fields with signal-to-noise
ratio 1/50, using a flat interface and identity observations. I.e. the field true field is generated
by Model 2, followed by i.i.d. noise. A priori we believe one of the worst situations for
estimating Model 1, as correlations change very much from structure to structure and the
noise level is very high. The likelihood function in the situation with high noise levels
appears very flat, requiring high accuracy and many iterations in the optimisation scheme
to give consistent estimates. For �

2 = 50, kEM2(x|y,✓) � xk2/kxk2 = 0.526 for Model
2 and kEM1(x|y,✓) � xk2/kxk2 = 0.674 for Model 1. The first field is chosen, as for the
correlation matrices defined for this, the first field is the one with changing correlation
between interfaces, relative to the others. The main e↵ect we see in this comparison is that
the level of the reconstructed field using the Model 1 does not completely reach up to the
true levels – we believe this can be attributed to a flattening e↵ect arising from the sum of
the two correlations in the di↵erent layers being zero.

In the second comparison we generate fields and observations from Model 2, with �

2 = 0.5.
Here a di↵erent e↵ect is more prominent – we see that the reconstructed field on the right in
Figure 9, i.e. the reconstruction based on using Model 1, is smoother and does not exhibit
as much of the jaggedy e↵ect of the true surface compared to the field in the middle. A
consistent property when estimating the Model 1 is that 

2 seems to be underestimates,
leading to a larger range and hence smoother reconstruction. One may think that this
smoothing e↵ect of the field on the right in Figure 9, but for comparison, we also include
reconstructions of the second field, depicted in Figure 10. Here the mentioned smoothing
e↵ect is not as present as in Figure 9. Hence, we believe that this is an e↵ect induced by
the changing correlations. In Figure 9, kEM2(x|y,✓) � xk2/kxk2 = 0.179 for the middle
reconstruction, and kEM1(x|y,✓)� xk2/kxk2 = 0.269 for the rightmost one, while in Figure
10, kEM2(x|y,✓)� xk2/kxk2 = 0.168 and kEM1(x|y,✓)� xk2/kxk2 = 0.195.

4.2.2 AVA observations

While the results using the identity observations are convincing in the extended models’
favour, we also need to investigate the e↵ects where the observation matrix is the seismic
AVA model. In this case, the true fields are generated by Model 2, and the observations are
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Figure 9: Kriging for identity observations with signal-to-noise ratio 1/0.5, field 1. True parameters
(left), kriging using Model 2 (center), using Model 1 (right)
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Figure 10: Kriging for identity observations with signal-to-noise ration 1/0.5, field 2. True parameters
(left), using true model (center), using model defined by (12) (right)
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Figure 11: Observations using identity observations (middle) and the seismic AVA model (bottom)
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linear combinations of the various fields at each space location followed by a convolution
with a smooth wavelet and i.i.d noise. We use �

2 = 0.5 and �

2 = 20 in these examples.
In Figure 11, we can see the observations that are generated by this process. A key

feature in the observations is that there occurs some cancellation, resulting from the fact that
they are linear combinations of the underlying fields. This results in varying signal-to-noise
ratios depending on the varying correlations.

Reconstructing the original multivariate field using the AVA observation scheme is more
di�cult than for using the identity observation matrix. The aforementioned cancellation
e↵ect is a major contributor to this. Additionally, there does not seem to be a straightforward
way of interpreting the estimated correlation parameters coming from Model 1. In Figure
12, we illustrate the true parameters on the left, with reconstruction using the Model 2 the
middle and the Model 1 on the right, using a signal-to-noise ratio of 1/0.5. The e↵ects we see
are reminiscent of those using identity observations, but the smoothing e↵ect is not present
here. In this case kEM2(x|y,✓)� xk2/kxk2 = 0.461, while kEM1(x|y,✓)� xk2/kxk = 0.728.
Reconstruction using the same model, with a signal-to-noise ratio 1/20 is depicted in Figure
13. No smoothing e↵ect relative to Model 2 is observed here, but predictions are worse using
Model 1, having kEM2(x|y,✓)� xk2/kxk2 = 0.762, while kEM1(x|y,✓)� xk2/kxk = 0.863.

4.2.3 Identity observations and non-stationarity

Until this point, we have only studied the e↵ects coming from changing correlations between
interfaces. The model we have described is much richer than that, providing a flexible way
of specifying anisotropy that moves along geometry of the subsurface. In this situation, we
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Figure 12: Reconstructed field using the AVA model with signal-to-noise ratio 1/0.5. True parameters
(left), kriging using Model 2 (centre), using Model 1 (right).
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Figure 13: Reconstructed field using the AVA model with signal-to-noise ratio 1/20. True parameters
(left), kriging using Model 2 (centre), using Model 1 (right).
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Figure 14: Kriging for identity observations with signal-to-noise ration 1/0.2, field 1. True parameters
(left), kriging using Model 3 (center), Model 1 (right)
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expect the results to be even more convincing, and we provide one example to cover this
situation as well. In this case, we generate the true field by using Model 3, and we have
identity observations followed by i.i.d. noise. The realisations of the true fields are then
similar to the one in Figure 4, and we estimate both the simple and complex model for
thereafter giving a reconstruction of the latent field. In Figure 14, we see the reconstructions
using Model 3 (center) and Model 1 (right), and the most prominent e↵ect we see is the
smoothness di↵erences in the bottom layer. Reconstruction using Model 1 is rugged and does
not capture the anisotropy of the layer at all, contrasting the reconstruction using Model 3.
On the top layer, on the other hand, the reconstructions are more comparable. The relative
errors are kEM3(x|y,✓)� xk2/kxk2 = 0.280 (center) and kEM1(x|y,✓)� xk2/kxk2 = 0.382
(right) for the reconstructions – i.e. predictions are about 37% better using the true model.

4.2.4 Reconstruction – final remarks

It is also important to note that if we simulate from the simple model, the parameters
here are recovered well by using the parametrisation in Section 3.1. This means that the
correlations estimated by the simple model are close to the ones estimated by the more
complex model. This, of course, adds to the usefulness of the model in situations where we
do not know in advance that the correlation changes between interfaces. The uncertainty,
however, is greater, leading to more disparate estimates of the correlations than when using
the simple parametrisation.

4.3 Estimating the blend range for fuzzy interfaces

In this section, we will treat all parameter except the blend range as fixed. The model we
will treat is one where the true interface is given as a sine function, and what we guess is a
flat interface. This is exactly the model which is depicted in Figure 5. In our example, we
use Model 2 for constructing the true field, followed by identity observations and i.i.d. noise.

Before actually doing maximum likelihood estimation, we visualise heuristically why it
may make sense. In Figure 15, we see a sample of the true model at the top, the true sample
minus the guessed model in the model, and the true sample minus the blend model with
optimal range at the bottom. The norm of the bottom figure is less than that of the middle
one.

Maximum likelihood estimates for the range is given in Figure 16, where the left figure
is the range estimates when the guessed interface is a line and the true line is a full-period
sine with a maximum amplitude of 23 and the right is a half-period sine with maximum
amplitude 23. These estimates are good in the sense that the range covers the true model as
in Figure 5.

A comparison of predictions using the guessed interface with no blend and the one with
optimal blend is given in Figure 17. Here we see that the predictions using optimal blend
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Figure 15: Sample from true model (top), sample from true minus guessed model (middle), sample from
true model minus blend model with optimal range (bottom).

 

 

20 40 60 80 100120

20

40

60

80

100

120 −6

−4

−2

0

2

4

6

8

 

 

20 40 60 80 100120

20

40

60

80

100

120 −6

−4

−2

0

2

4

6

8

 

 

20 40 60 80 100120

20

40

60

80

100

120 −6

−4

−2

0

2

4

6

8

 

 

20 40 60 80 100120

20

40

60

80

100

120 −6

−4

−2

0

2

4

6

8

 

 

20 40 60 80 100120

20

40

60

80

100

120 −6

−4

−2

0

2

4

6

8

 

 

20 40 60 80 100120

20

40

60

80

100

120 −6

−4

−2

0

2

4

6

8

 

 

20 40 60 80 100120

20

40

60

80

100

120 −6

−4

−2

0

2

4

6

8

 

 

20 40 60 80 100120

20

40

60

80

100

120 −6

−4

−2

0

2

4

6

8

 

 

20 40 60 80 100120

20

40

60

80

100

120 −6

−4

−2

0

2

4

6

8

Figure 16: Estimated blend range using maximum likelihood for 200 samples. Sine-interface with full
period (left), sine-interface with half period (right).
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Figure 17: Performance gain using the blended interface over the guessed interface with sine-interface
with full period (left) and sine-interface with half period (right)
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range are only marginally better than using the interface with no blend for both interface
structures. For the blend range, however, better prediction is not the goal. The goal here is
to get an idea about how uncertain we are about the interface location, and better predictions
comes as an additional boon, even if the improvement is marginal.

5 Conclusions and future work

In this text we have showed three things: First, how it is possible to incorporate information
about the geometry of the problem flexibly. Secondly, how to facilitate changing covariances
between elastic parameters depending on position. Lastly, we have introduced a novel way of
specifying uncertainty related to the position of an interface using the concept of geodesic
blending based on local correlation of the multivariate field. The first hinges on using SPDEs
in order to specify local properties of the fields, and the second on how systems of SPDEs
interrelate depending on position. The geodesic blending approach is based on the smooth
manifold structure of the set of positive definite matrices. The ideas presented here are not
limited to the relatively simple models described here – rather, they may be used in any
spatial inversion problem with a natural geometry where soft constraints based on expert
opinion may be used.

Address for corresponding author:
Erlend Aune
Nedre Møllenberggate 70B
7043 Trondheim
E-mail: erlend.aune.1983@gmail.com

20



Appendix: Finite di↵erence disretization – the gory de-

tails

This appendix is devoted to the finite di↵erence scheme we used for discretizing the elliptic
operator in (11). We employ a changed notation in this appendix for convenience, replacing
H with A, and we hope that it is transparent for readers. For a 2-dimensional field with
↵ = 1, we have

r ·
✓

a11(x, y) a12(x, y)
a21(x, y) a22(x, y)

◆✓
u

x

(x, y)
u

y

(x, y)

◆
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(26)

where a

v

ij

, v = x, y denotes di↵erentation wrt. x or y of the i, j element of A, depending
implicitly on the position. To discretize (26), we employ a finite di↵erence scheme. We define
the following finite di↵erence operators

�
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u =
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h

(uj
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=
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h

(uj
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� u
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i�1),

where i, j are positions on the grid, with i denoting the x-direction and j denoting the
y-direction. Now, we define the following operators

⇤
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A equivalent expression holds for ⇤
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For ⇤+
yx

we reverse the order of the di↵erence operators:
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And the complete discretisation is
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In Samarskii et al. (2002), it is proved that this scheme is convergent. If we assume that A
does not vary in space, we can simplify the scheme;
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