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SUMMARY

Inversion of the seismic reflection coefficients are formulated in a Bayesian framework.

Measured reflection coefficients and model parameters are assigned statistical distribu-

tions based on information known prior to the inversion, and together with the forward

model uncertainties are propagated into the final result. This enables a quantification of

the reliability of the inversion. A quadratic approximation to the Zoeppritz equations is

used as the forward model. Compared with the linear approximation the bias is reduced

and the uncertainty estimates are more reliable. The differences when using the quadratic

approximations and the exact expressions are minor. The solution algorithm is sampling

based and because of the nonlinear forward model the Metropolis-Hastings algorithm is

used. To achieve convergence it is important to keep strict control of the accept proba-

bility in the algorithm. Joint inversion using information from both reflected PP-waves

and converted PS-waves yield smaller bias and reduced uncertainties compared to using

only reflected PP-waves.
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1 INTRODUCTION

The seismic reflection coefficients contain information about elastic parameters in the sub-

surface. In an amplitude versus angle (AVA) inversion, the main objective is to estimate

elastic parameters from the reflection coefficients. Elastic parameters can in turn be used for

sediment classification and extraction of fluid properties. Given a model it is easy to find an

answer to the inverse problem, the real challenge is to find a reasonable answer (Hampson,

1991).

Mathematically, the main problem is nonuniqueness. Analytical expressions for the re-

flection coefficients are given by the Zoeppritz equations. These equations are complicated

and highly nonlinear. In the situation of reflections between two isotropic media the equa-

tions involves 5 parameters. Ursin & Tj̊aland (1996) showed that in practice only up to

three parameters can be estimated from pre-critical PP reflection coefficients. To help over-

come this, linear approximations to the Zoeppritz equations have been derived (e.g. Aki &

Richards (1980) and Smith & Gidlow (1987)), both for their simplicity and the favourable

reduction from 5 to 3 parameters. One other possible solution is to include PS reflections

in the inversion. Because pressure waves and shear waves sense different rock and pore-fluid

properties, joint PP and PS data can provide superior lithologic discrimination (Margrave

et al., 2001).

Using a simplified model and incorporating all available data might not be enough

to overcome the nonuniqueness problem and produce a reasonable answer. In most cases

regularisation is also necessary. Regularising the inverse problem means finding a physical

meaningful stable solution (Tenorio, 2001). A different approach to handle nonuniqueness

is Bayesian formulation and uncertainty estimation. In the Bayesian statistics the model

parameters and AVA data will no longer be treated as deterministic constants but will have

statistical distributions assigned to them. The end result will not only consist of an estimate

of the model parameters but also an estimate of the uncertainty in the parameters. It is very

important to note that a Bayesian approach does not remove the nonuniqueness, it only

helps identifying it.
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Previous work with inversion of reflection coefficients involves different models and so-

lution algorithms. Smith & Gidlow (1987) used a linear approximation to the PP reflection

coefficient and a least square approach to solve the inversion. Stewart (1990) and Veire &

Landrø (2006) extended this to joint PP and PS inversion in a least square setting. Margrave

et al. (2001) gave a nice introduction to joint inversion and compared the results with only

PP inversion. For a tutorial of least square inversion and how to regularise it see Lines &

Treitel (1984) and for a more comprehensive treatment of regularisation Tenorio (2001).

Buland & Omre (2003a; 2003b) formulated the PP inversion using linear approximations,

in the Bayesian framework. In the latter they not only estimate the elastic parameters but

also the wavelet and noise level in the AVA data, together with uncertainties. For details

on Bayesian modeling from a geophysics standpoint see Sen & Stoffa (1996) and from a

statistical standpoint, Robert & Casella (1999) and Liu (2001).

Our approach to the inversion of reflection coefficients is to use an isotropic, quadratic

approximation to the Zoeppritz equations instead of the linear ones used earlier. Stovas &

Ursin (2001; 2003) gave implicit, second order expressions for reflection and transmission

coefficients in both isotropic and transversely isotropic media. They showed that quadratic

approximations are superior to the linear ones for intermediate pre-critical reflection angles,

but the number of parameters are still three as for the linear approximations. However, for

a comparison, we also perform the inversion using a linear approximation and the exact

Zoeppritz equations.

We formulate the inversion in a Bayesian framework following Buland & Omre (2003b)

and test both PP and joint PP and PS inversion. The use of statistical distributions enable

us to impose spatial correlation and correlations between model parameters and reflection

angles in a very natural way. The solution algorithm is based on sampling and because of

the nonlinear model we use the Metropolis-Hastings algorithm (Robert & Casella, 1999;

Liu, 2001) following closely the work of Tjelmeland & Eidsvik (2005). We define our com-

putational domain to be a two dimensional surface, e.g. the top reservoir. The reason is to

avoid the wavelet estimation and the convolution in the modeling and instead focus on the
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nonlinearity. Our parameters to invert for are m, σ2
e , and σ2

m. The first one is the three

elastic parameters in the Zoeppritz approximation. The two last parameters are data driven

scalars and their main objective is to stabilise the inversion algorithm, but can to some

extent quantify the noise level in the reflection coefficients.

In the following sections we first give explicit expressions for quadratic approximations

of the reflection coefficients. We then define the Bayesian model and describe the statistical

inversion algorithm. In the numerical examples we define four synthetic test cases, show the

inversion results, and conclude with a discussion of the results.

2 MODEL

The parametrization we are using for the reflection coefficients is in P-wave and S-wave

impedance and density, as suggested by Dȩbski & Tarantola (1995). Stovas & Ursin (2003)

derived implicit second order expressions for reflections between two transversely isotropic

media. Explicit expressions for PP and PS-reflections simplified for two isotropic media,

read

rPP =
1
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where γ = β̄/ᾱ is the background vS/vP -ratio, θp is the angle of the incoming P-wave (and

also the reflected P-wave because of isotropic medium) and θs is the angle of the reflected

S-wave. Iα is P-wave impedance, Iβ is S-wave impedance and ρ is density. ∆Iα is difference

between the lower and upper medium and Īα denotes the average, equal definitions for Iβ

and ρ. Appendix A shows how to derive the of reflection coefficients between two isotropic,

elastic media for other parametrizations.

In (1) and (2) the normalization is with respect to vertical energy flux. The relation to

the more common amplitude normalized expressions is only a scalar factor. For rPP this

constant is equal to one and the linear terms, after a changes of parameters, are equal to

the amplitude normalized ones found in Aki & Richards (1980).

The variables to invert for are denoted m, σ2
e , and σ2

m. The first one is the obvious and

consists of parameters found in (1) and (2), m = {∆Iα

Īα
,

∆Iβ

Īβ
, ∆ρ

ρ̄ }. It is defined on a two

dimensional spatial grid with dimensions ny × nx,

m = {mij ∈ RDm ; i = 1..ny, j = 1..nx}. (3)

Dm is the number of unknown in each node and equal to three for the isotropic approxi-

mations (1) and (2). The two last parameters, σ2
e and σ2

m, are scalars quantifying variance

levels. In our Bayesian formulation two covariance matrices have to be specified, and the

choice made will influence the solution. We have therefore assumed these two matrices to be

known only up to a multiplicative variance factor and let the estimation of the two factors

be a part of the inversion procedure. In theory, the full covariance matrices could also be

estimated this way but we have choosen to do this only for the variance levels, denoted σ2
e

for the data errors and σ2
m for the parameter errors.

The input to the inversion, the measured data, is denoted d. It is defined over the same

spatial grid as for m,

d = {dij ∈ RDd ; i = 1..ny, j = 1..nx}. (4)

Dd is the sum measured PP and PS angles, d = {rPP(θ), rPS(θ)} in each node. It is important
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that we have more measurements than parameters, i.e. Dd ≥ Dm, otherwise the inversion

will be underdetermined.

The forward model is the link from m to d. In the most exact case with full Zoeppritz

it is written

d = fz(m) + ez, (5)

where fz is the Zoeppritz equations. The term ez is the observation errors related to the

always present noise in measurements. In theory it will also consist of modelling errors but

these are neglected under the assumption that the approximations in Zoeppritz are valid.

Our focus will be on the quadratic approximations and the corresponding forward model

is

d = f(m) + e, (6)

where f is (1) and (2) in the case of both PP and PS reflections. The error term can be

approximated with e ≈ ez as long as the quadratic approximations are good. We can also

formulate the linear forward model

d = Fm + e′, (7)

where F is a matrix containing only the linear part of (1) and (2). In general, e′ is not

approximating ez as good as e does.

A common way of inverting for m is to minimise e in (6) in an iterative nonlinear

least squares algorithm, but this will not produce uncertainty measures. Therefore, we will

reformulate the problem in a Bayesian framework. In such a formulation the parameters

and measured data are no longer treated as being fixed, but have statistical distributions

assigned to them. These distributions can be divided into three groups: prior, likelihood,

and posterior.

Prior distributions reflect the information known before the data is measured. This infor-

mation can be theoretically founded, e.g. velocities can not be negative, or case dependent,

e.g. information from the geological setting. The purpose is to restrict the search space to
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only reasonable values. However, it has also a down side, prior distributions can greatly

influence the final solution. If the prior distribution is chosen to have very small variance,

the solution will be close to it, regardless of the information in the measured data. The pa-

rameter σ2
m is introduced in the Bayesian model to help overcome this problem by adjusting

the variance in the prior. In our formulation the prior distribution is denoted π(m, σ2
e , σ

2
m),

where π represent any distribution.

Likelihood distributions are the second group. This is the analog to the forward model.

In our Bayesian setting it is expressed π(d|m, σ2
e) and describes the distribution of d given

the parameters mand σ2
e . The parameter σ2

e is introduced to the likelihood for the same

reason as σ2
m was introduced to the prior.

The last distribution is the posterior and is the distribution we would like assess in the

inversion procedure. It is the reverse of the likelihood, i.e. given d, what is the distribution

of m, σ2
e , and σ2

m, and is expressed π(m, σ2
e , σ

2
m|d). Relating the posterior to the prior and

likelihood is done by applying the Bayes rule to the posterior distribution, and the final

answer is

π(m, σ2
e , σ

2
m|d) ∝ π(d|m, σ2

e) π(m, σ2
e , σ

2
m). (8)

The factor π(d) becomes an unknown constant, that we skip, and hence the proportionality

in (8). It can be simplified by assuming some of the parameters to be independent. The

details of the Bayesian formulation and choices of distributions are found in Appendix B.

3 INVERSION ALGORITHM

Because of the nonlinearity in the likelihood, no analytical solution to the posterior is known.

To approximate it we have to produce samples based on the prior and likelihood information,

see equation (8), to build the posterior distribution. It is sampled with a Metropolis-Hastings

algorithm (Robert & Casella, 1999; Liu, 2001) which sequentially updates m, σ2
e , and σ2

m,

keeping the two others fixed when updating.

A Metropolis-Hastings algorithm consists of two steps:
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(i) Propose a new sample

(ii) Accept the sample with a probability p

In the first step essentially any distribution can be used, the acceptance probability in the

second step will correct for the errors introduced in the proposal distribution. If one proposes

new values from the full conditionals (the distribution of parameter to propose given all other

parameters) all proposals are accepted. There is, however, several reasons why this proposal

distribution it not always used. It can be nonlinear and impossible to generate sample from,

or very complicated or high dimensional and thereby very expensive to sample from.

Back to our problem, we will sample the posterior by sequentially update m, σ2
e , and

σ2
m, keeping the two others fixed. That is, instead of sampling π(m, σ2

e , σ
2
m|d) we will sample

π(m|d, σ2
e , σ

2
m), π(σ2

e |d,m, σ2
m), and π(σ2

m|d,m, σ2
e) iteratively. After an update of all three

we will have new sample from the posterior (8).

In the process of sampling the three distributions we again use the Metropolis-Hastings

algorithm. When sampling m we can not use the full conditional since the likelihood contains

the nonlinear forward model. We therefore have to use a different distribution and the natural

choice is a linearised posterior distribution involving the linear forward model (7) in the

likelihood. This also results in an acceptance probability less than 1.

For the two last posterior distributions the situation is different. Here we are able to

produce samples from π(σ2
e |d,m, σ2

m) and π(σ2
m|d,m, σ2

e). The sampling of σ2
e and σ2

m are

therefore examples of Gibbs updates.

Details about the sampling procedure are found in Appendix C and the linear proposal

distribution for m is derived in Appendix D.

4 NUMERICAL MODEL

We will use a synthetic model to test the inversion algorithm. From a chosen true m we can

use the exact Zoeppritz equations to generate synthetic measurements d. Since the isotropic

Zoeppritz equations have 5 parameters we have to fix two variables in addition to the three

in m. We have chosen the P-wave velocity in the upper medium and the background vP /vS
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ratio to be constant. A total of four cases will be generated, that is only PP data and both

PP and PS data, each of them with and without noise added. For all these four cases we

will compare inversions with three different models: linear, quadratic, and exact Zoeppritz.

The truth we have chosen is, as discussed earlier, parametrized in contrasts in P-wave

and S-wave impedance and density and they are all ranging from 0.2 to 0.5 as shown in

Fig. 1. These contrasts are very strong and the purpose is to test the nonlinear inversion

algorithm. The size of the computational grid is nx = ny = 100 with a spacing of 25m in

each direction.

In the Metropolis-Hastings algorithm the linear model is used to propose an update of

the posterior, and it is accepted with a certain probability. To control this probability, and

hence the acceptance rate, is very important. If it is equal to 1 all the proposals will be

accepted and the result is linear inversion. On the contrary, if it is close to 0 it will produce

very few updates which leads to poor convergence and run time problems. The main reason

for introducing the two scalars σ2
e and σ2

m and their distributions is to help overcome this

problem. They are both data driven and will help control the acceptance rate and stabilise

the inversion algorithm. To some extent σ2
e will also quantify the noise level, but it is always

with respect to the forward model used. More specifically, it quantifies how well the model

can reproduce d from the posterior m, but this does not necessary quantify the bias.

The expected value of the prior of m in all cases is half of the true m in Fig. 1. The

reason for this is to see if the inversion relies too heavily on prior information, if this is the

case it will show as a large bias.

Our first set of measurements is PP reflections without any noise. Fig. 2 shows the reflec-

tion coefficients and the corresponding bias in both the linear and quadratic approximations.

We use four angles from 0◦ to 55◦ and the reason for skipping the bias plots for θ = 0◦ is

that with P-wave impedance as one of the parameters both approximations are exact at

normal incidence. For the three other angles we see that the quadratic approximations are

better than the linear, but when critical angle is approached, in the two lower corners, even

the quadratic will have large bias.
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The second example we will test is PP inversion when noise is included. In the prior of

m we add spatially correlated normal distributed noise to break the smoothness. The noise

added to the measurements d is normally distributed and here it is both spatially correlated

and correlated between the angles. Fig. 3 shows d when the noise is included. The variance

is constant but is most visible for the normal incidence reflection where the range of values

is smallest.

After inverting PP reflections we will turn to joint PP and PS inversion. We will use the

four coefficients in Fig. 2 and include three PS reflections with incoming P-waves between

20◦ and 55◦. The idea is to see what additional information the PS reflections will bring.

Fig. 4 displays the exact Zoeppritz reflection coefficients together with the bias in the ap-

proximations, similar to the PP case. Here it is even more clear how superior the quadratic

approximations are.

The last synthetic example is joint inversion of reflection coefficients including noise. The

prior used is the same as in the previous case with noise. Also for the measurements the

situations is almost equal. The variance is still constant, the noise is spatially correlated and

we have correlations between the angles, but the correlations between P-wave and S-wave

reflections are set to be zero. Fig. 5 shows the measurements generated for joint inversion of

PP and PS reflections including noise.

5 PP INVERSION

The result after the inversion is the posterior distribution of m, σ2
e , and σ2

m. The two last

ones are scalars and the distributions are simple to visualise, but this is not the case for m

since it is multivariate. We therefore calculate the mean of the distribution and subtracts

the truth to produce the bias. Fig. 6 shows the absolute value of this bias in the case without

noise. Second, we have plotted the standard deviation of the distribution in Fig. 7. The two

last scalar distributions are displayed i Fig. 8.

Case number two that we tested was PP data including noise. The absolute value of the
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bias of the mean is displayed in Fig. 9, the standard deviation is in Fig. 10, and the scalar

distributions are in Fig. 11.

6 JOINT PP AND PS INVERSION

The two last synthetic examples are joint inversion with and without noise included. As for

the two PP cases we display the absolute value of the bias and the standard deviation for m

and the full distributions for σ2
e and σ2

m. Figs 12 and 13 show the absolute value of the bias

and the standard deviation in the case without noise and Fig. 14 the corresponding scalar

distributions.

Figs 15, 16, and 17 show the same plots for the last case, joint inversion of PP and PS

data with noise added.

7 DISCUSSION

In this section we will compare the results from all the four synthetic test cases. We will

start by looking at m in the two cases without noise followed by the two with noise and

conclude by looking at σ2
e and σ2

m.

The absolute value of the bias in PP inversion and joint inversion, both without noise,

found in Figs 6 and 12, have interesting common features and differences. Because of the

parametrization in P-wave impedance we have in practice no bias for this parameter, inde-

pendent of forward model and synthetic case example. For the two other parameters the bias

is several orders of magnitude higher. In the PP case the performance of the three forward

models are fairly equal for these two parameters, with the nonlinear ones slightly better as

expected. In the joint inversion the situation is different. The linear inversion is actually

worse, while the nonlinear ones have improved substantially. In the S-wave impedance we

see some effects of too low acceptance rate in the areas to the right. Looking at Fig. 4 we

see that this coincides with the areas where the linear model has large bias.

Next, we keep these previous results in mind and compare the corresponding standard

deviations in Figs 7 and 13. First of all we note that the additional PS information reduces
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the standard deviation for all three parameters. Second, the standard deviation for the P-

wave impedance are much smaller compared with the two other parameters, as for the bias.

For the linear models the deviations are almost constant. This is because we have chosen

space invariant noise and prior distributions and the linear likelihood. The reason for not

being exactly constant is the sampling based algorithm we are using. In Fig. 7 the linear

inversion shows a lower standard deviations for S-wave impedance than for the density.

Comparing these two with the corresponding bias we see that this is a misleading result.

The uncertainty in the nonlinear inversions yields a far more realistic result. This is an effect

of using a linear forward model which is incorrect. The fit to the data is very good, but the

parameter values are incorrect (they have large bias).

Turning to the two last synthetic cases, the inversion of data with noise added, we first

look at the bias in Figs 9 and 15. One important change is the scale of the P-wave impedance,

the bias is now of the same magnitude as for the S-wave impedance and the density, but

the parameter that is most difficult to resolve still seems to be the S-wave impedance. This

effect is less pronounced in the joint inversion case. When comparing the three models we

see that the differences are minor among them. The amount of noise added is such that the

model used is less important.

Looking at the standard deviation in Figs 10 and 16 we see the same feature as in the two

first cases, the introduction of PS information greatly reduces the uncertainty for all three

models and all three parameters. In addition we note that in this case with noise added,

P-wave impedance has the lowest uncertainty while S-wave impedance has the highest.

Last we will briefly comment on the two last scalar parameters, σ2
e and σ2

m. As mentioned

earlier, the main reason for including these are to help stabilising the inversion. They are

relative numbers and their value will depend on the prior distributions and forward models

used. The reason for displaying them is for completeness since they are a part of the Bayesian

model.
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8 CONCLUSION

In our approach to inversion of reflection coefficients we have reformulated the problem in

a Bayesian framework. The use of prior and likelihood distributions enables us to assess

the uncertainty in the inversion result, the posterior. At the same time it enables us easily

to impose correlations and covariances in the modeling. We have also used new quadratic

approximations to the Zoeppritz equations and compared them with both the linearised and

exact equations. Because of the nonlinear forward models we have tested the performance

of the Metropolis-Hastings algorithm to sample form the nonlinear likelihood. Last, we

have also included inversion of joint PP and PS and compared with the more common PP

inversion.

Our work shows that the Metropolis-Hastings algorithm works for this type of appli-

cation, but it is crucial to control the acceptance rate to achieve proper convergence. The

quadratic approximations outperformed the linear ones when the reflection data have a low

noise level, otherwise the inversion will yield more or less equal results. On the other hand,

the differences between exact Zoeppritz equations and the quadratic approximations are

minor, even in the case without noise. Last, by including PS reflection data in the inversion

the bias and the uncertainties are greatly reduced.
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APPENDIX A: SECOND ORDER REFLECTION COEFFICIENTS

The complete set of reflection coefficients between two transversely isotropic media for a

downgoing wave, derived by Stovas & Ursin (2001), reads

RD =

rPP rPS

rSP rSS


≈ −

 g11 − g12f g12 + 1
2
f(g11 − g22)

g12 + 1
2
f(g11 − g22) g22 + g12f

 .

(A1)

The parametrization we have chosen to express f , g11, g22, and g12 in is shear and plane

wave modulus together with density. This choice results in the most compact expressions

when simplified to isotropic media:

g11

g22

g12

f


=



1
4 cos2 θp

−2 sin2 θs
1
4
(1− tan2 θp)

0 2 sin2 θs − 1
4 cos2 θs

−1
4
(1− tan2 θs)

0 k(cos θs(cos θs + γ cos θp)− 1) 1
2
k

0 k(cos θs(cos θs − γ cos θp)− 1) 1
2
k




∆M
M̄

∆µ
µ̄

∆ρ
ρ̄

 (A2)

with the plane wave modulus, M = ρα2; the shear modulus, µ = ρβ2; and density, ρ. The

difference is ∆M = M2 −M1 = ρ2α
2
2 − ρ1α

2
1 and the average is M̄ = (ρ2α

2
2 + ρ1α

2
1)/2 with

equal definitions for µ and ρ. The background vS/vP ratio is γ = β̄/ᾱ and the constant k is√
tan θp tan θs. See Fig. A1 for the definition of the angles and parameters.

For a downgoing P-wave reflected to P and S-waves the explicit expressions are

rPP =
1

4 cos2 θp

∆M

M̄
− 2 sin2 θs

∆µ

µ̄
+

1

4
(1− tan2 θp)

∆ρ

ρ̄

+ tan θp tan θs

[
γ2(1− (1 + γ2) sin2 θp)

(
∆µ

µ̄

)2

− 1

4

(
∆ρ

ρ̄

)2

+ sin2 θs

(
∆µ

µ̄

∆ρ

ρ̄

) ] (A3)
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and

rPS =
√

tan θp tan θs

{[
(1− cos θs(cos θs + γ cos θp))

∆µ

µ̄
− 1

2

∆ρ

ρ̄

]

+
1

2

[
(1− cos θs(cos θs − γ cos θp))

∆µ

µ̄
− 1

2

∆ρ

ρ̄

]

×

[
1

4 cos2 θp

∆M

M̄
+

(
1

4 cos2 θs

− 4 sin2 θs

)
∆µ

µ̄
+

1

4

(
2− tan2 θp − tan2 θs

)
∆ρ

ρ̄

]}
.

(A4)

To express in other parametrizations, e.g. (1) and (2), the following relations can be used

∆M

M̄
= (1− 4

3γ
2)

∆K

K̄
+ 4

3γ
2 ∆µ

µ̄
∆M

M̄
= (1− 2γ2)

∆λ

λ̄
+ 2γ2 ∆µ

µ̄

∆M

M̄
=

2(1− γ2)2

γ2
∆σ +

∆µ

µ̄
∆M

M̄
= 2

∆α

ᾱ
+

∆ρ

ρ̄
∆M

M̄
= 2

∆Iα

Īα

− ∆ρ

ρ̄
∆µ

µ̄
= 2

∆β

β̄
+

∆ρ

ρ̄
∆µ

µ̄
= 2

∆Iβ

Īβ

− ∆ρ

ρ̄
,

(A5)

where K is bulk modulus, M = K + 4
3µ; λ is Lamé constant, K = λ + 2µ; σ is Poisson’s

ratio, σ = 1
2(M − 2µ)/(M − µ); and I is impedance, Iα = ρα and Iβ = ρβ.

APPENDIX B: BAYESIAN FORMULATION

The joint posterior posterior distribution (8) can be simplified to

π(m, σ2
e , σ

2
m|d) ∝ π(d|m, σ2

e) π(m|σ2
m) π(σ2

e) π(σ2
m), (B1)

by assuming the prior of m and likelihood of d to be independent of σ2
e and σ2

m respectively

and σ2
e and σ2

m to be a priori independent.

We are assuming the error to be multivariate Gaussian distributed with zero mean and
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covariance σ2
eΣe,

π(e|σ2
e) = N (e; 0, σ2

eΣe). (B2)

The prior of m is also assumed to be a multivariate Gaussian distribution and the fact

that the forward model is deterministic together with (B2) makes also the likelihood of d

multivariate Gaussian

π(m|σ2
m) = N (m; µm, σ2

mΣm)

π(d|m, σ2
e) = N (d; f(m), σ2

eΣe).

(B3)

Here f(m) is the nonlinear forward model in (6), µm is the prior expected value of m, and

Σe and Σm the covariance matrices excluding the level factors σ2
e and σ2

m. The Σ’s allow

for specifying a priori spatial correlations, correlations between parameters within a grid

point, and correlated noise for neighbouring reflection angles, while the level factors, σ2
m and

σ2
e , will be explored as a part of the inversion. For details about the multivariate Gaussian

distribution see Appendix E. A graphical representation of the prior of m, the likelihood,

and the deterministic relation is shown in the graph in Fig. B1.

The prior of σ2
e and σ2

m are assigned inverse gamma distributions

π(σ2
e) = IG(σ2

e ; αe, βe)

π(σ2
m) = IG(σ2

m; αm, βm),

(B4)

with corresponding parameters α and β. For details about the inverse gamma distribution

see Appendix E.

APPENDIX C: SAMPLING

Analytical calculations of the posterior (B1) is not possible. Instead, the joint posterior dis-

tributions for m, σ2
e , and σ2

m will be sampled iteratively in a Metropolis-Hastings algorithm.

In a simple case of sampling x from the posterior π(x|y), in our case x could be m, σ2
e

or σ2
m and y be d, the algorithm consists of the two steps

(i) Propose a new sample xu ∼ q(·|y)
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(ii) Accept xu with a probability p(xu|x) = min
{

1,
π(xu|y)

π(x|y)
· q(x|y)

q(xu|y)

}
where q is the proposal distribution.

First, since σ2
e and σ2

m are assumed to be a posteriori independent they can be sampled

in parallel. Their full conditional are

π(σ2
e |d,m) ∝ π(d|m, σ2

e) π(σ2
e)

π(σ2
m|m) ∝ π(m|σ2

m) π(σ2
m),

(C1)

and with the choice of likelihood and prior, (B3) and (B4), the posterior also become inverse

gamma distributed only with modified parameters. A proof of this is shown in Appendix E.

The explicit posterior expressions read

π(σ2
e |d,m) ∼ IG

(
σ2

e

∣∣∣∣α +
ne

2
, β + s2

e

ne

2

)
(C2)

with

s2
e =

1

ne

(d− f(m))TΣ−1
e (d− f(m)) (C3)

and

π(σ2
m|m) ∼ IG

(
σ2

m

∣∣∣∣α +
nm

2
, β + s2

m

nm

2

)
(C4)

with

s2
m =

1

nm

(m− µm)TΣ−1
m (m− µm) (C5)

The scalars are, from (3) and (4), ne = nxnyDd and nm = nxnyDm. Since the posterior

distributions are simply inverse gamma distributed, this will also become our proposal dis-

tribution and the acceptance probability will be identical to one. The updates of σ2
e and σ2

m

are therefore examples of Gibbs updates.

Second, sampling the posterior of m is not as simple as for the σ’s. It is not possible to

choose the full conditional as the proposal distribution because of the nonlinear likelihood,

there is no algorithm to sample from it. The natural choice is then to use the linearised

likelihood and the posterior then becomes

πlin(m|d, σ2
e , σ

2
m) ∝ πlin(d|m, σ2

e) π(m|σ2
m), (C6)
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where πlin(d|m, σ2
e) is the linearised likelihood using (7).

The use of a simplified proposal distribution also implies that the acceptance rate will

be different from zero. In fact, if we try to update the complete m, the acceptance rate will

be impractically low - if not zero. We therefore have to update only blocks of m and repeat

this several times to produce an update of m in the joint posterior distribution.

More specifically, the proposal distribution is conditioned on d and m in two regions A

and B together with the scalars σ2
e and σ2

m,

mu
A ∼ πlin(·|mB, dA, dB, σ2

e , σ
2
m). (C7)

Fig. C1 shows the different blocks. The reason for including B is to impose continuity of

the update with respect to the surrounding grid points. Block C does not contribute to

the distribution of mu
A. For details on the linear update distribution see Appendix D. The

acceptance probability reads

p(mu|m) = min

{
1,

π(mu|d, σ2
e , σ

2
m)

π(m|d, σ2
e , σ

2
m)

· πlin(mA|mB, dA, dB, σ2
e , σ

2
m)

πlin(mu
A|mB, dA, dB, σ2

e , σ
2
m)

}
, (C8)

where the first fraction is calculated using the exact, nonlinear version of (C6).

APPENDIX D: LINEAR PROPOSAL DISTRIBUTION

To sample mu
A from the distribution (C7) we need the linear forward model (7). For block

A and B it reads

dA = FAmA + eA

dB = FBmB + eB.

(D1)

Partitioning the prior of m and the noise model yieldmA

mB

 ∼ N


µA

µB

 ,

σ2
mΣm,AA σ2

mΣm,AB

σ2
mΣm,BA σ2

mΣm,BB


 (D2)

andeA

eB

 ∼ N

0,

σ2
eΣe,AA σ2

eΣe,AB

σ2
eΣe,BA σ2

eΣe,BB.


 (D3)
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We are now able to calculate the mean and correlations between mA, mB, dA, and dB that

we need. For instance

E(dA) = E(FAmA + eA)

= FAµA

Cov(mA, dB) = Cov(mA, FBmB + εB)

= σ2
mΣm,ABF T

B

Cov(dA, dB) = Cov(FAmA + eA, FBmB + eB)

= Cov(FAmA, FBmB) + 2× 0 + Cov(eA, eB)

= σ2
mFAΣm,ABF T

B + σ2
eΣe,AB.

(D4)

The full distribution becomes

mA

mB

dA

dB


= N





µA

µB

FAµA

FBµB


,



σ2
mΣm,AA

σ2
mΣm,BA

σ2
mFAΣm,AA

σ2
mFBΣm,BA

σ2
mΣm,AB σ2

mΣm,AAF T
A σ2

mΣm,ABF T
B

σ2
mΣm,BB σ2

mΣm,BAF T
A σ2

mΣm,BBF T
B

σ2
mFAΣm,AB σ2

mFAΣm,AAF T
A + σ2

eΣe,AA σ2
mFAΣm,ABF T

B + σ2
eΣe,AB

σ2
mFBΣm,BB σ2

mFBΣm,BAF T
A + σ2

eΣe,BA σ2
mFBΣm,BBF T

B + σ2
eΣe,BB




,

(D5)

which we conveniently group and define by

mA

xR


= N





µA

µR


,



ΣAA ΣAR

ΣRA ΣRR




. (D6)
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Using the expression for conditional normal distribution, equation (E3), the proposal distri-

bution becomes N (mu
A; µu, Σu) with

µu = µA + ΣARΣ−1
RR(xR − µR)

Σu = ΣAA − ΣARΣ−1
RRΣRA.

(D7)

APPENDIX E: STATISTICAL DISTRIBUTIONS

A multivariate Gaussian variable x with expectation vector µ and covariance matrix Σ has

the probability function

N (x; µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
, (E1)

where n is the dimension of x.

For two multivariate Gaussian variables x1 and x2 with joint distributionx1

x2

 ∼ N


µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22


 , (E2)

the conditional expectation and variance are

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21.

(E3)

The inverse gamma probability function is

IG(x; α, β) =
βα

Γ(α)

(
1

x

)α+1

e−β/x (E4)

where x ≥ 0, α > 0, and β > 0.

Given the prior distribution σ2 ∼ IG(α, β) and measurements x ∼ N (µ, σ2Σ), the
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posterior distribution of σ2 is

π(σ2|x) ∝ π(x|σ2) π(σ2)

= N (µ, σ2Σ) IG(α, β)

∝ 1

(σ2)n/2|Σ|1/2
exp

{
−1

2
σ−2(x− µ)TΣ−1(x− µ)

}
×

(
1

σ2

)α+1

exp

{
− β

σ2

}
∝

(
1

σ2

)α+1+n/2

exp
{
−σ−2(β + s2n

2
)
}

∝ IG
(
σ2

∣∣∣α +
n

2
, β + s2n

2

)

(E5)

where

s2 =
1

n
(x− µ)TΣ−1(x− µ) (E6)

and n is the dimension of x. Clearly, the posterior is also inverse gamma but with modified

parameters.

This paper has been produced using the Blackwell Publishing GJI LATEX2e class file.
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Figure 1. The true contrasts in m. Upper left is P-wave impedance, upper right is S-wave

impedance, and lower is density
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Figure 2. To the left is PP reflection coefficients from the Zoeppritz model for 4 different incidence

angles. The two right columns show the bias in the linear and quadratic approximations, relative

to the Zoeppritz model, for the nonzero angles. For θ = 0◦ the bias is zero.
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Figure 3. PP reflection coefficients from the Zoeppritz model and including multivariate normal

distributed noise.
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Figure 4. To the left is PS reflection coefficients from the Zoeppritz model for 3 nonzero incidence

angles. The two right columns show the bias in the linear and quadratic approximations, relative

to the Zoeppritz model.
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Figure 5. PP and PS reflection coefficients from the Zoeppritz model and including multivariate

normal distributed noise.
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Figure 6. Bias in the posterior distribution of m from PP inversion without noise. Each column is

the result of three inversions using three different models; linear, quadratic, and exact Zoeppritz.

The rows displays the three different parameters of m; contrasts in P-wave impedance, S-wave

impedance, and density.
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Figure 7. Standard deviation in the posterior distribution of m from PP inversion without noise.
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Figure 9. Bias in the posterior distribution of m from PP inversion including multivariate Gaussian

distributed noise.
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Figure 10. Standard deviation in the posterior distribution of m from PP inversion including

multivariate Gaussian distributed noise.
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Figure 11. Posterior distribution of σ2
m and σ2

e from PP inversion including multivariate Gaussian

distributed noise
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Figure 12. Bias in the posterior distribution of m from joint PP and PS inversion without noise.
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Figure 13. Standard deviation in the posterior distribution of m from joint PP and PS inversion

without noise.
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Figure 14. Posterior distribution of σ2
m and σ2

e from joint PP and PS inversion without noise
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Figure 15. Bias in the posterior distribution of m from joint PP and PS inversion including

multivariate Gaussian distributed noise.
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Figure 16. Standard deviation in the posterior distribution of m from joint PP and PS inversion

including multivariate Gaussian distributed noise.
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Figure 17. Posterior distribution of σ2
m and σ2

e from joint PP and PS inversion including multi-

variate Gaussian distributed noise
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Figure A1. Relation between the downgoing P-wave θp, reflected P-wave θp, and reflected S-wave

θs and the definition of velocities and density in upper and lower medium.
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Figure B1. Directed acyclic graph. The upper square is the prior model, the lower is the likelihood.

The relation between m and d is the deterministic forward model.
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Figure C1. Block A is the block to be updated, B is a boundary zone of limited thickness and C

is the rest.


