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Arithmetic progression (AP) of length L:

a, a + b, a + 2b, a + 3b, · · · , a + (L− 1)b

= {a + kb
∣∣0 ≤ k ≤ L− 1}.

Example

56211383760397 + k · 44546738095860

0 ≤k ≤ 22.

These are all primes! (Frind, Jobling, Underwood (2004)).
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Erdős Conjecture (1973)

Let a1 < a2 < a3 < · · · be an
infinite set of natural numbers,
such that

∞∑
n=1

1

an
=∞.

(In particular, the primes P
satisfy this requirement.) Then
A = {a1, a2, a3, · · · } contains
arithmetic progressions of
arbitrary lengths.

Paul Erdős (1913 - 1996)
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”Support” for Erdős Conjecture (as pertains to the primes):

The Prime Number Theorem implies that the density of primes
around a large real number x is 1

log x . If we choose numbers in

{1, 2, · · · ,N} at random with probability 1
log N , then there ought to

be approximately N2

logL N
different AP’s in {1, 2, · · · ,N} of length L.

However, the primes are not randomly distributed: 2 is the only
even prime, 3 is the only prime divisble by 3, etc.
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Green and Tao (2004)

The primes P contains arithmetic progressions of arbitrary finite
length.

Let L be the length of an AP in P. Green and Tao showed that
there exists one where all the terms are less than the bound

22222222(100L)

(The prime number theorem indicates that the bound should be
L! + 1)
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Extensions of the Green/Tao result

(i) (Green/Tao (2004)) There exist arithmetic progressions of
arbitrary lengths in the set
{p prime

∣∣p + 2 prime or the product of two primes.}. (Recall
Chen’s result from 1973).

(ii) (Tao/Ziegler (2006)) For k ∈ N, let F1(x), · · · ,Fk(x) be any
k polynomials over Z such that Fi (0) = 0, i = 1, · · · , k .
There exist a, d ∈ N = {1, 2, 3, · · · } such that

a + F1(d), a + F2(d), · · · , a + Fk(d) are primes.

(Note that setting
F1(x) = 0,F2(x) = x ,F3(x) = 2x , · · · ,Fk(x) = (k − 1)x
yields the original Green/Tao result.)
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Theorem (Green and Tao)

Let A ⊆ P be such that

lim sup
N→∞

1

π(N)
|A ∩ {1, 2, · · · ,N}| > 0.

Then A contains AP’s of any finite length.

π(N) = number of primes in {1, 2, 3, · · · ,N}.

The prime number theorem (PNT)

π(x)
x

log x

→ 1

when x →∞.
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The Erdős-Turan Conjecture (1936)

Let A ⊆ N = {1, 2, 3, · · · } have upper positive density, i. e.

d̄(A) = lim sup
N→∞

|A ∩ {1, 2, 3, · · · ,N}|
N

> 0.

Then A contains arbitrary long AP’s.

Szemerédi proved the conjecture in 1975 (now called Szemerédi’s
Theorem) by what has been characterized as a masterpiece of
combinatorial reasoning.

Note that Szemerédi’s Theorem does not apply to the primes P:

lim sup
N→∞

|P ∩ {1, 2, 3, · · · ,N}|
N

= lim sup
N→∞

π(N)

N
= lim

N→∞

1

logN
= 0.
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Theorem A (Finitary version of Szemerédi’s Theorem)

Let L ∈ N and let 0 < δ ≤ 1. There exists a natural number
N0(δ, L) such that if N ≥ N0(δ, L) and A ⊆ {1, 2, 3, · · · ,N} with
|A| ≥ δN, then A contains an AP of length L.

Note that if A = P ∩ {1, 2, 3, ·,N}, then |A| = π(N), and since
π(N) ∼ N

log N , the inequality |A| ≥ δN is not obtainable.
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Green-Tao strategy of the proof

1) Modify (the finitary version of) Szemerédi’s theorem. They
establish a certain ”transference principle” whereby Szemerédi’s
theorem can be applied in a more general setting.

2) Use specific properties of the primes and their distribution based
on the Selberg sieve.

lim inf
N→∞

pn+1 − pn
log pn

= 0; Goldston, Pintz, Yildrim (2005)

lim inf
N→∞

(pn+1 − pn) ≤ 5414; Zhang (2013)

P = {p1 < p2 < p3 < · · · }
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Measure-preserving dynamical system (X ,B,m,T )

(X ,B,m) Lebesgue measure space; m(X ) = 1. T : X → X
measure-preserving map, i. e. m(T−1B) = m(B) for all B ∈ B.

Example 1

X = T, T = ρα : [0, 1)→ [0, 1) (mod 1), t → t + α.
m = Lebesgue measure

Example 2 (Bernoulli shift)

X =
∏∞
−∞{0, 1}, T : X → X , x(n)→ x(n + 1), m =

∏∞
−∞ µ,

µ({0}) = µ({1}) = 1
2
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Example 1 exhibits the ”rigid” case.

Example 2 exhibits the ”mixing” (or ”random”) case.
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Recurrence

x ∈ E ∩ T−n1E ∩ T−n2E , and so E ∩ T−n1E ∩ T−n2E 6= ∅.
(Equivalently: χE · χE ◦ T n1 · χE ◦ T n2 6= 0)
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In 1976 Furstenberg proved his
Multiple Recurrence Theorem,

which he showed was
”equivalent” to Szemerédi’s

Theorem.

Hillel
Furstenberg
(1935 - )

Multiple Recurrence Theorem

Let (X ,B,m,T ) be a measure-preserving system, and let L ∈ N.
For any E ∈ B with m(E ) > 0 there exists n ∈ N such that

m(E ∩ T−nE ∩ T−2nE ∩ · · · ∩ T−(L−1)nE ) > 0.

(Equivalently: There exists B ⊆ E , m(B) > 0, such that
T nB ⊆ E ,T 2nB ⊆ E , · · · ,T (L−1)nB ⊆ E )
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A precursor of Furstenberg’s Multiple Recurrence Theorem is
Poincaré’s Recurrence Theorem:

Poincaré’s Recurrence Theorem (1890)

Let (X ,B,m,T ) be a measure-preserving dynamical system, and
let L ∈ N. For any E ∈ B, m(E ) > 0, there exists distinct
n1, n2, · · · , nL−1 in N such that

m(E ∩ T−n1E ∩ T−n2E ∩ · · · ∩ T−nL−1E ) > 0.

Marc Kac: ”There are many proofs of this theorem, all of which
are almost trivial. We have here another example of an important
and even profound fact whose purely mathematical content is very
much on the surface.”
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Walter Gottschalk: ”On occasions a mathematician will have an
insight that is ahead of the time in the sense that the insight is not
fully expressible in the mathematical theory and language
developed at the moment. For example the Poincaré Recurrence
Theorem as first stated and proved by Poincaré was strictly not
meaningful. What was needed was the language of Lebesgue
measure which came later.”
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Henri Poincaré (1854 -
1912)

Hérmite: ”Poincaré est un voyant auquel apparaissent les verités
dans une vive luminière”. (”Poincaré is a seer for whom the truth
appears in a sharp light.”)

Poincaré: ”C’est ainsi, c’est comme cela”.
(”It’s like that, it just is like that.”)
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King Oscar II Prize Competition (1890). Committee:
Hérmite, Weierstrass, Mittag-Leffler.

Poincaré’s original formulation of his recurrence theorem. (Section
8 of ”Sur le problème des trois corps et les équations de la
dynamique”, Acta Mathematica 13 (1890), 1-270):

Théorème I

Supposons que la point P reste à distance finie, et que la volume∫
dx1dx2dx3 soit un invariant intégrale; si l’on considère une région

r0 quelconque, quelque petite que soit cette région, il y aura des
trajectoires qui la transverseront une infinité de fois.

”Wiederkehreinwand” – controversy (1896).
Ernst Zermelo ↔ Ludwig Boltzmann
(Nietzsche!)
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Classical Mechanics (n degrees of freedom)

q = (q1, q2, · · · , qn), p = (p1, p2, · · · , pn)
x = (q, p) ∈ S (phase space)
H = H(p, q) = K (p) + U(q) = E (energy, assumed constant)

dqi
dt = ∂H

∂pi
, dpi

dt = − ∂H
∂qi

(i = 1, 2, · · · , n)

X = {(q, p) ∈ S
∣∣H(q, p) = E}, Tt : X → X , Tt1+t2x = Tt1(Tt2x)

x(t) = Ttx , x(0) = x(= (q0, p0)).

Liouville’s Theorem

The ”Hamilton-flow” Tt : X → X preserves the measure
dm = dx

||grad H|| , i. e. m(TtB) = m(B) for all t ∈ R, B ∈ B.

Christian Skau Primes in arithmetic progressions



f ∈ L1(X ,m), dm = dx
||grad H||

Boltzmann’s Ergodic Hypthesis:

lim
T→∞

1

T

∫ T

0
f (Ttx) dt =

∫
X
f dm

for a.a. x ∈ X .
Discretizing:

lim
N→∞

1

N

N−1∑
i=0

f (T nx) =

∫
X
f dm
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Observation

Let A ⊆ Z. Assume

A ∩ (A− n1) ∩ (A− n2) ∩ · · · ∩ (A− nL) 6= ∅

where n1, n2, · · · , nL ∈ N. There exists a ∈ A such that
a, a + n1, a + n2, · · · , a + nL lie in A. In particular, if
n1 = b, n2 = 2b, · · · , nL = Lb then a, a + b, a + 2b, · · · , a + Lb lie
in A.
(Equivalently: χA(a)χA(a + b)χA(a + 2b) · · ·χA(a + Lb) 6= 0)
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Erdős-Turan Conjecture (1936)

Let A ⊆ Z have upper positive density, i. e.

d̄(A) = lim sup
bk−ak→∞

|A ∩ [ak , bk)|
bk − ak

> 0.

Then A contains arbitrarily long arithmetic progressions.

(1952) Klaus Roth: Length 3
(1969) Endre Szemerédi: Length 4
(1975) Endre Szemerédi: Arbitrary length!
(1976) Hillel Furstenberg: Ergodic-theoretic proof.
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Theorem (Furstenberg’s Correspondence Principle)

Let A ⊆ Z, where d̄(A) > 0. There exists a measure-preserving
dynamical system (X ,B,m,T ) and a set E ∈ B such that
m(E ) = d̄(A). Furthermore, for every L ∈ N and for arbitrary
n1, n2, · · · , nL ∈ Z, we have
d̄(A ∩ (A− n1) ∩ · · · ∩ (A− nL)) ≥ m(E ∩ T−n1E ∩ · · · ∩ T−nLE ).

Proof sketch. Let x0 ∈
∏∞
−∞{0, 1} be defined by

x0(n) =

{
1 if n ∈ A

0 if n /∈ A

Let X = {T nx0

∣∣n ∈ Z}, where T : X → X is the shift map:
x(m)→ x(m + 1).
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Define F : C (X )→ R by

F (f ) = lim
k→∞

1

bk − ak

bk−1∑
n=ak

f (T nx0)

where [ak , bk) are the intervals that ”determine” d̄(A). Then
F ≥ 0,F (1) = 1,F (f ◦ T ) = F (f ). By Riesz’ representation
theorem there exists a T -invariant probability measure m on X
such that F (f ) =

∫
X f dm. Let E = {x ∈ X

∣∣x(0) = 1}. Define
φ ∈ C (X ) by φ(z) = z(0), where z ∈ X . Then

F (φ) = lim
k→∞

1

bk − ak

bk−1∑
n=ak

(T nx0)(0) = lim
k→∞

|A ∩ [ak , bk)|
bk − ak

= d̄(A)

We get:

m(E ) =

∫
X
φ dm = F (φ) = d̄(A).
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Theorem B (Finitary version of Szemerédi’s Theorem)

Let 0 < δ ≤ 1 and let L ≥ 2 be a natural number. If N is
sufficiently large and f : ZN → R is a function such that
0 ≤ f (x) ≤ 1 for all x ∈ ZN and E(f (x)

∣∣x ∈ ZN) ≥ δ, then
E(f (x)f (x + r) · · · f (x + Lr)

∣∣x , r ∈ ZN) ≥ c(L, δ) where
c(L, δ) > 0 does not depend on f or N.

E(f (x)
∣∣x ∈ ZN) = 1

N

∑
x∈ZN

f (x).

E(f (x , y)
∣∣x , y ∈ ZN) = 1

N2

∑
x ,y∈ZN

f (x , y).
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In particular, choose f = χA, where A ⊆ ZN satisfies |A| ≥ δN.
Then

E(χA(x)
∣∣x ∈ ZN) =

1

N

∑
x∈ZN

χA(x) =
|A|
N
≥ δ.

Then

E(χA(x)χA(x + r) · · ·χA(x + Lr)
∣∣x , r ∈ ZN) ≥ c(L, δ) > 0.

Hence there exist x , r ∈ ZN such that

χA(x)χA(x + r) · · ·χA(x + Lr) = 1.

This is equivalent to say that x , x + r , x + 2r , · · · , x + Lr lie in A.
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Optimistically, choose f = χP , where P denotes the prime
numbers. We get

E(χP(x)
∣∣x ∈ ZN) =

1

N

∑
x∈ZN

χP(x) =
|P ∩ {1, 2, · · · ,N}|

N

However, π(N)
N ∼ 1

log N → 0 as N →∞, so the hypotheses of
Theorem B are not satisfied.
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The main idea of the Green/Tao proof is an ingenious way of
getting around the difficulty that the primes less than N do not
form a dense subset of {1, 2, · · · ,N}. They exploit the fact that
one has a lot of control over random (or random-like, also called
quasirandom) sets. In particular, there are various results that
assert that, if X is a random-like set and Y is a subset of X that is
dense in X (in the sense that |Y |/|X | is bounded below by a
positive constant), then Y behaves in a way that is analogous to
how a dense set (in the ordinary sense) would behave; that is,
sparse sets can be handled if you can embed them densely into
random-like sets.
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Proof idea of Green/Tao

Find a function ν : ZN = {1, 2, · · · ,N} → R+ that dominates P,
i.e. χp(n) ≤ ν(n) for all n ∈ ZN , and such that P has positive
density with respect to ν, i. e.

∑
n≤N χp(n) ≥ c

∑
n≤N ν(n),

where c > 0.

The choice of ν is very subtle: One needs to establish specific
properties of ν (which one is unable to do for χp). In particular,
one needs asymptotic bounds on sums of the type∑

n≤N
ν(n + k)ν(n + 2k) · · · ν(n + mk)
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Selberg sieve and Selberg weights.

In the 1940’s Selberg introduced a wonderfully simple, yet
powerful, idea to analytic number theory. If R is any parameter
and if (λd)d≤R is a sequence of real numbers with λ1 = 1, we have
the pointwise inequality

χp(n) ≤
(∑

d |n
d≤R

λd
)2

= ν(n)

provided that n > R. This gives an enormous number of potential
ν’s serving our need.
We will be interested in the set of primes less than some cutoff N,
and then R will be some power Nα, α < 1. In this situation the
function ν majorize the primes between Nα and N, that is to say
almost all primes less than N.
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Let’s try to make
∑

n≤N ν(n) as small as possible.∑
n≤N

ν(n) =
∑
n≤N

(∑
d |n
d≤R

λd
)2

=
∑

d ,d ′≤R
λdλd ′

∑
n≤N

d |n,d ′|n

1 (*)

Now ∑
n≤N

d |n,d ′|n

1 =
N

{d , d ′}
+ O(1)

So the main term of (*) is N
∑

d ,d ′≤R
λdλd′
{d ,d ′} . Using standard

technique for minimizing this (such that λ1 = 1), one gets the
”Selberg weights”:

λSel
d = µ(d) log(R/d)

(µ = Möbius function)
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It turns out that by choosing the Selberg weights, we get∑
n≤N

ν(n) ≤ c
N

logN

for some c > 0 independent of N. Hence primes have positive
density with respect to the ”measure” ν. This is in contrast to the
uniform ”measure” δ. (Recall that

∑
n≤N δ(n) = N.)
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Theorem (Green/Tao ; ”Transference theorem”)

Let 0 < δ ≤ 1 and let L ≥ 2 be a natural number. If N is a
sufficiently large natural number, and ν : ZN → R+ is a
L-pseudorandom measure, and if f : ZN → R, 0 ≤ f (x) ≤ ν(x) for
all x ∈ ZN and E(f (x)

∣∣x ∈ ZN) ≥ δ then

E(f (x)f (x + r) · · · f (x + Lr)
∣∣x , r ∈ ZN) ≥ c(L, δ)− oL,δ(1)

where the constant c(L, δ) is the same as in Theorem B.

Christian Skau Primes in arithmetic progressions



Comments

Green/Tao’s ”transfer Theorem” can be considered to be a
generalization of Furstenberg’s recurrence theorem. In the latter
case a natural choice for ν is the uniform type, i.e. each number k
in {1, 2, · · · ,N} has weight ν(k) = 1

N . The uniform measure is
invariant with respect to the shift map x → x + 1 (mod N).
In the Green/Tao version the measure ν behaves pseudorandomly
with respect to the shift.
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L-pseudorandom measure (or rather, density function relative the
uniform measure on ZN): ν : ZN → R+

(i) E(ν(x)
∣∣x ∈ ZN)

def
= 1

N

∑
x∈ZN

ν(x) = 1 + o(1)

(ii) ν satisfies a k-pseudorandom condition and a k-correlation
condition, for every k in {1, 2, · · · ,N} that is less than a
number which depends on L.
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von Mangoldt function ∧ : N→ R+

∧(n) =

{
log p if n = pm, p prime

0 otherwise

(i) log n =
∑

d |n ∧(d)

(ii) ∧(n) =
∑

d |n µ(d) log n
d

(iii) 1
N

∑
1≤n≤N ∧(n) = 1 + o(1)

(
⇔ π(x) ∼ x

log x

)
The truncated von Mangoldt function

∧R(n) =
∑

d |n,d≤R

µ(d) log(
R

d
),

where µ = Möbius function.

(Observe that ∧R(n) = ∧(n) if R > n)
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Heuristics

Definition

The level R almost primes PR(N) are defined to be the set of all
numbers between 1 and N that contain no non-trivial factors less
than or equal to R.
(Ex. P6(100) = {primes p

∣∣6 ≤ p ≤ 100} ∪ {49, 77, 91})

PR(N) ∼ cN
log R (Mertens (1874))

Combining this with the prime number theorem we get that the
density of primes in PR(N) is c log R

log N for some c > 0. Choosing
R = Nα a small power of N, we get that the primes have positive
density in PNα(N). In fact

|P ∩ {R,R + 1, · · · ,N}|
|PR(N)|

≈ π(N)
cN

log Nα

≈
N

log N

cN
α log N

=
α

c
> 0.
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Let A ⊆ ZN = {0, 1, 2, 3, · · · ,N − 1}. Let χ̂A be the Fourier
transform of χA. Then for r ∈ ZN :

χ̂A(r) =
∑
s∈ZN

e
2πi
N

rs

Observe that χ̂A(0) = |A|.
If |χ̂A(r)| is significantly smaller than α2N for every non-zero r ,
then A behaves in many ways like a random subset of ZN (where
every element is chosen with probability α, for some 0 < α < 1).
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P : 2, 3, 5, 7, 11, 13, 17, 19, · · · Bias toward odd numbers.
x → x−1

2 : 1, 2, 3, 5, 6, 8, 9, 11, 14, · · · No bias toward odd/even.
(If this linear rescaling of the primes has L-term APs, then so has
the primes.) The new sequence has bias (mod 3). By taking the
multiples of 3 and rescaling x → x

3 we get a new sequence that is
well distributed (mod 6):

1, 2, 1, 5, 2, 8, 3, 11, 14, · · ·

Repeat for primes 5, 7, · · · , p ≤ w(N) = log logN, say. The
sequence one winds up with has no bias in any class a (mod q),
q ≤ log logN.
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Let N and L (L << N) be given. We define a function
ν : ZN → R+:
Choose R = NL−1·2−L−4

(Think of this as R = Nε)

ν(n) =

{
Φ(w)
w · (∧R(wn+1))2

log R if N
[2L(L+4)]!

≤ n ≤ 2N
[2L(L+4)]!

1 otherwise.

Here w =
∏

p<ω(N) p, where ω(N)→∞ ”sufficiently slow” ; for
example ω(N) = log(logN).
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What weights λd should one choose? This depends on the
application, but a very basic application is to the estimation of
π(x + y)− π(x), the number of primes in the interval (x , x + y ]
(the Brun-Titchmarsh problem).

π(x + y)− π(x) ≤
x+y∑

n=x+1

(∑
d |n
d≤R

λd
)2

=
∑
d≤R

∑
d ′≤R

λdλd ′

x+y∑
n=x+1

χd |n(n)χd ′|n(n)

= y
∑
d≤R

∑
d ′≤R

λdλd ′

[d , d ′]
+ O(

∑
d≤R

∑
d ′≤R

|λd ||λd ′ |)

(**)
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Let us imagine that the weights |λd | are chosen to be << y ε (this
is always the case in practice). Then the second term is O(R2y2ε).
If R ≤ y1/2−2ε then this is O(y1−ε) and may be thought of as an
error term. This is why it is advantageous (indeed essential) to
work with a majorant taken over a truncated range of divisors, and
not with χP itself.
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The first term in (**): y
∑

d≤R
∑

d ′≤R
λdλd′
[d ,d ′] is a quadratic form.

It may be explicitly minimized subject to the condition λ1 = 1,
giving optimal weights which are independent of x and y . It turns
out that a nearly optimal choice of the λd ’s are:

λSEL
d = µ(d)

log(R/d)

logR
,

(µ = Möbius function).

Goldston, Pintz, Yildrim (2005)

lim inf
N→∞

pn+1 − pn
log n

= 0

NB. By the prime number theorem pn+1−pn
log n has average value 1.
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