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ABSTRACT

Gathering the right kind and amount of information is crucial in any decision making
process. Estimating the value of information (VOI) is therefore important for acquiring
the right kind of information. We present a method for valuing information in the context
of spatial decision-making relevant to reservoir development. Our model is applied to
decisions about data acquisition in the case of spatially correlated porosity and saturation
variables along top reservoir. We illustrate our method with a simple example based on
valuing seismic AVO data for decisions regarding well locations.
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INTRODUCTION
When a prospect has been determined from prior knowledge and some tests, one

naturally asks questions like: Should we drill here? Do we require more data before we
make a decision about drilling? Such questions naturally fit into the notion of value
of information (VOI). In this paper we use VOI to evaluate the monetary amount one
should be willing to pay for a certain type of data, in situations that naturally exhibit
spatial dependence. Our VOI tool is beneficial for decision making. Consider for instance
the case where one has defined a prospect from seismic traveltime data, but must now
evaluate the options of purchasing zero-offset reflectivity amplitudes (post-stack seismic
data), or both amplitude versus offset (AVO) attributes (pre-stack seismic data), or in
some cases controlled source electromagnetic (CSEM) data. For better analysis one of
course wants all these data, but in practice this is not always worth the cost.

We assess the VOI in the context of seismic AVO data picked at top-reservoir, and
in a model with spatially dependent porosity and saturation. Previous work for valu-
ing geophysical data using VOI calculations, without taking into account geostatistical
modeling, have been described in e.g. Bickel et al. (2006) and Houck and Pavlov (2006).
In Bhattacharjya et al. (2006) we computed VOI for discrete spatial models.

THEORY
Lattice model for reservoir variables and seismic data

Suppose reservoir variables are represented on a regular lateral grid. Let i = 1, . . . , n
be the index of the grid cells. Here n = n1n2 and (n1, n2) are the number of grid cells
in north and east directions. Grid cell reservoir variables are porosity φi and water
saturation si. We treat the reservoir thickness hi as fixed, typically determined from
seismic traveltime data. Seismic AVO data di can be acquired and processed at every
grid cell. AVO data contains zero offset reflectivity and AVO gradient.

Value of information
Suppose that the cost of drilling a well at site i is Ci = C and that the maximum

revenue per cell is R, which is set to a constant and represents the price of oil per unit
volume multiplied with the lateral grid size and assuming a constant recovery factor.
The value is related to Net-to-Gross and for one well it is

vi = max[Rhiφi(1− si)− C, 0], (1)

where we only drill at cell i if the value is larger than 0. The total value of the reservoir
domain is v =

∑n
i=1 vi, assuming that each decision is taken marginally. Of course, the

values of porosity and saturation are not known exactly and we hence calculate their
expected value based on the currently available information. The VOI is defined as the
expected gain in value after conditioning on the relevant new information. In our case
the prior value is the expected profit without purchasing AVO data, posterior value the
expected profit with seismic AVO data, and VOI the difference between these two:

VOI =
n∑

i=1

Ed (max{RhiE[φi(1− si)|d]− C, 0})−
n∑

i=1

max{RhiE[φi(1−si)]−C, 0}. (2)

We take the expectation with respect to the seismic data d in the first term of equation
(2), since we want to make the decision before the data is actually purchased. Note that
the VOI is independent of the cost of the data. If the VOI is larger than the cost of
purchasing AVO data, we decide to buy these data.
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Prior model for saturation and porosity
We represent water saturation by si ∈ (0.1, 0.9). Similarly for porosity; φi ∈

(0.15, 0.4). We obtain variables on the real line by logistic transforms:

ms,i = log
(

si − 0.1
0.9− si

)
, mφ,i = log

(
φi − 0.15
0.4− φi

)
for all i. (3)

Let si = si(ms,i) and φi = φi(mφ,i) generally denote the inverse logistic transform
of equation (3). We assign prior pdfs to the logistic counterparts by computationally
efficient Gaussian Markov random fields, see Rue and Held (2005). The prior for m =
(ms,1,mφ,1,ms,2, . . . ,mφ,n) is then p(m) = N(m;µ,Σ), where µ is a fixed size 2n mean
vector based on prior knowledge about saturation and porosity, typically represented by
only two parameters µs and µφ constant across all cells. Further, the covariance matrix
Σ = Σ0 ⊗Q−1 is composed of the marginal cellwise 2× 2 covariance matrix Σ0 which is
diagonal with entries σ2

s and σ2
φ if the two variables are considered independent a priori,

and a spatial size n × n correlation matrix Q−1. Matrix Q is specified via a nearest
neighbor non-zero structure defined by 1 on the diagonal, q at entries (i, j) where cells
i and j are neighbors on the lattice, and 0 otherwise. Hence, if q = 0, cells are treated
independently, whereas q < 0 imposes positive spatial correlation.

The prior expectation E[(1 − si)φi] in equation (2) is computed by linearizing the
logistic equations for si and φi.

Likelihood of AVO data
Saturation and porosity are linked to elastic moduli and seismic velocities by rock

physics relations, Mavko et al. (1998). These are further related to seismic AVO data
through the Aki and Richards approximation of the Zoeppritz equations (Mavko et al.
(1998)), assuming constant cap rock properties. Dependence of the bulk modulus on
saturation is through the usual Gassmann relations. Shear modulus remains indepen-
dent of saturation, while density depends linearly on saturation. Both the moduli, and
the density vary with porosity, and in general the moduli-porosity relation should be
calibrated from well logs. Here we use a linearized relation based on data from Bachrach
(2006), representing shaley sands.

Altogether, we can compute E(di|mi) = f i(mi), i = 1, . . . , n, where di = (R0,i, Gi),
indicating zero-offset reflectivity and AVO gradient. The nonlinear function f i(mi)
ties saturation and porosity to these seismic attributes. Figure 1(left) shows 500 re-
alizations where mi’s are drawn from the prior model and taken through the forward
model f i(mi). The likelihood pdf of d = (d1, . . . ,dn) is p(d|m) = N(f(m),T ), where
f = [f1(m1), . . . ,fn(mn)], and T a 2n × 2n block diagonal matrix consisting of the
AVO standard deviations σR0 and σG on the diagonal, and fixed correlation coefficient
set to −0.7 here.

Posterior
For the simple n = 1 case we show the posterior for (s1, φ1) when µs = µφ = 0,

σs = σφ = 1, σR0 = 0.05 and σG = 0.15 in Figure 1(middle). Here, we condition on data
di = (0.05,−0.05). In Figure 2(right) we plot this posterior for the case with 1/2 as
large likelihood standard deviations. Reservoir variables are better determined, showing
the added certainty induced by for instance expensive processing of data. However, it is
difficult to guess from these posteriors the value of the higher quality data. This is the
major advantage with VOI which provides this amount in monetary units.

For the general multidimensional case, let F denote the Jacobian of the forward
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Figure 1: Left) AVO data R0 and G from forward model. Circles: small water saturation;
crosses: large water saturation. Middle) Posterior solution based on only (R0, G) =
(0.05,−0.05) data. Right) Posterior solution based on the same data, but with half the
standard deviation in the likelihood noise term.

model f at linearization point µ?. The posterior mean is

E(m|d) = (Σ−1 + F ′T−1F )−1(Σ−1µ + F ′T−1z), z = d− f(µ?)− Fµ?. (4)

The linearization process is iterated until reaching the posterior mode; argmax[p(d|m)p(m)].
The posterior covariance is (Σ−1 +F ′T−1F )−1. The expectation E[(1− si)φi|d] is com-
puted from the marginals of this Gaussian approximation. To get the posterior value in
equation (2) we must also take the expectation over d using Monte Carlo integration.

Pseudoalgorithm

• Estimate prior cellwise value vprior
i = max{RhiE[φi(1− si)]−C, 0}. Calculate the

prior value as vprior =
∑

i v
prior
i .

• Repeat the following b = 1, . . . , B times (B ≈ 10000)

1. Draw m = mb from prior, then draw d = db from likelihood given m. This
is a Monte Carlo sample from p(d).

2. Solve equation (3) iteratively to find the posterior mode. Fit a Gaussian pdf
at the mode.

3. Estimate the posterior value for this dataset
vpost
b =

∑
i max{RhiE[φi(1− si)|d]− C, 0}.

• Calculate the posterior value vpost =
PB

b=1 vpost
b

B .

• The value of information is VOI = vpost − vprior.

EXAMPLES
For a simple case with n = 1, let parameters be as in the posterior description above

(Figure 1). The thickness is hi = 20m. The cost of drilling a well is 2 million $. Let
R = 300∗502, where 300$ refers to the oil price per cubic meter, and 502m2 refers to the
area of each cell. We consider a change in the likelihood standard deviations rσR0 and
rσG, where r is a multiplicative perturbation factor that varies in the interval from 0.4
to 2.2. The results of prior value, posterior value and VOI are plotted in Figure 2. The
decrease in VOI is natural as the prior value remains constant at about 0.02 million $
while the information attained in the posterior goes down. For r = 1 VOI is 0.13 million
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Figure 2: First axis is a perturbation in the likelihood standard deviation. Top) Value
of information for different levels of observation noise. Middle) Prior value for different
levels of observation noise. Below) Posterior value for different levels of observation noise.

$, while it is 0.19 million $ for r = 1/2. If the added processing for high quality (R0, G)
data costs less than this change in VOI, it is worth purchasing the extra effort.

For the spatially correlated case we fix r = 1 and regard a grid of size 10 × 30.
We compare the independent case (q = 0) with positive spatial interaction (q = −0.2).
The special case with independency is identical to n times the one dimensional situation
above, and hence VOI = 300 · 0.13 ≈ 39 million $. The q = −0.2 case gives VOI = 45
million $. This larger VOI indicates that a positive correlation in the reservoir variables
means more valuable seismic AVO data.

CONCLUSIONS
We have demonstrated a method for computing the Value of Information (VOI) for

a spatial model common in petroleum geostatistics. The VOI provides valuable insight
for decision making, as it gives the monetary amount that a dataset is worth. We have
illustrated our idea with examples on a latent Gaussian field for porosity and saturation
and with seismic AVO data.

In a future work we intend to provide larger scale computations of the VOI associated
with AVO seismic data and CSEM data.
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