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SUMMARY

Inversion of seismic reflection coefficients is formulated in Bayesian
framework. In addition to the elastic parameters two scalar quantities
quantifying the variance level in the prior of the elastic parameters
and measurement noise are included in the inversion. The maximum
a posteriori solution is derived and the result is an adaptive weighted
least squares inversion algorithm with the ratio between the variance
levels as a data driven damping factor. The algorithm is tested on
synthetic nonlinear PP and joint PP and PS reflection data, but is valid
for inversion of any forward problem.

INTRODUCTION

Solving nonlinear least squares problems often involve ill-posed Hes-
sian matrices, and in order to produce reliable results some kind of
regularization is needed. We present here a least squares inversion al-
gorithm which has a data driven regularization. The starting point is
to formulate the inversion in a Bayesian framework, hence the name
Bayesian regularization, where we include two scalars as inversion
parameters. In our normal distributed prior and likelihood distribu-
tions they are variance level factors, see Buland and Omre (2003).
Another possible solution is to explore the posterior distribution by
a Metropolis-Hastings algorithm, see e.g. Tjelmeland and Eidsvik
(2005), but here we only focus on the maximum a posteriori solution.

MODEL

The parametrization we are using for the reflection coefficients is in
P-wave and S-wave impedance and density. Stovas and Ursin (2003)
derived implicit second order flux normalized expressions for reflec-
tions between two transversely isotropic media. Explicit expressions
for PP and PS-reflections simplified for two isotropic media, read
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where γ is the background vS/vP-ratio, θp the angle of the incoming
and reflected P-wave, and θs the angle of the reflected S-wave. The
parameters are collected in m and the measured reflection amplitudes
in d, both defined over a two dimensional grid

m = {mi j ∈ RDm ; i = 1..ny, j = 1..nx} (3)

d = {di j ∈ RDd ; i = 1..ny, j = 1..nx} (4)

such that the total number of elements are nm = nxnyDm and ne =
nxnyDd . The forward model is the link from m to d. Our focus will be
on the quadratic approximations written

d = f(m)+ e, (5)

where f is (1) and (2) in case of both PP and PS reflections. We begin
by assigning prior distributions to the model parameters m and the
noise e,

π(e|σ2
e ) = N(e;0,σ2

e Σe) (6)

π(m|σ2
m) = N(m; µm,σ2

mΣm). (7)

Finding proper covariance matrices is difficult, we therefor include the
estimation of the scalars σ2

e and σ2
m as a part of the inversion procedure

and only specify the structure of the covariance. As a consequence, we
need a prior distributions and choose the inverse gamma distribution

π(σ2
e ) = IG(σ2

e ;αe,βe) (8)

π(σ2
m) = IG(σ2

m;αm,βm) (9)

where α and β are scalar parameters defining the prior distributions,
see e.g. Buland and Omre (2003) for the definition of the distribution.
This distribution is a reasonable choice since it is defined only for pos-
itive values and has zero probability in the origin and infinity. From
these four prior distributions and the forward model we can find the
likelihood and, using Bayes rule, the joint posterior distribution.

MAXIMUM A POSTERIORI SOLUTION

Instead of trying to estimate the joint posterior π(m,σ2
e ,σ2

m|d) we will
update each parameter sequentially in an iterative algorithm. We there-
fore need the three posterior expressions
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Each of these could be sampled and hence assessing both mean and
uncertainties, but a much faster algorithm will be to only search for the
most likely solution, also known as the maximum a posteriori (MAP)
solution. For the posterior (10) we write
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Maximizing the posterior is equal to minimizing the expression
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which is a weighted least squares problem. The minimum is reached
when the gradient of ϕ is zero, and by expanding it in a Taylor series
we find the iterative solution algorithm
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where J = ∂ f/∂mT , ∆d = d− f(mk), ∆m0 = mk − µm, and λ 2 =
σ2

e /σ2
m. By skipping the first term in the gradient and assuming Σe =

Σm = I it reduces to the famous Levenberg-Marquardt algorithm, see
e.g. Tarantola (1987).

The posterior (11) and (12) can, by using the definition of the normal
and inverse gamma distribution, be written
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. The MAP solution of an

inverse gamma distribution IG(σ2;α,β ) is σ2 = β/(α +1), and with
this result we find the MAP of (16) and (17).

To speed up the algorithm we will perform only one update of m using
(15) before updating the MAP of σ2

e and σ2
m. The final expression for
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Equations (15) and (18) constitute the basis of our inversion algorithm.

IMPLEMENTATION

For the covariance matrices in (6) and (7) we choose to split them in
two parts

Σe = ge ⊗Se (19)

Σm = gm ⊗Sm. (20)

Here, ge and gm are matrices describing covariances between param-
eters and errors within each spatial point, and Se and Sm are spatial
correlation matrices. The symbol ⊗ denotes the Kronecker product.
The dimensions of ge and gm are Dd ×Dd and Dm ×Dm respectively.
To generate the correlation matrices we use the exponential correlation
function

S(i, j) = exp
{
−3

|xi − x j|
d

}
(21)

where d is known as the range of the correlation. The length between
the points xi and x j , |xi − x j|, is defined on a torus. This will produce
edge effects, but they are limited to a distance proportional to the range
parameter. The advantage of this assumption is that the matrices Se
and Sm become circulant which in turn enables fast calculation of the
inverse. For details on solving circulant matrices see Rue and Held
(2005).

To solve (15) is the major part of the computational time. The Hessian
matrix H can easily become too large to even be stored in memory.
Our solution is to use an iterative solver and because the Hessian is
symmetric positive definite (SPD) we will use the conjugate gradient
method (CG) to solve the system

Hk∆m = gk, (22)

for ∆m where ∆m = mk+1 −mk (not to be confused with ∆m0 =
m− µm). In CG the most computational expensive is the the matrix-
vector product of the type Hkp, but can be evaluated very fast by ex-
ploiting the sparse structure of the Jacobian J and that S is circulant.
In addition, to improve the convergence properties, we have used the
diagonal of Hk , D, as a precondition matrix and solved the precondi-
tioned system

L−1HkL−T u = L−1gk, ∆m = L−T u, (23)

where D = LLT , the Cholesky decomposition. For details on precon-
ditioning and CG see Saad (2000).

NUMERICAL EXAMPLE

We have used a synthetic model to test the inversion algorithm. From a
chosen true m we used the exact Zoeppritz equations to generate syn-
thetic measurements d by assuming the P-wave velocity in the upper
medium and the background vP/vS ratio to be known. Our true m was
defined on a 100×100 grid, see (3), and ranging from 0.2 to 0.5. In
Figures 1 and 2 we show the synthetic data d together with the bias
in the linear and quadratic approximations for PP and PS data respec-
tively. It is clear that the quadratic approximations are superior. For
the prior mean µm we have used half of the true value of m, and this is
also used as initial m0.

The first example is the inversion of four PP reflection amplitudes. In
Figure 3(a) we see the development of λ 2 in each iteration showing
a convergent behavior. In the first iteration we have limited the max-
imum value to be 5, otherwise it would have been several orders of
magnitude higher because the initial guess m0 is far from the truth.
The value in the final iteration is approximately 0.6. The absolute
value of the bias of the corresponding m is displayed in Figure 4, us-
ing both the linear, quadratic, and exact Zoeppritz as forward model.
We see that P-wave impedance is well defined in all three cases, while
the two other parameters have bias for the two approximate models.
The bias is clearly correlated with the bias shown in Figure 1.

The second example is very similar to the first, but this time we also
include the three PS reflection amplitudes such that the total number
of amplitudes, Dd , is equal to seven. λ 2

k for each iteration is shown in
Figure 3(b). Again it shows nice convergent behavior and in the final
iteration it is 0.3. Compared to the previous example we see that the
value is lower and the inversion problem is less damped, or, in other
words, more weight is put on the measured data. This is also reflected
in Figure 5 where the absolute value of the bias is plotted, although for
the linear model there is still a considerable bias.

CONCLUSION

From a Bayesian formulation of the inversion problem we have de-
rived a weighted least squares algorithm with an adaptive, data driven
damping factor. The algorithm was tested on two synthetic examples
and showed a well-posed behavior and a low bias in the inversion re-
sult.
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Figure 1: To the left is PP reflection coefficients from the Zoeppritz model for 4 different incidence angles. The two right columns show the bias in
the linear and quadratic approximations, relative to the Zoeppritz model, for the nonzero angles. For θ = 0◦ the bias is zero.
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Figure 2: To the left is PS reflection coefficients from the Zoeppritz model for 3 nonzero incidence angles. The two right columns show the bias in
the linear and quadratic approximations, relative to the Zoeppritz model.
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Figure 3: λ 2
k for (a) PP inversion and (b) joint PP and PS inversion.
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Figure 4: Absolute value of the bias in PP inversion.
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Figure 5: Absolute value of the bias in joint PP and PS inversion.
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