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Abstract

In reservoir evaluation problems, the reservoir properties are largely un-

known. To infer these properties from observations of the reservoir production

is referred to as history matching or production history conditioning. Tradi-

tionally, this is done by repeated fluid flow simulations, where all the available

production data are used simultaneously to arrive at a set of history matched

reservoir models. In recent years there has been an increase in the amount

of data continuously collected from a reservoir under production. Hence,

the need for automatic, continuous model updating is apparent. The ensem-

ble Kalman filter has been shown to be suitable for this purpose. However,

large reservoir evaluation problems require upscaling of the reservoir prop-

erties to be able to perform the required number of fluid flow simulations.

Traditional ensemble Kalman filtering is shown to give bias in the produc-

tion history conditioned reservoir representations. The loss in accuracy and

precision introduced by performing fluid flow simulations on a coarser scale

should be accounted for, but this is rarely or never done. We introduce the

scale-corrected ensemble Kalman filter approach in order to quantify loss in

accuracy and precision. A reference scale is defined and all uncertainty quan-

tifications are made relative to this scale, although the fluid flow simulations

are made on a coarser scale. The production history conditioned reservoir

representation will be accurate with realistic precision measures on this refer-

ence scale. The methodology is demonstrated on a large case study inspired

by the characteristics of the Troll field in the North Sea.

Keywords: Approximate fluid flow simulation; Bayesian statistics; Ensemble

Kalman filter; Parameter estimation; Production history matching
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1 Introduction

One of the objectives of reservoir evaluation is to find the optimal well configura-

tion and well operating conditions for a given reservoir. Prediction of the reservoir

properties, such as porosity, permeability, location of faults and fractures, and hy-

drocarbon saturation is important when deciding where to drill new wells and when

predicting the fluid flow patterns for a given well configuration. Forecasts of hydro-

carbon production for a given recovery strategy can be used to determine optimal

well operating conditions. The evaluation must be based on both general reservoir

experience and reservoir specific observations, such as seismic data, well logs and ob-

served production history. Quantification of the uncertainty both in the prediction

of the reservoir properties and in the forecast of the production properties should

be an integral part of the evaluation process.

The assessment of the uncertainty in the production forecasts requires repeated

fluid flow simulations. This is done by using a reservoir production simulator. The

reservoir production simulator solves a set of partial differential equations, taking

the reservoir conditions, well configuration and well operating conditions as input,

and provides time-series containing pressures and produced rates of hydrocarbons as

output. The reservoir conditions needed as input are in practice largely unknown,

however. Therefore, the uncertainty in the reservoir properties must be described

by a stochastic reservoir model, taking all the available data into account. Prior

to production start, the available data consist of static data, such as well logs and

seismic data, combined with general geological knowledge obtained through experi-

ence with similar reservoirs. After the reservoir has been in production for a while,

however, an observed production history is also available. The observed production

history carries information about the reservoir properties, hence it should be used

to update the reservoir model, and thereby improve the production forecasts. In

petroleum related literature this is referred to as ’history matching’.

Traditionally, production history conditioning is performed through repeated

fluid flow simulations, where the reservoir properties are tuned to the production

history, either manually or automatically by minimising an objective function in-

volving the mismatch between simulated and observed production. There are mainly

two problems with this methodology. The first problem is the computational cost

of repeated fluid flow simulations, which severely restricts the size of the reservoir

models to which the production history conditioning can be applied. The second

problem is that the reservoir models are updated using all the available production

data simultaneously. This means that when new production data become avail-

able, the entire production history conditioning process must be repeated. In recent

years, the use of permanent sensors for monitoring dynamic production properties

has increased, requiring more frequent updating of the reservoir models.

Ideally, the observations should be included in the model sequentially as they be-
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come available. This approach requires continuous or sequential production history

conditioning techniques. The Kalman filter has been widely used for these types

of time series problems. However, the Kalman filter is most appropriate when the

number of variables in the model is low and the observations are linearly related to

the model. This is not the case in spatio-temporal reservoir evaluation problems,

where the number of model parameters are typically very high, and the relation

between the reservoir model and the observed production, represented by a fluid

flow simulator, is highly non-linear.

Several extensions to the Kalman filter techniques have been suggested, among

these the ensemble Kalman filter, developed by Evensen (1994). The ensemble

Kalman filter is used to update both the reservoir properties and the production

properties. The computations are based on an ensemble of realisations of the reser-

voir and production properties, from which relevant statistics concerning the model

uncertainty can be estimated. At times where new observations become available,

all ensemble members are updated to honour these observations. Consequently, the

realisations are always kept up to date with the latest observations. The ensemble

Kalman filter methodology has been applied to numerous case studied in various

fields of application, such as weather forecasting (Evensen (1994), Houtekamer and

Mitchell (1998)), ground water hydrology (Reichle et al. (2002)), and petroleum

engineering (Nævdal et al. (2002, 2003), Gu and Oliver (2004), Wen and Chen

(2005)). For a review of recent progress see Evensen (2003).

The ensemble Kalman filter is shown to perform well with ensemble sizes around

100 members. In practice, however, the computational demands by fluid flow sim-

ulation on large reservoir models prohibits ensembles of this size. This problem is

typically overcome by performing approximate fluid flow simulations on a coarser

scale representation of the reservoir model. This upscaling is known to introduce

bias, however, which should be accounted for. In this paper we use the general

ensemble Kalman filtering framework of Evensen (1994), and extend it to correct

for the effect of using coarse scale fluid flow simulators, using the approach in Omre

and Lødøen (2004). The basic idea of Omre and Lødøen (2004) is to use coarse scale

fluid flow simulation results to predict fine scale fluid flow simulation results, and to

assess the associated prediction uncertainty. The fine scale representation is termed

the reference scale. This correction is feasible if the coarse scale fluid flow simula-

tions capture the most important features of the fine scale fluid flow simulations.

We coin our approach scale-corrected ensemble Kalman filter.

This paper proceeds as follows. In Section 2 we start by defining the notation

and describing the ensemble Kalman filter methodology. Then we motivate and

present our model extensions. Section 3 presents the case study, which is inspired

by the characteristics of the Troll field in the North Sea. In Section 4 we present

and discuss the results from our simulation studies, and finally in Section 5 we draw

some conclusions.
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2 Model formulation

This section contains a general formulation of the stochastic model. More problem

specific details are presented, together with a case study, in Section 3.

2.1 Notation

When evaluating a reservoir, a stochastic model for the state of the reservoir should

be defined. In reservoir production forecasting problems, including production his-

tory conditioning, the state of the reservoir contain two types of uncertain variables.

First, the reservoir properties are unknown, meaning that porosity, permeability,

saturations and pressures are unknown over the reservoir. These properties vary

spatially over the reservoir, and are usually represented on a three dimensional lat-

tice covering the reservoir domain. Saturations and pressures are also dynamic prop-

erties and change in time, leading to the reservoir properties being spatio-temporal.

The evaluation of the reservoir properties takes place at times t ∈ [t0, te], where

t0 represents time for production start, at which the reservoir is assumed to be in

equilibrium, and te represents a suitable time for production completion. At any

given time t ∈ [t0, te], let Rt ∈ <nr be a vector containing the reservoir properties

in each lattice node at time t. Here, nr is the number of nodes in the lattice times

the number of reservoir properties. The second uncertain variable is the production

properties of the reservoir. This variable is related to the wells and represents pres-

sures and rates of water and hydrocarbon production. At any given time t ∈ [t0, te],

let Qt ∈ <nq be a vector containing the production properties from the reservoir at

time t. Here, nq is the number of production properties considered times the number

of wells. Hence, the state of the reservoir at any given time t ∈ [t0, te] is described

by the vector
[

Rt

Qt

]

∈ <nr+nq , (1)

which is referred to as the reservoir state vector. For notational convenience riqi

refers to the reservoir state vector at time ti.

At the initial time step the reservoir is in equilibrium, and the state of the

reservoir is represented by an initial prior model, f(r0q0). At a later time, with given

reservoir state vector, the forecast only depends on the current state and not the

previous history. This entails the reservoir state vector appears as a Markov process

in time. The forecasts can be made by a fluid flow simulator ω : <nr+nq → <nr+nq .

The simulator ω replicates the flow of fluids through a porous medium. The input

given to ω is the reservoir state vector at a given time s, in addition to a set

of reservoir parameters, the well configuration and the well operating conditions.

The reservoir parameters (rock compressibility, mobility ratios, relative permeability

curves etc.), well configuration and well operating conditions are considered known,

and are left unchanged throughout this work. Therefore, they are all hidden in the
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Figure 1: Graph of stochastic model with exact fluid flow simulator.

notation. The output from the simulator is the reservoir state vector at a given time

t ∈ [t0, te], where t > s,
[

Rt

Qt

]

= ωt−s

([

Rs

Qs

])

. (2)

Here subscript t − s indicates the time for which the fluid flow simulation is per-

formed. Expression (2) defines f(rtqt|rsqs) to be a Dirac probability density function

(pdf), where the fluid flow simulator is assumed to represent the true fluid flow pro-

cess without error.

The evaluation takes place at a set of times T : {t0, t1, . . . , tm, tm+1}, where

t0 < t1 < · · · < tm < tm+1 < te, as shown in Figure 1. The double-arrows between

the reservoir state vectors at various time points indicate the deterministic relation

between them. The prior model for all times evaluated then becomes:

f(r0q0, r1q1, . . . , rm+1qm+1) = f(r0q0)

m+1
∏

i=1

f(riqi|ri−1qi−1). (3)

The observations from the reservoir consist of seismic data and well logs at time

t0, and measurements of the production properties at times T o : {t1, t2, . . . , tm}. Let

ro
0 denote the static seismic data and well logs, which are related to the reservoir

properties R0 at time t0. The likelihood model for the static data, ro
0, given the

initial reservoir state is defined by:

f(ro
0|r0) ∼ Gauss(D0r0, Σ

o
0), (4)

where D0 is a matrix tying the static data to the reservoir properties, and Σo
0 is

an observation error covariance matrix. Further, let qo
t ∈ <nq be a vector con-

taining the observations of the production properties at times t ∈ T o. Each of

the measurements has an associated measurement error. These measurement errors

must be determined based on knowledge about the accuracy of the data acquisition

equipment used. The likelihood model for the observed production is defined by:

f(qo
t |qt) ∼ Gauss(Dtqt, Σ

o
t ), (5)
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where Dt is a matrix tying the observed production to the production part of the

reservoir state vector, and Σo
t represents the uncertainty in the observations at time

t. The observations are graphically displayed in Figure 1, and the single-arrows

indicate the stochastic relations between reservoir state vectors and corresponding

observations.

The prior and likelihood models define the posterior model of interest:

f(r0q0, . . . , rm+1qm+1|ro
0, q

o
1, . . . , q

o
m)

= const × f(ro
0|r0)f(r0q0)f(rm+1qm+1|rmqm)

m
∏

i=1

f(qo
i |qi)f(riqi|ri−1qi−1), (6)

where const is a normalising constant. The marginal posterior at time tm+1 is of

particular interest since it constitutes a forecast of the reservoir state vector, and it

can be expressed as:

f(rm+1qm+1|ro
0, q

o
1, . . . , q

o
m)

=

∫

· · ·
∫

f(r1q1, . . . , rmqm, rm+1qm+1|ro
0, q

o
1, . . . , q

o
m)dr1q1 · · ·drmqm. (7)

This marginal posterior pdf can be determined recursively with initial pdf at

time t0 where equilibrium is assumed:

f(r0q0|ro
0) = const × f(ro

0|r0)f(r0q0) (8)

where const is a normalising constant. The recursive expression for riqi conditioned

on (ro
0, q

o
1, . . . , q

o
i−1) is:

f(riqi|ro
0, q

o
1, . . . , q

o
i−1) =

∫

f(riqi|ri−1qi−1)f(ri−1qi−1|ro
0, q

o
1, . . . , q

o
i−1)dri−1qi−1. (9)

Later in the paper realisations from this pdf will be denoted by:

[

Ri

Qi

]

∼ f(riqi|ro
0, q

o
1, . . . , q

o
i−1). (10)

The expression for riqi conditioned on (ro
0, q

o
1, . . . , q

o
i ), i.e. on all production

observations prior to and including time ti, is:

f(riqi|ro
0, q

o
1, . . . , q

o
i ) = const × f(qo

i |qi)f(riqi|ro
0, q

o
1, . . . , q

o
i−1)

= const × f(qo
i |qi)

∫

f(riqi|ri−1qi−1)f(ri−1qi−1|ro
0, q

o
1, . . . , q

o
i−1)dri−1qi−1 (11)

where const is a normalising constant. Later in the paper realisations from this pdf

will be denoted by:
[

Rc
i

Qc
i

]

∼ f(riqi|ro
0, q

o
1, . . . , q

o
i ). (12)
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We obtain the forecast pdf f(rm+1qm+1|ro
0, q

o
1, . . . , q

o
m) in expression (7), which is

the primary objective of this study, by performing the recursion in expression (11)

up to i = m and extending it to i = m + 1 through expression (9). Note that this

recursive formulation makes it possible to condition on the production observations

sequentially as they appear.

A sequential simulation algorithm can be defined as follows:

• Generate r0q0 from f(r0q0|ro
0)

• For i = 1, . . . , m

– Generate riqi from f(riqi|ro
0, q

o
1, . . . , q

o
i−1)

– Generate rc
i q

c
i from f(riqi|ro

0, q
o
1, . . . , q

o
i )

• Generate rm+1qm+1 from f(rm+1qm+1|ro
0, q

o
1, . . . , q

o
m)

The problematic part of this algorithm is simulation from f(riqi|ro
0, q

o
1, . . . , q

o
i ) de-

fined in expression (11). The unknown normalising constant is computer demanding

to determine. Several simulation algorithms are available for this step, for example

Markov chain Monte Carlo (MCMC) algorithms, rejection sampling and sampling

importance resampling (SIR) algorithms, see Omre (2000), but they all are computer

demanding. Note, however, that if f(riqi|ro
0, q

o
1, . . . , q

o
i−1), i = 1, . . . , m in expression

(11) are Gaussian and f(qo
i |qi), i = 1, . . . , m are Gaussian as defined in expres-

sion (5), then f(riqi|ro
0, q

o
1, . . . , q

o
i ), i = 1, . . . , m are also Gaussian and analytically

tractable. The pdfs f(riqi|ro
0, q

o
1, . . . , q

o
i−1), i = 1, . . . , m as defined in expression (9)

will not be Gaussian, however, due to the complexity of the fluid flow simulator ω.

In the current study f(riqi|ro
0, q

o
1, . . . , q

o
i−1), i = 1, . . . , m are approximated by

Gaussian pdfs with empirically estimated parameters, hence the simulation from

f(riqi|ro
0, q

o
1, . . . , q

o
i ), i = 1, . . . , m are very computer efficient. This approximate

approach corresponds to the ensemble Kalman filter, see Evensen (1994), which is

explained in greater detail in the next section.

The computational demands of fluid flow simulators often prohibits solutions

requiring repeated simulations on a fine scale representation, hence approximate

fluid flow simulators are frequently used. Traditionally, the fluid flow simulator ω

is only replaced by an approximation without accounting for the fact that this may

introduce biases and change the error structure in the forecasts. The focus of the

current study is to account for these effects. In the model we use, the dynamic part

of the prior model, f(rtqt|rsqs), is defined by:
[

Rt

Qt

]

= ω∗
t−s

([

Rs

Qs

])

+ ε∗t,s, (13)

where ω∗
t−s : <nr+nq → <nr+nq is the approximate model and ε∗t,s is a centred Gaus-

sian approximation error with covariance matrix Σ∗
t,s. The associated graph is pre-

sented in Figure 2, and it is worth noting that the graphs in Figure 1 and 2 are
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Figure 2: Graph of stochastic model with approximate fluid flow simulator.

identical except for the stochastic relations in the dynamic part of the prior model

of the latter.

The approximate model ω∗
t−s will normally consist of three parts: upscaling,

coarse scale fluid flow simulation, and downscaling/correction. Upscaling of reservoir

properties entails:
[

R∗
s

Q∗
s

]

=

[

ν∗(Rs)

Qs

]

, (14)

where ν∗ : <nr → <nr∗ is an upscaling operator which provides a coarser representa-

tion of the reservoir properties, see Farmer (2000) and Durlofsky (2003). Here, nr∗ is

the number of nodes on the coarse lattice times the number of reservoir properties.

Coarse scale fluid flow simulation entails:

[

R∗
t

Q∗
t

]

= ω̄t−s

([

R∗
s

Q∗
s

])

, (15)

where ω̄t−s : <nr∗+nq → <nr∗+nq is a fluid flow simulator similar to ωt−s but on

a coarser scale. Downscaling of reservoir properties and correction of production

properties entails:

ω∗
t−s

([

Rs

Qs

])

=

[

µRt
+ ARt

R∗
t

µQt
+ AQt

Q∗
t

]

, (16)

where µRt
and µQt

are shift vectors, and ARt
and AQt

are correction matrices of

dimension (nr × nr∗) and (nq × nq) respectively. The covariance matrix Σ∗
t,s in

expression (13) contains Var{Rt|R∗
t } and Var{Qt|Q∗

t}. The assessment of the various

parts of the approximate model ω∗ will be described in greater detail in Section 2.3.

2.2 Traditional ensemble Kalman filtering

The ensemble Kalman filter has been successfully applied to relatively small pro-

duction history conditioning problems. Nævdal et al. (2003) and Wen and Chen

(2005) use the ensemble Kalman filter on two dimensional problems of size 39×55

and 50×50, respectively. Gu and Oliver (2004) consider a three dimensional problem

of size 19×28×5.
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The ensemble Kalman filter uses a set of realisations of reservoir state vectors,

referred to as an ensemble, which assimilate the observations as they become avail-

able with time. The reservoir state covariance matrix at any given time is estimated

from the ensemble of realisations. Hence, there is no need to neither integrate any

covariance or sensitivity matrix forward in time, nor to assume that the forecasting

step is linear as is done in regular Kalman filtering.

In practice, the ensemble Kalman filtering proceeds as follows: At the initial

time-step, t0, n initial reservoir state vectors are generated from the prior model,

f(r0q0), updated by the static observations available at t0:

[

Rc
0,i

Qc
0,i

]

; i ∈ Γ = {1, 2, . . . , n} iid from f(r0q0|ro
0), (17)

with index i referring to ensemble member number i.

By using the fluid flow simulator, each member of the ensemble is advanced from

time t0 to time t1, to get a forecast of the production:

[

R1,i

Q1,i

]

= ω1

([

Rc
0,i

Qc
0,i

])

; i ∈ Γ. (18)

These variables are realisations from f(r1q1|ro
0).

The ensemble at time t1 conditioned on observations at t0 is used to estimate

the reservoir state vector covariance matrix Σ1 at that time,

Σ1 =

[

ΣR1R1
ΣR1Q1

ΣQ1R1
ΣQ1Q1

]

. (19)

The covariance matrix Σ1 represents the uncertainty in the forecasts of the reservoir

state vector at time t1 given ro
0 and the estimate is found through standard statistical

estimation.

By using the estimated covariance matrices, each reservoir state vector in the

ensemble is updated to honour the observed production at time t1:

[

Rc
1,i

Qc
1,i

]

=

[

R1,i + ΣR1Q1
[ΣQ1Q1

+ Σo
1]

−1 (qo
1 + εo

1,i − Q1,i)

Q1,i + ΣQ1Q1
[ΣQ1Q1

+ Σo
1]

−1 (qo
1 + εo

1,i − Q1,i)

]

; i ∈ Γ, (20)

where

εo
1,i ; i ∈ Γ iid from Gauss(0, Σo

1). (21)

Here, εo
1,i represents the observation error, which is assumed to be independent of

all other variables. In literature the update step is referred to as the analysis step.

It is easy to show that this corresponds to sampling from the approximate poste-

rior distribution conditioned on the production history up to time t1, f(r1q1|ro
0, q

o
1).

Thus the correct variability is reproduced. Note that expression (20) only requires

estimates of ΣR1Q1
and ΣQ1Q1

, not ΣR1R1
. The latter can be cumbersome to estimate

if nr is huge.

9



The forecasting and analysis steps are repeated for {t2, . . . , tm} when new obser-

vations are available. Forecasts of reservoir states at tm+1 are obtained by:
[

Rm+1,i

Qm+1,i

]

= ω1

([

Rc
m,i

Qc
m,i

])

; i ∈ Γ. (22)

Experience from previous work suggests using ensemble sizes of 40 (Gu and

Oliver (2004)), 100 (Nævdal et al. (2003)) or 200 members (Wen and Chen (2005)).

If the reservoir representation is on a fine scale, simulation of fluid flow on ensembles

of these sizes is not possible, considering that one fluid flow simulation could take

days or even weeks to complete. This problem is normally solved by upscaling the

reservoir state vector to a coarser representation. The forecast and analysis steps

follow expressions (17) through (22), by upscaling the initial ensemble using ν∗, see

expression (14), and replacing R, Q and ω by R∗, Q∗ and ω∗, respectively. In the

following, we refer to this as traditional coarse scale ensemble Kalman filtering.

The upscaling changes the model error. It introduces bias, and the variability

are most likely much more significant on the coarse scale. The coarse scale model

error is ignored in the traditional ensemble Kalman filtering, however. It is widely

known, see Omre and Lødøen (2004), that such simplifications inevitably leads to

bias problems in the production history conditioning and underestimation of the

variability in the ensemble. Hence, by not considering the bias in the coarse scale

production forecasts, biased production conditioned reservoir state vectors on the

fine scale are identified. Moreover, by ignoring the modelling error, the coarse scale

and fine scale fluid flow simulators are treated as equally reliable. The real loss in

reliability caused by using the coarse scale simulator is not quantified.

2.3 Scale-corrected ensemble Kalman filtering

Estimating the relation between the production properties from a coarse scale fluid

flow simulator and from a fine scale fluid flow simulator have been suggested earlier,

see Omre and Lødøen (2004) and Lødøen et al. (2005). This idea can easily be

extended to an ensemble Kalman filter setting, where we estimate the relation be-

tween the reservoir state vectors at different scales. To determine this relation from

general understanding of the physical processes involved is difficult. Therefore, as

in Omre and Lødøen (2004), we propose an empirical, statistical approach.

First, we generate a small set of realisations of the initial reservoir state vector

from the prior model, f(r0q0), updated by the static observations available at t0, to

get an ensemble of initial fine scale reservoir state vectors:
[

Rc
0,i

Qc
0,i

]

; i ∈ Γ = {1, . . . , nc} iid from f(r0q0|ro
0). (23)

This scale is termed the reference scale, and the set is termed the calibration set.

The size of this ensemble should be such that we can afford the computational cost
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of running all the fine scale fluid flow simulations. Further, we upscale the initial

ensemble of fine scale reservoir state vectors to get the corresponding coarse scale

ensemble:
[

R∗c
0,i

Q∗c
0,i

]

=

[

ν∗(R0,i)

Q0,i

]

; i ∈ Γ. (24)

The forecasts of the reservoir states at the next time-step are found using the fine

scale and coarse scale fluid flow simulators, where the fine scale simulator, operating

on the reference scale, is assumed to simulate without error, and the coarse scale

simulator is assumed to introduce a coarse scale model error:
[

R1,i

Q1,i

]

= ω1

([

Rc
0,i

Qc
0,i

])

[

R∗
1,i

Q∗
1,i

]

= ω̄1

([

R∗c
0,i

Q∗c
0,i

])

; i ∈ Γ. (25)

The uncertainty in and dependence of the forecasts of the fine and coarse scale reser-

voir state vectors are described by a joint pdf. The fine and coarse scale ensemble

members are used to find an estimate of this joint pdf, described by a mean vector

and a covariance matrix:










µR1

µQ1

µR∗

1

µQ∗

1





















ΣR1R1
ΣR1Q1

ΣR1R∗

1
ΣR1Q∗

1

ΣQ1R1
ΣQ1Q1

ΣQ1R∗

1
ΣQ1Q∗

1

ΣR∗

1
R1

ΣR∗

1
Q1

ΣR∗

1
R∗

1
ΣR∗

1
Q∗

1

ΣQ∗

1
R1

ΣQ∗

1
Q1

ΣQ∗

1
R∗

1
ΣQ∗

1
Q∗

1











(26)

Under linearity assumptions, we later find conditional distributions that describe

the ability of the coarse scale reservoir vectors to predict the fine scale reservoir state

vector from the joint distribution above. In practice, as will be shown later, not all

parts of the covariance matrix needs to be estimated at each time-step.

The ensemble of forecasted reservoir states is then updated to honour the pro-

duction history using the covariance matrix estimates:

[

Rc
1,i

Qc
1,i

]

=

[

R1,i + ΣR1Q1
[ΣQ1Q1

+ Σo
1]

−1(qo
1 + εo

1,i − Q1,i)

Q1,i + ΣQ1Q1
[ΣQ1Q1

+ Σo
1]

−1(qo
1 + εo

1,i − Q1,i)

]

; i ∈ Γ. (27)

These variables are realisations from f(r1q1|ro
0, q

o
1), based on the fine scale reference

model. These updates follow regular ensemble Kalman filtering theory, where we

consider the reference, fine scale model error to be negligible. As the conditioning

is thought to be more accurate on the fine scale than on the coarse scale, the coarse

scale conditioning is based on the fine scale forecasts:

[

R∗c
1,i

Q∗c
1,i

]

=

[

R∗
1,i + ΣR∗

1
Q1

[ΣQ1Q1
+ Σo

1]
−1(qo

1 + εo
1,i − Q1,i))

Q∗
1,i + ΣQ∗

1
Q1

[ΣQ1Q1
+ Σo

1]
−1(qo

1 + εo
1,i − Q1,i)

]

; i ∈ Γ. (28)
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These variables are realisations of the coarse scale fluid flow simulations conditioned

to the available observations prior to and including time t1. Note that the updates

of R∗
1,i and Q∗

1,i can be rewritten as:

R∗c
1,i = R∗

1,i + ΣR∗

1
Q1

Σ−1
Q1Q1

ΣQ1Q1
[ΣQ1Q1

+ Σo
1]

−1(qo
1 + εo

1,i − Q1,i)

= R∗
1,i + ΣR∗

1
Q1

Σ−1
Q1Q1

[Qc
1,i − Q1,i]

Q∗c
1,i = Q∗

1,i + ΣQ∗

1
Q1

Σ−1
Q1Q1

[Qc
1,i − Q1,i]

; i ∈ Γ, (29)

such that the coarse scale updates are conditioned on the difference between the

forecasted and updated production vector on the fine scale.

The forecast and analysis steps are repeated for {t2, . . . , tm} where new observa-

tions are available. Forecasts of reservoir states at tm+1 are obtained by:

[

Rm+1,i

Qm+1,i

]

= ω1

([

Rc
m,i

Qc
m,i

])

[

R∗
m+1,i

Q∗
m+1,i

]

= ω̄1

([

R∗c
m,i

Q∗c
m,i

])

; i ∈ Γ. (30)

At this point we have an empirical estimate of the relation between the reservoir

state vectors on the fine and coarse scales for all time-steps t ∈ T where we evaluate

the reservoir. We refer to this as the calibration part of scale-corrected ensemble

Kalman filtering.

Simulation of reservoir state vectors on a coarse scale and the empirical estimates

of expression (26) are then used to generate realisations of the reservoir state vectors

and production forecasts on a fine scale. We refer to the following as the simulation

part of scale-corrected ensemble Kalman filtering. First, we generate a large set

of realisations of the initial reservoir state vector from the prior model, f(r0q0),

updated by the static observations available at t0, and upscale the realisations to

get an initial ensemble:

[

Rc
0,j

Qc
0,j

]

iid from f(r0q0|ro
0)

[

R∗c
0,j

Q∗c
0,j

]

=

[

ν∗(Rc
0,j)

Qc
0,j

]

; j ∈ Γ∗ = {1, . . . , ns}. (31)

Note that since the fluid flow simulations are now only performed on the coarse

scale, ns can be much larger than nc. The forecasts of the coarse scale reservoir state

vectors at the next time-step are found using the coarse scale fluid flow simulator:

[

R∗
1,j

Q∗
1,j

]

= ω̄1

([

R∗c
0,j

Q∗c
0,j

])

; j ∈ Γ∗. (32)

12



At each time-step the downscaled forecast of the reservoir properties can be

generated using the mean and covariance matrix estimates, together with the set of

coarse scale forecasts,

[R1|R∗
1] ∼ Gauss

(

µR1
+ ΣR1R∗

1
Σ−1

R∗

1
R∗

1
(R∗

1 − µR∗

1
), ΣR1R1

− ΣR1R∗

1
Σ−1

R∗

1
R∗

1
ΣR∗

1
R1

)

,

(33)

hence a realisation is:

R1,j = µR1
+ ΣR1R∗

1
Σ−1

R∗

1
R∗

1
(R∗

1,j − µR∗

1
) + ε̃1,j ; j ∈ Γ∗, (34)

where

ε̃1,j ; j ∈ Γ∗ iid from Gauss(0, ΣR1R1
− ΣR1R∗

1
Σ−1

R∗

1
R∗

1
ΣR∗

1
R1

). (35)

Note that sampling R1,j is not straightforward, since ΣR1R1
and ΣR∗

1
R∗

1
do not have

full rank, but this is solved through Bayesian regularisation, see Appendix A.

The forecasts of the production properties on the coarse scale are used to generate

a set of corresponding production properties on the reference, fine scale, by using

the mean and covariance estimates from the calibration. The production property

correction is:

[Q1|Q∗
1] ∼ Gauss

(

µQ1
+ ΣQ1Q∗

1
Σ−1

Q∗

1
Q∗

1
(Q∗

1 − µQ∗

1
), ΣQ1Q1

− ΣQ1Q∗

1
Σ−1

Q∗

1
Q∗

1
ΣQ∗

1
Q1

)

,

(36)

hence

Q1,j = µQ1
+ ΣQ1Q∗

1
Σ−1

Q∗

1
Q∗

1
(Q∗

1,j − µQ∗

1
) + ε∗1,j ; j ∈ Γ∗, (37)

where

ε∗1,j ; j ∈ Γ∗ iid from Gauss(0, ΣQ1Q1
− ΣQ1Q∗

1
Σ−1

Q∗

1
Q∗

1
ΣQ∗

1
Q1

). (38)

Under linearity assumptions, this ensures that the set has the correct mean and

variance. The updates are performed using the set of predicted fine scale production

properties:
[

R∗c
1,j

Q∗c
1,j

]

=

[

R∗
1,j + ΣR∗

1
Q1

[ΣQ1Q1
+ Σo

1]
−1(qo

1 + εo
1,j − Q1,j)

Q∗
1,j + ΣQ∗

1
Q1

[ΣQ1Q1
+ Σo

1]
−1(qo

1 + εo
1,j − Q1,j)

]

; j ∈ Γ∗. (39)

This updating directly on R∗
1 is an alternative to downscaling R∗

1 to R1, updating

R1 and then upscale Rc
1 to R∗c

1 . This bypass makes it possible to avoid downscaling

for times where only production characteristics are of interest.

The simulation part of the scale-corrected ensemble Kalman filtering is repeated

for {t2, . . . , tm} when new observations are available. In practice, we do the calibra-

tion part for one time step first and then the simulation part. Then we move on

to the next time-step. Hence, the calibration and simulation ensembles are always

kept up to date with the latest conditioning. Forecasts of reservoir states in the

simulation ensemble at tm+1 are obtained by forecasting the coarse scale reservoir

states:
[

R∗
m+1,j

Q∗
m+1,j

]

= ω̄1

([

R∗c
m,j

Q∗c
m,j

])

; j ∈ Γ, (40)
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Figure 3: Outline of the reservoir. The thick lines indicate where the wells are

perforated.
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Figure 4: Vertical slice of true log-permeability (left) and true porosity (right).

and then generating the corresponding reference, fine scale reservoir states:

[

Rm+1,j

Qm+1,j

]

=

[

µRm+1
+ ΣRm+1R∗

m+1
Σ−1

R∗

m+1
R∗

m+1
(R∗

m+1,j − µR∗

m+1
) + ε̃m+1,j

µQm+1
+ ΣQm+1Q∗

m+1
Σ−1

Q∗

m+1
Q∗

m+1
(Q∗

m+1,j − µQ∗

m+1
) + ε∗m+1,j

]

; j ∈ Γ∗

(41)

where ε̃m+1,j and ε∗m+1,j are defined as in expressions (35) and (38), respectively.

3 Case study

The case study is identical to the one in Omre and Lødøen (2004). The study is

inspired by the Troll field in the North Sea offshore Norway. The reservoir under

study covers a domain of size 104 × 104 × 102 feet3 and is discretised onto a lattice

of size 50× 50× 15. Initially, the reservoir is fully saturated with oil. The reservoir

has one vertical injection well, perforated only in the upper part of the reservoir,

and two horizontal production wells. The well configuration is shown in Figure 3.

A reference reservoir is created by geoscientists familiar with the Troll field.

This is done so that the results we get can be compared to true values, to verify the

strengths and weaknesses of the methodology. Specific details on the construction

can be found in Hegstad and Omre (2001). Vertical cross sections of the static

properties (porosity and log-permeability) in the reference reservoir are displayed in

Figure 4. The reference reservoir has a clearly layered structure where the middle

part of the reference reservoir has higher permeability and porosity than the upper

and lower parts, but it also contain considerable heterogeneity.

By using the geology in the reference reservoir as input to a fluid flow simulator,

we find the reference production. In this work we use Eclipse 300 version 2004a

14
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Figure 5: The reference production, shown row-wise from top to bottom, for: opr1,

opr2, gor1, gor2, bhp1, bhp2, and bhpi.

simulator, see GeoQuest (2004), as the fluid flow simulators ω and ω∗, where ω

simulates on the full 50× 50× 15 lattice, and ω∗ simulates on a coarser 10× 10× 15

lattice. The upscaling function ν∗ : <150,000 → <6,000 is defined in the following

way: The pressure, fluid saturations and porosity are mapped to the coarse grid by

arithmetic averaging, while the permeability is upscaled by harmonic averaging.

The reference production is found using ω, and it is shown in Figure 5. The

production properties we are considering are the oil production rates (opr1 and

opr2), gas/oil ratios (gor1 and gor2), and bottom hole pressures (bhp1 and bhp2)

in both production wells, and the bottom hole pressure in the injection well (bhpi).

The reference production clearly demonstrates how the well operating conditions are

defined. Initially, each production well produces at a target oil production rate of

15,000 stb/day. When the bottom hole pressure in a production well drops to 4,100

psi, the operating condition in this well switches to a target bottom hole pressure

of 4,100 psi. The injected fluid is gas, and the injection happens at a target rate of

65,000 mscf/day.

The observed well logs and seismic data are generated from the reference reser-

voir. Fairly exact observations in the wells and convolved post-stack seismic data

are made, and this constitute the observations ro
0 at initial time. For more details

see Hegstad and Omre (2001).

The observed production history is found from the reference production. We

consider the reference production up to 1,800 days, at 30 day intervals, to be the

observed production history. Hence, the observed production history contains mea-

surements of seven production properties at sixty times,

qo
t ∈ <7, t ∈ {t1, t2, . . . , t60}. (42)
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The standard deviations in the measurement errors are defined to be one percent

of the observed value for opr1, opr2, bhp1, bhp2 and bhpi, and 25 percent of the

observed value for gor1 and gor2. This defines the measurement error covariance

matrix Σo
t at each time-step t.

3.1 Stochastic model for initial reservoir state vectors

The initial reservoir state vector is found from an initial model, f(r0q0|ro
0). This is

done by generating samples from a prior model, f(r0q0), updated by static observa-

tions, ro
0, at the initial time step. The porosity and permeability are generated from

the model in Hegstad and Omre (2001), using the same model parameters as Omre

and Lødøen (2004). Specific details about how this is done are not given here. Note,

however, that the distribution is conditioned on seismic data and well logs, and that

it is easy to sample from, in the sense that samples can be generated relatively fast.

The initial pressure and saturations over the reservoir are equal in all realisations

since the reservoir is assumed to be in equilibrium. The oil-saturation is one ev-

erywhere, and the pressure is equal to the steady state pressure in each grid block,

defined by setting a constant initial pressure of 5,780 psi at the top of the reservoir.

The initial production rates and production ratios are zero, while the bottom hole

pressures in the wells are equal to the steady state pressure in the grid block where

the bottom hole pressure is measured. This defines the model f(r0q0|ro
0) from which

we generate the initial reservoir state vectors.

4 Simulation studies

As mentioned earlier, conditioning the forecasted coarse scale reservoir state vectors

to the observed production history leads to bias in the production history condi-

tioned fine scale reservoir properties. We will quantify this effect by comparing the

results we get from performing the traditional coarse scale ensemble Kalman filter-

ing, described in Section 2.2, to the results we get using the scale-corrected ensemble

Kalman filtering methodology, outlined in Section 2.3, on the case study described

in Section 3.

4.1 Traditional coarse scale ensemble Kalman filtering

An initial ensemble of n = 100 reservoir state vectors is generated from the initial

model f(r0q0|ro
0). From this initial fine scale ensemble of reservoir state vectors, the

corresponding initial coarse scale ensemble is found, using the upscaling function

ν∗. The traditional coarse scale ensemble Kalman filtering is performed for 1,800

days, conditioning each ensemble member to the observed production history every

30 days.
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Figure 6: Traditional coarse scale ensemble Kalman filtering: Vertical slice of the

coarse scale log-permeability in one of the ensemble members at selected times. The

times considered are, from left to right; the initial time-step, and after 300 days,

900 days and 1,800 days of updating. The rightmost plot shows the respective slice

of the upscaled reference reservoir.
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Figure 7: Traditional coarse scale ensemble Kalman filtering: Vertical slice of the

mean coarse scale log-permeability at selected times. The times considered are, from

left to right; the initial time-step, and after 300 days, 900 days and 1,800 days of

updating. The rightmost plot shows the respective slice of the upscaled reference

reservoir.

Figure 6 shows a vertical slice of the log-permeability for one of the ensemble

members at the initial time-step, and after 300 days, 900 days and 1,800 days of tra-

ditional coarse scale ensemble Kalman filtering, compared to the upscaled reference

log-permeability.

It is clear that the high permeable middle layer gets more and more distinct as

more production data are assimilated into the model. Vertical slices of the mean

log-permeability in the ensemble at the same time steps are shown in Figure 7.

The initial mean log-permeability is not far from the true values, but the interfaces

between the high and low permeable layers are not sharp. This is due to the fact

that the location of the high permeable layer is uncertain in the initial model. As

more and more production data are incorporated into the model, these interfaces

become sharper, especially in the areas close to the injection well, which is located

in the leftmost area of the vertical slices. The area to the right in the vertical

slices are further away from the wells. The conditioning to the well logs does not

have a large impact there. Also, because of the distance to both the injection well

and the production wells, this region experiences little or no changes in saturations

during the time window we are considering. Hence, the area has less impact on the

fluid flow calculations, and thus we should not expect to accurately reproduce the

true values here. Figure 8 shows the corresponding vertical slices of the standard

deviation for the log-permeability. This is the square root of the respective diagonal
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Figure 8: Traditional coarse scale ensemble Kalman filtering: Vertical slice of the

standard deviation for the coarse scale log-permeability at selected times. The times

considered are, from left to right; the initial time-step, and after 300 days, 900 days

and 1,800 days of updating.

elements of ΣR∗

t R∗

t
. The initial uncertainty is low in the leftmost and lower areas

of the vertical slice. These areas are close to the injection well and the production

wells, respectively. Since we condition on well logs in the initial model, the initial

uncertainty is lower in these areas of the reservoir. The standard deviation estimates

get lower and lower as more and more observations are assimilated.

The same tendencies are seen in the development of the porosity field, when

considering a single ensemble member, the mean and the standard deviation of the

coarse scale ensemble. This is not shown here.

Since the Kalman updates are linear and the fluid flow equations are non-linear,

there might be inconsistencies between the corrected static properties (permeabil-

ity and porosity) and the corrected dynamic properties (pressure, saturation and

production properties). Therefore, we use the updated static reservoir properties at

selected times, as input to the coarse scale reservoir simulator ω∗ and re-run the sim-

ulations from the initial time-step without conditioning to the observations. Figure

9 shows the simulation results for all the production properties considered for the

twenty first members of the ensemble when using the updated ensemble at selected

time-steps as input to ω∗, compared to the fine scale reference production. Initially

the uncertainty in the forecasts is large. As more and more production data are

assimilated into the reservoir models, the uncertainty is reduced. At intermediate

times, especially after 900 days of coarse scale ensemble Kalman filtering, biases

are observed. The gas-breakthrough times and the times where the well controls

switch from target rate to target bottom hole pressure happen to late. At 1,800

days the bias is corrected. This can be explained by the fact that at 900 days nei-

ther gas-breakthrough nor change of production controls have been observed in the

production history. The production forecasts after 1,800 days of coarse scale ensem-

ble Kalman filtering are close to the fine scale reference production. Note especially

that the gas-breakthrough times and the times where the well controls switch from

target rate to target bottom hole pressure are well reproduced.

However, this does not mean that the corresponding fine scale simulation runs

match the observed production history. Figure 10 shows the simulation results for all

production properties considered for the twenty first members of the ensemble using
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Figure 9: Traditional coarse scale ensemble Kalman filtering: Production properties

from re-runs of the updated coarse scale ensemble at selected times, compared to

the corresponding fine scale reference production properties (–·–). The columns

represent fluid flow simulations with different inputs, while the rows represent the

different production properties. The inputs used are, from left to right; the initial

ensemble, the ensemble after 300 days, 900 days, and 1,800 days of updating. The

production properties considered are, from top to bottom; opr1, gor1, bhp1, opr2,

gor2, bhp2 and bhpi.
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Figure 10: Traditional coarse scale ensemble Kalman filtering: Production properties

from re-runs of the downscaled coarse scale ensemble at selected times, compared

to the corresponding fine scale reference production properties (–·–). The inputs

used are, from left to right; the initial fine scale ensemble, the downscaled ensemble

after 300 days, 900 days, and 1,800 days of updating. The production properties

considered are, from top to bottom; opr1, gor1, bhp1, opr2, gor2, bhp2 and bhpi.
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downscaled versions of the coarse scale updates at selected time-steps as input to ω,

compared to the fine scale reference production. Here also, the initial uncertainty

in the production forecasts is quite large. As more and more production data are

assimilated into the reservoir models, the uncertainty is reduced. At the latest

times, the uncertainty is low, but we observe biases in the forecasts, especially for

the gas-breakthrough time in production well number two, and for the time when the

production controls switch from target rate to target bottom hole pressure in both

production wells. Moreover, the variability in the ensemble is too small since we

consider the coarse scale fluid flow simulator to be as reliable as the fine scale one. A

modelling error should be added to the former. This shows that relying on traditional

coarse scale ensemble Kalman filtering, without modelling the effects introduced

by the coarse scale fluid flow simulator, leads to biases and underestimation of

variance in the ensemble of production history conditioned reservoir state vectors.

The production conditioning is accurate and precise on the coarse scale, but not on

the fine scale.

4.2 Scale-corrected ensemble Kalman filtering

An initial ensemble of nc = 20 reservoir state vectors is generated from the initial

model f(r0q0|ro
0) at the reference scale. This ensemble is used to estimate the means

and covariance matrices in expression (26) at each time-step. We refer to this

as the calibration ensemble. In addition, we generate an ensemble of ns = 100

reservoir state vectors from the initial model. These realisations are generated on

the reference, fine scale, but fluid flow simulation is only performed on the upscaled,

coarse reservoir representation. We refer to this as the simulation ensemble, and

it is used to perform the simulation part of the scale-corrected ensemble Kalman

filtering in expressions (31)-(41). The scale-corrected ensemble Kalman filtering is

performed for 1,800 days, with updates every 30 days.

Note that considering only the fine scale results in the calibration process corre-

sponds to performing traditional ensemble Kalman filtering on the fine scale, which

is the optimal approach, with only n = 20 members in the ensemble. Recall that

the reservoir state vector is of dimension 150,007. We want the ensemble to be rep-

resentative of the pdf of this high-dimensional space, hence 20 realisations appear

as a very small set. Even a set of 100 realisations, as we have in our coarse scale

ensemble, appears as small, but this set can be expanded without dramatically in-

creasing the computer demands. One may use an even coarser scale to afford larger

ensembles.

We expect to recognise similar behaviours in the development of the fine scale

and coarse scale calibration ensembles over time. Figure 11 shows the development

over time for a vertical slice of the log-permeability in one of the calibration ensem-

ble members, on both scales, compared to the corresponding vertical slices in the
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Figure 11: Scale-corrected ensemble Kalman filtering: Vertical slice of the develop-

ment of the fine scale log-permeability in one of the calibration ensemble members.

The first row shows the development on the fine scale, while the second row shows

the development on the coarse scale. The columns represent, from left to right; the

initial time-step, after 300 days, 900 days, and 1,800 days of updating, and the slice

of the reference reservoir at the respective scale.

reference reservoir at the respective scales. We clearly see that the size and location

of the high permeable region gets closer and closer to the reference reservoir as more

and more production data are assimilated into the reservoir models. As expected,

we recognise the same trends on both scales.

Figure 12 shows the development over time for the same vertical slice of the

mean log-permeability in the calibration ensemble, also on both scales. Close to the

injection well, to the left in the figures, the initial mean of the calibration ensemble

is close to the true values of the reference reservoir because of the conditioning

to the well logs in the initial model. Further away from the injection well, the

interfaces between the high and low permeable areas are not as clearly defined. As

more production data are assimilated into the reservoir models, the mean of the

calibration ensemble gets more and more similar to the respective values in the

reference reservoir.

Figure 13 shows the development over time for the estimated standard deviation

for the log-permeability in the calibration ensemble at both scales. Close to the

injection well, where the initial estimate of the mean log-permeability is in good

accordance with the values in the reference reservoir, the initial estimate of the

standard deviation is also low. In other areas, the initial estimate of the standard

deviation is high, which is due to the uncertainty in the size and location of the high

permeable region in the prior model. The initial estimate of the standard deviation

in the coarse scale calibration ensemble is lower, due to the fact that upscaling is an

averaging process. Very high and very low values on the fine scale are averaged out,

making the the estimate of the standard deviation on the coarse scale lower. By

conditioning the reservoir models to more and more production data, the size and

location of the high permeable layer gets more certain, reflected in the reduction in
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Figure 12: Scale-corrected ensemble Kalman filtering: Vertical slice of the develop-

ment of the mean log-permeability in the calibration ensemble. The first row shows

the development on the fine scale, while the second row shows the development on

the coarse scale. The columns represent, from left to right; the initial time-step,

after 300 days, 900 days, and 1,800 days of updating, and the slice of the reference

reservoir at the respective scale.
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Figure 13: Scale-corrected ensemble Kalman filtering: Vertical slice of the develop-

ment of the standard deviation of the log-permeability in the calibration ensemble.

The first row shows the development on the fine scale, while the second row shows

the development on the coarse scale. The columns represent, from left to right; the

initial time-step, after 300 days, 900 days, and 1,800 days of updating.
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the estimates of the standard deviation at later times.

Similar trends are seen for the development of the porosity in a single calibration

ensemble member over time, and also for the mean and standard deviation estimates.

This is not shown here.

Because of the possible inconsistencies between static and dynamic properties

in the Kalman updates, we again use the corrected static properties at selected

times and re-run the fluid flow simulations from the initial time-step using these

values. Figure 14 shows the fluid flow simulation results for all production properties

considered for the fine scale calibration ensemble when using the initial fine scale

ensemble and the updated fine scale ensemble after 300 days, 900 days and 1,800 days

of updates as input to ω, compared to the fine scale reference production. We see

that by using the initial fine scale calibration ensemble we get large uncertainties

in both gas-breakthrough times and the times where the production wells switch

from target rate to target pressure control. When using the updated ensemble after

1,800 days as input to ω, we get fluid flow simulation results that almost exactly

reproduce the production history up to 2,000 days for all the production properties

considered. These 20 realisations are from the posterior pdf based on fine scale fluid

flow simulation and are as representative as they can be. The problem is that the

low number of realisations give low coverage in the space of reservoir state vectors,

and that increasing the number require dramatic computer resources.

Figure 15 shows the corresponding results when using the coarse scale calibration

ensemble members as input to ω∗, compared to the fine scale reference production.

Initially, the uncertainty is quite large. As more and more production data are

assimilated into the reservoir model, the uncertainty is reduced. At later times, we

observe bias compared to the reference production. This observation means that in

the calibration ensemble, the production history conditioning is accurate on the fine

scale, but biased and less precise on the coarse scale. This fact is used to estimate

the model error introduced by the coarse scale reservoir simulator. If we can find a

reliable estimate, the model error can be used to simulate a large ensemble on the

coarse scale, where the bias and precision are corrected for.

In the simulation ensemble we can predict the fine scale reservoir properties from

the coarse scale ensemble members whenever needed. We do the prediction after

300 days, 900 days and 1,800 days of updating. We re-run the fluid flow simulations

by using the static reservoir properties from the initial fine scale ensemble, and

the static reservoir properties from the scale-corrected fine scale ensemble at the

aforementioned time steps as input to the fine scale fluid flow simulator. Figure

16 shows the results obtained compared to the reference production. We see that

the large initial uncertainties are reduced as more and more production data are

assimilated. The predicted fine scale ensemble after 1,800 days of updating provides

apparently unbiased forecasts of the production. The variability in the forecasts

is, however, higher than in the production forecasts from the fine scale calibration
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Figure 14: Scale-corrected ensemble Kalman filtering: Production properties from

re-runs of the fine scale calibration ensemble at selected times, compared to the

corresponding fine scale reference production properties (–·–). The inputs used are,

from left to right; the initial fine scale calibration ensemble, the fine scale calibration

ensemble after 300 days, 900 days, and 1,800 days of updating. The production

properties considered are, from top to bottom; opr1, opr2, gor1, gor2, bhp1, bhp2

and bhpi.
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Figure 15: Scale-corrected ensemble Kalman filtering: Production properties from

re-runs of the coarse scale calibration ensemble at selected times, compared to the

corresponding fine scale reference production properties (–·–). The inputs used are,

from left to right; the initial coarse scale calibration ensemble, the coarse scale

calibration ensemble after 300 days, 900 days, and 1,800 days of updating. The

production properties considered are, from top to bottom; opr1, gor1, bhp1, opr2,

gor2, bhp2 and bhpi.
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Figure 16: Scale-corrected ensemble Kalman filtering: Production properties from

re-runs of the predicted fine scale simulation ensemble at selected times, compared

to the reference production properties (–·–). The inputs used are, from left to right;

the initial fine scale simulation ensemble, and the predicted simulation ensemble

after 300 days, 900 days, and 1,800 days of updating. The production properties

considered are, from top to bottom; opr1, gor1, bhp1, opr2, gor2, bhp2 and bhpi.
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ensemble, shown in Figure 14. This loss of precision is the cost of using the coarse

scale fluid flow simulator.

In Figure 17 the results in this section are summarised. The figure shows a

column-wise comparison between the production properties obtained from condi-

tioning to static data only, from the fine scale calibration ensemble, from the scale-

corrected ensemble, and from traditional coarse scale ensemble Kalman filtering.

The three latter after 1,800 days of updating. Note that all these fluid flow simula-

tions are performed on the fine scale. By comparing production forecasts with no

production history conditioning, presented in the first column, with the production

history conditioned ones in the three other columns, we easily see that conditioning

on the production history has considerable impact. Recall that the results from

the fine scale calibration ensemble, presented in the second column, are the optimal

ones, but the problem is low coverage of the high dimensional posterior pdf for the

reservoir properties due to very large computational requirements when increasing

the ensemble size. The results from the scale-corrected fine scale simulation ensem-

ble, presented in the third column, are apparently unbiased, but compared to the

fine scale calibration ensemble they appear with more variability. This loss of preci-

sion represents the cost of using the coarse scale fluid flow simulator. Increasing the

size of the simulation ensemble has a low computational cost, however, since all fluid

flow simulations are performed on the coarse scale. Hence, we can generate a high

number of realisations of the fine scale reservoir state vector in the scale-corrected

ensemble, providing much better coverage of the high dimensional posterior pdf for

the reservoir properties. In the fourth column, we observe the bias in fine scale

reservoir representations associated with traditional coarse scale ensemble Kalman

filtering.

In the simulation examples above we perform approximately 200 coarse scale

fluid flow simulations in the same amount of time it takes to perform a single fine

scale fluid flow simulation. With this ratio, we can perform scale-corrected ensemble

Kalman filtering with calibration ensemble of size nc = 20 and simulation ensemble

of size ns ≈ 5, 000 in the same amount of time it would take to perform ensemble

Kalman filtering on the fine scale with n = 50 ensemble members. An ensemble

with 5,000 members will considerably improve the representation of the high dimen-

sional posterior pdf for the reservoir properties, compared to an ensemble of only 50

members.

5 Conclusions

When considering very large reservoir evaluation problems, the reservoir properties

are usually represented on a very-fine scale, which may contain up to 109 grid blocks.

The conditioning on well logs and seismic data can be performed on this very-fine

scale, but even a single fluid flow simulation will in most cases be computationally

28



1000 2000 3000 4000

0.6

0.8

1

1.2

1.4

1.6x 10
4

1000 2000 3000 4000

0.6

0.8

1

1.2

1.4

1.6x 10
4

1000 2000 3000 4000

0.6

0.8

1

1.2

1.4

1.6x 10
4

1000 2000 3000 4000

0.6

0.8

1

1.2

1.4

1.6x 10
4

1000 2000 3000 4000
1

2

3

4

5

1000 2000 3000 4000
1

2

3

4

5

1000 2000 3000 4000
1

2

3

4

5

1000 2000 3000 4000
1

2

3

4

5

1000 2000 3000 4000
4000

4500

5000

5500

1000 2000 3000 4000
4000

4500

5000

5500

1000 2000 3000 4000
4000

4500

5000

5500

1000 2000 3000 4000
4000

4500

5000

5500

1000 2000 3000 4000

0.6

0.8

1

1.2

1.4

1.6x 10
4

1000 2000 3000 4000

0.6

0.8

1

1.2

1.4

1.6x 10
4

1000 2000 3000 4000

0.6

0.8

1

1.2

1.4

1.6x 10
4

1000 2000 3000 4000

0.6

0.8

1

1.2

1.4

1.6x 10
4

1000 2000 3000 4000
1

2

3

4

5

1000 2000 3000 4000
1

2

3

4

5

1000 2000 3000 4000
1

2

3

4

5

1000 2000 3000 4000
1

2

3

4

5

1000 2000 3000 4000
4000

4500

5000

5500

1000 2000 3000 4000
4000

4500

5000

5500

1000 2000 3000 4000
4000

4500

5000

5500

1000 2000 3000 4000
4000

4500

5000

5500

1000 2000 3000 4000
4000

4500

5000

5500

6000

6500

1000 2000 3000 4000
4000

4500

5000

5500

6000

6500

1000 2000 3000 4000
4000

4500

5000

5500

6000

6500

1000 2000 3000 4000
4000

4500

5000

5500

6000

6500

Figure 17: Comparison of results: The columns, from left to right, represents pro-

duction properties obtained from fine scale fluid flow simulations: conditioning on

static data only, the fine scale calibration ensemble, the scale-corrected ensemble,

and traditional coarse scale ensemble Kalman filtering. The three latter after 1,800

days of updating. The production properties considered are, from top to bottom;

opr1, gor1, bhp1, opr2, gor2, bhp2 and bhpi.

29



prohibitive. In order to allow for fluid flow simulation, the reservoir properties

must be represented on a fine scale, which may contain 106 grid blocks. The fine

scale representation of the reservoir properties is found from the very-fine scale

representation, usually through upscaling. At this fine scale, we can afford to run a

low number of fluid flow simulations. For production history conditioning problems,

requiring a large number of repeated flow simulations, however, the representation of

the reservoir properties must be further coarsened. The coarse scale representation

will usually contain around 104 grid blocks.

The traditional ensemble Kalman filtering operates on the coarse scale. As shown

in the simulation studies, downscaling the reservoir properties from the coarse scale

to the fine scale after the final update step provides a wrongly centred ensemble with

too little variability. Scale-corrected ensemble Kalman filtering, however, provides

an apparently unbiased representation of the reservoir properties on the fine scale,

with realistic variability in the ensemble. Contrary to traditional ensemble Kalman

filtering, the scale-corrected ensemble Kalman filtering accounts for the loss in reli-

ability coming from further coarsening the representation of the reservoir properties

from the fine scale.

Our proposed procedure to solving very large reservoir evaluation problems in-

volving production history conditioning can be summarised in the following steps:

• Start with a very-fine scale representation of the reservoir properties (109 cells),

conditioned on seismic data and well logs.

• Upscale the reservoir properties to a fine scale representation (106 cells), where

10-20 fluid flow simulations can be afforded. Term this scale the reference scale

for production history conditioning.

• Perform scale-corrected ensemble Kalman filtering on a coarse scale represen-

tation (104 cells), such that 1000-2000 fluid flow simulations can be afforded.

The scale-corrected ensemble of size 1000-2000 on the fine scale representation is

now correctly centred and contains realistic variability accounting for the approxi-

mations made by performing fluid flow simulations on the coarse scale. Note that the

uncertainty associated with further downscaling to the very-fine scale representation

of the reservoir properties is not addressed in this study. Assessing this uncertainty

should be a topic for further research.
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Appenix A - Downscaling Procedure

Let R∗
i ∈ <m, i ∈ Ω = {1, . . . , n}, be Gaussian random variables,

R∗
i iid f(r∗) ∼ Gauss(µ∗

R, ΣR∗R∗),

where µ∗
R and ΣR∗R∗ are unknown, but can be estimated from R∗

i . Since the estimates

are based on n observations, the covariance matrix estimate ΣR∗R∗ has a maximum

rank of n − 1.

Let (eR∗,1, λR∗,1), (eR∗,2, λR∗,2), . . . , (eR∗,n, λR∗,n) be the eigenvector-eigenvalue

pairs of ΣR∗R∗ , where λR∗,1 ≥ λR∗,2 ≥ · · · ≥ λR∗,n ≥ 0. If ΣR∗R∗ has rank n− 1, only

the n − 1 first eigenvalues will be larger than zero. Let AR∗ ∈ <n×n be a matrix

containing the eigenvectors eR∗,1, . . . , eR∗,n in rows 1, . . . , n. Since the eigenvectors

define an orthonormal basis, AR∗AR∗

′ = AR∗

′AR∗ = I.

Let Y ∗
i , i ∈ Ω, be transformations of R∗

i , i ∈ Ω, using the orthonormal basis AR∗,

Y ∗
i = AR∗R∗

i ∈ <n, i ∈ Ω.

It can be shown (see e.g. Johnson and Wichern (1998)) that

(ΣY ∗Y ∗)ij = e′R∗,iΣR∗R∗eR∗,j =

{

λR∗,i if i = j

0 if i 6= j
.

Hence, ΣY ∗Y ∗ will be a diagonal matrix with the eigenvalues λR∗,i, i ∈ Ω, along

the diagonal. The covariance structure of R∗
i , i ∈ Ω, can now be expressed as

ΣR∗R∗ = A′∗
RΣY ∗Y ∗AR∗ = A′

R∗

[

ΣZ∗Z∗ 0

0 0

]

AR∗ = A′
Y ∗ΣZ∗Z∗AY ∗,
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where AY ∗ ∈ <(n−1)×(n−1) contains the eigenvectors eR∗,1, . . . , eR∗,n−1 as rows, Z∗
i =

AY ∗R∗
i , i ∈ Ω, and ΣZ∗Z∗ contains λR∗,1, . . . , λR∗,n−1 along the diagonal.

This means that there will be as much information about the covariance structure

between the m elements in R∗
i , i ∈ Ω, in n− 1 linear combinations, Z∗

i = AY ∗R∗
i , of

the original m elements.

Further, let Ri ∈ <n, i ∈ Ω be Gaussian random variables

Ri iid f(r) ∼ Gauss(µR, ΣRR),

where µR and ΣRR are unknown.

Consider the Gaussian random variable R|R∗. Since the covariance estimate

ΣR∗R∗ does not have full rank, conditioning on the linear combinations Z∗ = AY ∗R∗

is the same as conditioning on R∗. Hence, R|R∗ = R|Z∗. The probability distribu-

tion f(r|z∗) is fully described by the moments

µR|Z∗ = µR + ΣRZ∗Σ−1
Z∗Z∗(Z∗ − µZ∗)

and

ΣR|Z∗ = ΣRR − ΣRZ∗Σ−1
Z∗Z∗ΣZ∗R. (43)

Let u and v be zero-mean Gaussian random variables, each with covariance

matrix I. If expression (43) can be expressed as

ΣR|Z∗ = AA′ − BB′,

realisations of R|Z∗ can be generated through

µR|Z∗ + εR|Z∗ = µR|Z∗ + Au − Bv,

if the right covariance Σuv between u and v can be found. To get the right covariance

Σuv, the requirement is that

V ar(Au − Bv) = AIA′ − BIB′ − 2AΣuvB
′ = ΣR|Z∗ = AA′ − BB′.

Solving the equation above, yields

Σuv = (A′A)−1A′B.

For A′A to be invertible, the requirement is that A ∈ <n×(n−1), since A has rank

n−1. The matrix A can be found by looking at how ΣRR is estimated. This is done

through

ΣRR =

∑n

i=1(Ri − R̄)(Ri − R̄)′

n − 1
=

[

γ1 γ2 · · · γn

]











γ′
1

γ′
2
...

γ′
n











,
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where γi = Ri−R̄√
n−1

.

Let W = [w1 w2 · · · wn]
′ be an orthonormal basis, where the last row vector is

defined by wn = [1/
√

n 1/
√

n · · · 1/
√

n]. Since the rows of W are orthonormal,

WW ′ = I. Eq. (44) can be rewritten using W in the following way

ΣRR =
[

γ1 γ2 · · · γn

]











γ′
1

γ′
2
...

γ′
n











=
[

γ1 γ2 · · · γn

]

WW ′











γ′
1

γ′
2
...

γ′
n











[

α1 α2 · · · αn

]











α′
1

α′
2
...

α′
n











=
[

α1 α2 · · · αn−1

]











α′
1

α′
2
...

α′
n−1











= AA′,

since

αn =
n

∑

i=1

γi√
n

=

∑n

i=1(Ri − R̄)√
n
√

n − 1
= 0

Since ΣZ∗Z∗ is a diagonal matrix, B can be found directly from expression (43)

as

B = ΣRZ∗Σ
− 1

2

Z∗Z∗.
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