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Abstract. We discuss an efficient method for integrating dynamic data in high-resolution
subsurface models. The method consists of two key technologies: (i) a very fast multiscale-
streamline flow simulator, and (ii) a fast and robust ’generalized travel-time inversion’
method. The travel-time inversion is based on sensitivities computed analytically along
streamlines using only one forward simulation. The sensitivities are also used to selectively
reduce the updating of basis functions in the multiscale mixed finite-element pressure solver.
Moreover, we propose a new streamline formulation that improves the accuracy of produc-
tion curves and allows a drastic reduction in the number of streamlines required to calculate
accurate dynamic data responses.

The accuracy and robustness of our method is discussed using two 2-D test cases. Fur-
thermore, We demonstrate the efficiency and utility of our approach using a highly detailed
3-D subsurface model consisting of more than one million cells and 69 producing wells, for
which seven years of dynamic data are integrated in less than twenty minutes on a standard
workstation PC.

1. Introduction

Subsurface models are usually built based on static date that are either confined in space
or have low spatial resolution. Dynamic data must therefore be integrated into the subsurface
model in order to give reliable predictions of future dynamic flow responses. In recent years it
has become common to formulate the integration of dynamic data as an inverse problem and
inversion methods based on a streamline formulation have shown to be particularly promising
in this regard. In a recent paper (Stenerud et al., to appear), we introduced a particularly ef-
ficient inversion strategy designed especially for integrating dynamic data into high-resolution
subsurface models with millions of cells. The strategy consists of two technologies: a gener-
alized travel-time inversion method (Vasco et al., 1999; He et al., 2002) based on sensitivi-
ties computed analytically along streamlines and a highly efficient multiscale-streamline flow
solver (Aarnes et al., 2005).

The generalized travel-time inversion method (Vasco et al., 1999; He et al., 2002) has
previously been successfully applied to many field cases from the petroleum industry (see
e.g., Qassab et al., 2003; Hohl et al., 2006). The method was chosen primarily because it
is robust, computationally efficient, and tends to conserve geological realism in the inverted
model. Unlike conventional amplitude inversion, which can be highly nonlinear, the travel-
time inversion has been shown to have quasilinear properties (Vasco et al., 1999; Cheng et al.,
2005). The minimization therefore proceeds rapidly even if the initial model is not close to the
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global minimum, avoids over-corrections near fluid sources and sinks, and does not converge
to secondary peaks that are typically seen in dynamic data from real-field cases, e.g., tracer
data.

Each iteration in the inversion method must be accompanied by a forward simulation,
which typically will be the most time-consuming part of the inversion process. Stream-
line methods are particularly suitable for simulating flow in large and geologically complex
models, where the fluid flow is dictated primarily by heterogeneity in rock properties, posi-
tions of fluid sinks/sources, and phase mobilities. In general, streamline simulators have low
memory requirements, high computational efficiency, and scale (almost) linearly with model
size. Therefore, streamline simulation offers the opportunity to solve outstanding engineering
queries that might otherwise be difficult or impossible to address using other approaches.
Within the petroleum industry, streamline simulators are progressively being used more by
operating companies as an alternative to traditional reservoir simulators in several reservoir
engineering workflows, including: screening of enhanced recovery projects, rapid sensitivity
studies, history matching, uncertainty assessment, upscaling, flood optimization, or simula-
tion studies of sector or full-field models.

Even though streamline simulation provides fast forward simulation compared with a full
finite-difference simulation in 3-D, computing pressure and fluid velocities still remains an
expensive part of the inversion algorithm. As a result, the inversion process is therefore usually
performed on upscaled subsurface models, although this may result in loss of important fine-
scale information. In (Stenerud et al., to appear), we proposed to replace the conventional
pressure solver used in current streamline simulators by a much faster multiscale pressure
solver (Aarnes et al., 2005). The multiscale solver can be seen as a method that upscales and
downscales the flow equations in a single step. In an upscaling method, the fine grid of the
subsurface model is coarsened to form a simulation grid, on which the global flow equation is
solved. To this end, one typically solves local flow problems inside each (pair of) grid block(s)
and computes the effective permeability (or transmissibility) value that preserves this flow in
an averaged sense. Similarly, the multiscale mixed finite-element method (MsMFEM) used
herein solves a local flow problem for each pair of neighboring grid blocks in the coarse grid
and uses the local flow solution as a basic building block (basis function) on the coarse grid. As
other multiscale methods, MsMFEM is primarily targeted at dynamic flow simulations, where
the pressure needs to be computed repeatedly. High efficiency is achieved since most basis
functions can be reused from the previous pressure solve and updating reduces to solving
a global equation on the coarse grid. In (Stenerud et al., to appear) we proposed to use
sensitivity coefficients to locate basis functions that need to be updated from one pressure
solve to the next. The resulting pressure solver is robust and produces mass-conservative flow
velocities both on the coarse grid and on the underlying fine grid.

The purpose of the current paper is two-fold: First, we present a modified streamline
formulation that allows us to drastically reduce the number of streamlines needed to compute
accurate production curves from the flow simulation. Second, we present a more in-depth anal-
ysis of the efficiency and robustness of the multiscale-streamline data-integration method, and
in particular for the associated strategy for work reduction based on sensitivity coefficients.

To achieve high efficiency in the streamline simulation, it is clearly desirable to use as few
streamlines as possible. On the other hand, the set of streamlines should be representative
and sufficiently dense to ensure accurate prediction of flow patterns and production responses,
and to limit errors in the mass balance. Lack of mass conservation is a problem of particular
concern to reservoir engineers, and in this paper we will try to analyze the lack of mass
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conservation and suggest methodological improvements that will strongly improve the quality
of measured production curves (dynamical responses). This will in turn allow a significant
reduction in the number of streamlines required to ensure highly accurate production curves.

The outline of the paper is as follows. Section 2 presents the multiscale-streamline solver.
In Section 3 we discuss mass-balance errors and present a strategy to obtain accurate pro-
duction curves using a small number of streamlines. Section 4 presents our approach for data
integration and discusses its practical applicability using several numerical examples. Finally,
our results are summarized in Section 5.

2. Multiscale-Streamline Simulation

We consider incompressible two-phase flow of oil and water in a non-deformable permeable
medium and neglect the effects of gravity, compressibility and capillary forces. Further, we
also assume for simplicity no-flow boundary conditions for the reservoir. Our flow model then
consists of an elliptic pressure equation

(1) ~u = −λt(S)k∇p, ∇ · ~u = qt.

and a quasilinear hyperbolic transport equation

(2) φ
∂S

∂t
+∇ · (fw(S)~u) = qw

The primary unknowns in the coupled system Eqs. 1 and 2 are the pressure p, the total
(Darcy) velocity ~u, and the water saturation S. The underlying porous rock formation is
modeled in terms of the absolute permeability k and the porosity φ, which henceforth are
assumed to depend on the spatial variable only. Further, qt and qw represent volumetric fluid
sources and sinks (e.g., injection and production wells). Finally, λt = λw + λo denotes the
total mobility, where the mobility of each phase λj is given as the relative permeability krj
of phase j divided by the phase viscosity µj (j = o, w) and fw = λw/λt is the fractional-flow
function of water.

Streamline solvers are based on a sequential time-stepping procedure. First the known
initial saturation distribution is used to compute the mobilities λt(S) in Eq. 1, after which
the pressure equation can be solved to give total velocity ~u and pressure distribution p. Next,
the total velocity ~u is kept fixed in Eq. 2, while the saturation is advanced a given time step.
The new saturation values are used to update the mobilities in Eq. 1, the pressure equation
is solved again, and so on.

2.1. Multiscale Pressure Solver. Our multiscale method is based on a mixed finite-
element formulation of the flow equation Eq. 1 in which one computes an approximation to
the pressure and velocity simultaneously. That is, one seeks a pair (~u, p) in U × V, such that∫

Ω
~u · (λtk)−1 ~w dx−

∫
Ω
p∇ · ~w dx = 0, ∀~w ∈ U ,(3) ∫

Ω
l∇ · ~u dx =

∫
Ω
ql dx, ∀l ∈ V.(4)

In a standard discretization, the finite-dimensional function spaces U and V for velocity and
pressure, respectively consist of low-order piecewise polynomials. In the multiscale mixed
finite-element method (MsMFEM) (Chen and Hou, 2002; Aarnes, 2004), the approximation
space Ums for velocity has a multiscale structure, whereas V is chosen simply as the space of
of piecewise constant functions, since the pressure is immaterial for the incompressible flows
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Figure 1. A coarse grid overlying a fine grid with the gray area giving support
of basis function ~Ψij , which is associated with the edge/face indicated by the
thick.

considered herein. If the pressure solution is needed, a more accurate pressure distribution
can be constructed either by adaptively gridding around fluid sources and sinks, or by locally
extracting a subgrid pressure distribution from the multiscale approximation space.

Basis Functions. Although MsMFEM can be defined for general unstructured grids
(Aarnes et al., 2006, to appear), we only consider Cartesian grids herein. Let {Km} be a
(uniform) partitioning of Ω into mutually disjoint grid cells. Furthermore, let {Ci} be a
coarse partitioning of Ω, defined in such a way that each fine cell Km overlaps with a single
coarse block Ci, see Fig. 1. The multiscale approximation space Ums is defined by assigning
a ~Ψij to each non-degenerate interface between two coarse blocks, Γij = ∂Ci∩∂Cj . The basis
functions ~Ψij are computed numerically by forcing unit flow from block Ci to Cj ; that is, by
solving a local flow problem in each pair of blocks Ωij = Ci ∪ Cj

(5) ~Ψij = −λtk∇Φij , ∇ · ~Ψij =
{

wi(x), x ∈ Ci,
−wj(x), x ∈ Cj ,

with ~Ψ · ~n = 0 on the boundary of Ωij . To solve (5) we can use any consistent and mass-
conservative method; here we use the standard two-point flux-approximation (TPFA) scheme.
By choosing wi ∝ q for coarse blocks containing sources or sinks, we ensure a conservative
approximation to ~u on the fine grid. In all other blocks, we set wi ∝ trace(k(x)). More-
over, to give a unit flow from Ci to Cj , the source terms wi(x) are normalized such that∫
Ci
wi(x) dx = 1; this is discussed in more detail by Aarnes (2004) and Aarnes et al. (2006).

The corresponding basis functions can be seen as generalizations of the lowest-order Raviart–
Thomas basis functions in a standard mixed method. Figure 2 illustrates the x-component
of the basis function for a homogeneous and a heterogeneous medium.

Selective Updating of Basis Functions. Solving local flow problems is typically the most
expensive step in a multiscale method, and the overall computational cost of generating basis
functions. Computing basis functions and solving the coarse-grid system is comparable to
solving the pressure equation directly on the fine grid using a highly efficient linear solver,
like e.g., algebraic multigrid (Stüben, 2000); a more detailed discussion is given by Kippe et al.
(to appear). Huge computational savings can be obtained if basis functions can be computed
only initially or recomputed infrequently throughout the simulation. From Eq. 5, we see that
~Ψij depends on three quantities that may change from one pressure solve to the next: the
total mobility λt, the absolute permeability k, and the forcing terms w(x), which again are
determined by k and q.
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Figure 2. The x-component of the velocity basis function associated with an
edge/face between two coarse blocks for a homogeneous and a heterogeneous
permeability field, respectively.

Changes in fluid sources q may have a strong impact both on the local and global flow
patterns, in particular if the changes are due to large changes in well rates, shut-in of wells,
infill drilling, etc. Basis functions containing a well within their support should therefore be
recomputed whenever the well configuration changes significantly.

The absolute permeability k may in principle change from one forward simulation to the
next. Changes in k are accounted for on the coarse scale (Eq. 3), but not in the local
basis functions (Eq. 5) unless these are updated. However, using a ‘wrong’ basis function
may not have a significant impact on the calculated dynamic data. As a simple means for
detecting changes in the permeability that significantly affect calculated dynamic data, we
suggest to use the production-response sensitivities to be introduced in Section 4. A single
sensitivity coefficient can be assigned to each coarse block by summing the sensitivities over
the underlying fine grid; see Yoon et al. (2001). Due to the low resolution of dynamic data
and the use of spatial regularization terms in the inversion process, changes in absolute
permeability k from one inversion step to the next will mainly appear in regions of high
sensitivity. Basis functions should therefore be recomputed initially in regions with high
sensitivity; in the rest of the reservoir, reasonable accuracy is obtained by reusing basis
functions from the previous forward simulation.

Changes in total relative mobility λt(S) are relatively smooth, unless a strong saturation
front passes through the block, and can be accounted for on the coarse scale (Eq. 3) with
reasonable accuracy. Moreover, changes in total mobility in high-sensitivity regions will have
a stronger influence on the dynamic reservoir responses, indicating that basis functions in
these regions should be updated dynamically throughout the simulation. The errors induced
by not updating basis functions in low-sensitivity regions will have a limited effect on the
dynamical reservoir responses, and one may therefore avoid updates there.

Our selective updating strategy is summarized as follows (Stenerud et al., to appear): In
the first forward simulation of the inversion procedure, we typically update all basis functions
in every pressure step, because no sensitivities are yet available. After the first forward
simulation, we sort the sensitivity coefficients of the coarse blocks in ascending order and
mark a predefined fraction to be updated. We will refer to the strategy where x% of the
basis functions are updated initially and the remaining (100−x)% are kept from the previous
flow simulation, as x% initial update. Similarly, the coarse-grid sensitivities are used to pick
blocks in which we may avoid dynamic updates of basis functions from one pressure step
to the next. We refer to this as x% dynamical update when x% of the basis functions are
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updated dynamically each time step. We will assess the efficiency and robustness of this
strategy in Section 4.

2.2. Streamline Solver. Instead of discretizing and solving the transport directly on
the given grid, a streamline method decouples the 3-D equation, Eq. 2, into multiple 1-D
equations along streamlines. To parameterize the streamlines, we introduce the time-of-flight
variable τ defined by,

(6) τ(r) =
∫ r

0

φ(ζ)
|~u(ζ)|

dζ =
∫ r

0
s(ζ) dζ,

which expresses the time it takes a passive particle to travel a distance r along a streamline.
In differential form Eq. 6 reads ~u · ∇τ = φ. Using the bi-streamfunctions ψ and χ (Bear ,
1972), for which ~u = ∇ψ×∇χ, we can define an alternative 3-D curvilinear coordinate system
(τ, ψ, χ), where the velocity ~u and hence the streamlines are orthogonal to the ψ and χ axes.
In the streamline coordinates (τ, ψ, χ), the gradient operator is expressed as

(7) ∇(τ,ψ,χ) = (∇τ) ∂
∂τ

+ (∇ψ)
∂

∂ψ
+ (∇χ)

∂

∂χ
.

Because ~u is orthogonal to ∇ψ and ∇χ, it follows that ~u · ∇ = φ ∂
∂τ , which together with

the incompressibility condition ∇ · ~u = 0 can be used to rewrite Eq. 2 as a family of one-
dimensional transport equations along streamlines

(8)
∂S

∂t
+
∂fw
∂τ

= 0.

The solution of Eq. 2 is obtained by tracing numerous streamlines, mapping the initial
saturations from the 3-D pressure grid to 1-D streamlines, and then solving Eq. 8 along each
streamline. Afterwards, the new streamline saturations are mapped (or averaged) back to the
underlying 3-D grid to update mobilities before the pressure equation is solved to recompute
the velocity field.

To trace streamlines, most streamline solvers use a simple semi-analytical procedure due
to Pollock (1988), by which each streamline is traced numerically cell-by-cell, either from
injector to producer, or vice versa, or from an arbitrary point in the reservoir and forward to
fluid sinks and backward to fluid sources. After the tracing, each streamline ` is given as the
indices of the cells the streamline traverses, the entry and exit points, and the incremental
time-of-flights {∆τ`,i} for each cell i. These increments form the cells in the streamline grid,
on which Eq. 8 will be solved. Initial values for Eq. 8 are obtained by picking up the
piecewise constant values from the underlying (pressure) grid,

(9) Ssl,i = Si.

To solve Eq. 8, we will herein use a front-tracking method (Holden and Risebro, 2002)
that is unconditionally stable and can directly utilize the time-of-flight grid resulting from the
streamline trace. This makes the method very efficient and devoid of numerical diffusion. In
contrast, solvers based on a finite-volume formulation typically need to map the initial data
to a more regular grid.

To map values from the streamlines back to the underlying 3-D grid, we use volumetric
averaging. Volumes are associated with streamlines by considering each streamline as a
representation of the cross-section of a streamtube with an associated constant volumetric
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flux q` = |~u(ζ)|A(ζ). This gives the volume of the streamline as

(10)
V` =

∫ s

0
φ(ζ)A(ζ) dζ

= q`

∫ s

0

φ(ζ)
|~u(ζ)|

dζ = q` τ`.

The volume of a streamline in grid cell i is then V`,i = q`∆τ`,i, and the precise definition of
the streamline-to-grid volumetric averaging is,

(11) Si =
∑

` S`,iV`,i∑
` V`,i

.

We note that considering streamlines as fluid carriers also makes it natural to define pro-
duction characteristics simply by summing the outflow fluxes during time step ∆t from all
streamlines connected to each well

(12) PRD∆t =
∑
`

q`

∫
∆t
fw,`(t) dt.

To associate fluxes to each streamline, we generate equally spaced starting points on the
faces of grid cells containing injection wells. The number of starting points on each face
is proportional to the volumetric flux across the face; i.e., streamlines carry approximately
equal amounts of fluids, q` ≈ C. An advantage of this approach is that the sums in Eqs. 11
and 12 can be computed incrementally as streamlines are traced (Batycky , 1997) without
knowing the associated volumetric flux, thus allowing completely independent processing of
streamlines.

For the volumetric mapping Eq. 11 to make sense, each grid cell should in principle
be traversed by at least one streamline. In general, there will be a number of grid cells
that are not traversed by any of the streamlines traced from the faces of injector-cells. One
can therefore perform an additional tracing process, where one picks a point inside one of
the untraced cells and traces a streamline from this point and backward/forward to a fluid
source/sink or to a cell that has been traversed by another streamline (Batycky , 1997). This is
repeated until there are no untraced cells. Alternatively, one may simply ignore the untraced
cells, as these often are in regions that contribute little to the production characteristics. To
keep the amount of streamline tracing at a minimum, we here employ the latter approach.

3. Improving Local and Global Mass Balance

Lack of mass conservation is a well-known problem for streamline simulators and may
lead to both incorrect saturation distributions and incorrect production curves. To illustrate
typical errors observed as the number of streamlines is reduced, we consider a large 3-D
reservoir model of a Brent sequence consisting of 60 × 220 × 85 grid cells, see (Christie
and Blunt , 2001) for more details. The reservoir is produced using a five-spot pattern of
vertical wells; the central injector has a constant rate of 5 000 bbl/day (reservoir conditions),
and the four producers operate at 4 000 psi bottom-hole pressure. We assume quadratic
relative permeability curves with Swc = Sor = 0.2. The initial saturation is S0 ≡ Swc,
and the viscosities are µo = 3.0 cP and µw = 0.3 cP, respectively. We neglect gravity and
compressibility, since these have smaller impact on the production curves than the numerical
diffusion inherent in any numerical scheme. Moreover, for the pressure equation we use a
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Figure 3. Fractional flow (left) and relative mass-balance errors (right) for
Producer 1 from Model 2, SPE 10 for various number of streamlines (1K =
1 000).

standard two-point discretization with an AMG linear solver (Stüben, 2000). The time-steps
are those reported for the commercial streamline simulator used in the study.

Figure 3 shows fractional-flow curves in Producer 1 for simulations with various number
of streamlines. The water production is clearly underestimated when the number of stream-
lines is too small. Since the correct total amount of injected water is distributed among
streamlines at the injecting end of each streamline, there must effectively be a loss of mass in
the method. We can quantify this loss by the relative global mass-balance error for water in
each time-step,

(13) ε∆t =
INJ∆t − PRD∆t + FIPt − FIPt+∆t

INJ∆t
,

which is equivalent to an error in the volume balance, since we have assumed incompressibility.
Figure 3 also shows that the errors increase rapidly in the beginning of the simulation and
decay slowly as the fractional-flow curves increase. Notice that since production curves are
calculated directly from the individual streamlines using Eq. 12, inaccurate production curves
do not necessarily imply inaccurate saturation distributions, and vice versa.

3.1. Global Mass-Balance Errors. Viewing streamlines as fluid carriers introduces a
fundamental problem in that the pore volume represented by a finite number of streamlines
does not necessarily match the pore volume of the original grid (in physical space); in other
words, the two grids are not automatically compatible. This will generally lead to mass-
balance errors when mapping saturation between the streamlines and the pressure grid. From
Eq. 10 we have that the streamline pore volume is given by,

(14) Vsl =
∑
`

q` τ`.

Thus, the flux q` and the total time-of-flight τ` associated with streamline ` are two parameters
we can play with to improve the mass-balance properties of our streamline discretization. Both
parameters are generally subject to approximation errors.

Using the semi-analytical streamline tracing method introduces errors in τ`, even for
Cartesian grids with given analytical fluxes on the faces, see (Matringe and Gerritsen, 2004).
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Figure 4. Time-of-flight in grid cell (200, 36) of Layer 76 in Model 2 of SPE 10
sampled in 2000 × 2000 evenly distributed points inside each cell. Here the
variation of τ is of the same order as the values of τ .

However, for the Cartesian geometries considered herein, careful numerical studies revealed
that Pollock’s method was sufficiently accurate.

Errors in the fluxes q` correspond to errors in the transversal discretization in (ψ, χ),
which is determined implicitly by the distribution of streamlines and association of fluxes.
The fluxes q` represent velocity integrals over the cross-section of the associated streamtubes.
Assigning equal fluxes q` = C to all streamlines at the injector may be inaccurate and will
in particular mean that the total flux of all streamlines passing through a particular cell face
elsewhere in the reservoir will not necessarily match the corresponding flux in the pressure
grid. However, only minor improvements in the mass conservation were observed when using
more accurate assignment of fluxes, e.g., by scaling q` according to the interpolated velocity
at the starting point and the cross-section area of the associated streamtube as discussed by
Ponting (1998) and Pallister and Ponting (2000). Lifting the restriction of equal streamline
fluxes also makes it possible to apply other streamline distribution schemes. For instance,
in situations where there is a large variation in total fluid rates between different fluid sinks
(producers), it may be beneficial to start streamlines also on the faces of cells containing sinks
to ensure that sufficient accuracy is achieved for sinks with small rates. Similarly, streamline
fluxes may be assigned at the faces of producers or as a weighted averages of the flux at the
injector and the producer. None of these ideas had a significant effect for the applications
considered herein, see (Kippe et al., 2007) for more details.

In our experience, the global mass-balance errors we observe as the number of streamlines
is reduced are primarily caused by the fact that τ` may not be a good approximation to
the average time-of-flight over cross-sections of the associated streamtube. This is illustrated
in Fig. 4, which shows the time-of-flight sampled at 2000 × 2000 evenly distributed points
within a single cell of Layer 76 in the SPE 10 data set. Here the variation of τ is of the
same order as the values of τ itself. Increasing the number of streamlines decreases the
streamtube cross-sections and hence reduces this error. However, considering the very large
variation in τ shown in Fig. 4, it is evident that a large number of streamlines is necessary to
obtain accurate streamline volumes and thereby low error in the global mass balance. On the
other hand, if we insist on keeping the number of streamlines low, we can use the fact that
mass should be conserved, and correct the computed values of τ` to enforce the mass-balance
constraint.
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3.2. Improved Accuracy of Production Curves. Exact global conservation of mass
is guaranteed if the streamline volume matches the true pore volume, i.e.,

∑
` V`,i = Vi,

in every grid-block touched by streamlines. In this case, the mappings back-and-forth be-
tween streamlines and the pressure grid preserve mass. Indeed, for the mapping from grid to
streamlines, Eq. 9, we have,

(15)

V w
grid =

∑
i

ViSi =
∑
i

(∑
`

V`,i

)
Si

=
∑
`

∑
i

V`,iS`,i = V w
sl ,

and similarly for the mapping from streamlines to grid, Eq. 11,

(16)
V w

sl =
∑
`

∑
i

V`,iS`,i =
∑
i

∑
`

Vi∑
` V`,i

V`,iS`,i

=
∑
i

ViSi = V w
grid.

Here V w
grid and V w

sl are the total volumes of water on the pressure and streamline grids,
respectively. Since the streamline flux is constant along each streamline, our only option for
ensuring

∑
` V`,i = Vi is to modify the local time-of-flight increments, ∆τ`,i. Specifically, prior

to solving the one-dimensional saturation equation Eq. 8 along streamlines, we propose to
scale the time-of-flight values τi,` in block i by a factor αi = Vi/

∑
` V`,i. This means that

streamlines can no longer be processed independently, and we need to store streamlines in
memory, or alternatively perform the complete tracing procedure twice; once to compute the
values of αi, and then a second time for the solution of the one-dimensional problems. The
memory required to store streamlines is usually (significantly) less than the memory required
to solve the pressure equation Eq. 1. Hence, we prefer storing rather than retracing, since
tracing is an expensive process.

Scaling the time-of-flight amounts to locally stretching or shrinking the grid on which
Eq. 8 is solved. By enforcing mass conservation we thus introduce local errors in the satura-
tion distribution, but as we demonstrate below, the global properties of the resulting solutions
are better. However, special care must be taken to not ruin important (local) characteristics
like the breakthrough-time for producers, which e.g., will be important in the inversion pro-
cedure discussed below. To make sure breakthrough is estimated correctly, we only apply the
scaling along streamlines after breakthrough has occurred.

In Fig. 5 we have recomputed the simulation reported in Fig. 3, but now correcting
for incorrect streamline volumes. The mass-balance errors are still large initially since the
time-of-flight scaling is only applied after breakthrough, but the errors decrease rapidly. The
improvement of the fractional-flow curves is significant, to say the least, with as few as 5 000
streamlines giving acceptable results. Table 1 reports the errors in the fractional-flow curves
w(t) for all four producers, as measured by

(17) δ(w) = ‖w − wref‖2/‖wref‖2.

For completeness, Table 1 also shows the corresponding results for the standard streamline
approach, where we have started streamlines in both injectors and producers and used weights
given by the area of the perpendicular bisection of the cell faces to assign fluxes to streamlines
(since this gives slightly better results for the original method). Moreover, the table reports
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Table 1. Errors in fractional flow δ(w) for producers P1 to P4 and average
saturation error δ(S) for the original (O) and modified (M) streamline methods
on Model 2, SPE 10 for various number of streamlines (NSL). Columns Tsl
and Ttot report the total computational time for the streamline solves and the
overall simulation, respectively, measured on a workstation PC with a 2.4 GHz
Intel Core 2 Duo processor with 4 Mb cache and 3 Gb memory.

NSL O/M P1 P2 P3 P4 δ(S) Tsl (s) Ttot (s)

100 000 O 8.91e-03 6.24e-03 2.44e-03 2.99e-03 2.75e-02 508.92 974.94
M 9.86e-03 4.61e-03 1.97e-03 3.67e-03 2.83e-02 508.20 979.03

50 000 O 2.53e-02 1.72e-02 6.42e-03 9.38e-03 4.00e-02 266.48 728.42
M 1.66e-02 7.88e-03 3.72e-03 7.03e-03 3.81e-02 265.87 727.79

25 000 O 6.49e-02 4.85e-02 1.74e-02 2.28e-02 5.89e-02 147.36 608.46
M 1.43e-02 1.47e-02 8.12e-03 7.12e-03 5.27e-02 146.23 613.00

10 000 O 1.78e-01 1.29e-01 5.53e-02 7.30e-02 9.54e-02 75.65 541.17
M 3.26e-02 1.94e-02 1.56e-02 1.38e-02 8.06e-02 75.33 545.09

5 000 O 3.20e-01 2.30e-01 1.02e-01 1.30e-01 1.29e-01 50.91 512.75
M 4.25e-02 2.19e-02 1.86e-02 2.37e-02 1.12e-01 51.74 516.63
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Figure 5. Fractional flow (left) and relative mass-balance errors (right) for
Producer 1 from Model 2, SPE 10 for various number of streamlines when
using the modified streamline method (1K = 1 000).

saturation errors in the the porosity-weighted L1-norm,

(18) δ(S) = ‖φ(S − Sref)‖1/‖φSref‖1,

averaged over all time steps of the simulation. Altogether, these results show that although
scaling the time-of-flight values has limited effect on the accuracy of the saturation fields, the
accuracy of the corresponding production curves is improved significantly. For instance, if
one is primarily interested in the fractional-flow curves and allows an error of about 5%, it is
sufficient to use only 5 000 streamlines for the modified method, whereas 25–50 000 streamlines
would be required in the original method. This yields a significant speedup for the transport
part of the simulation, since the computation time associated with transport in theory scales
linearly with the number of streamlines. The timing results in Table 1 show that the actual
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Figure 6. Fractional flow in Producer 1 for the modified streamline with
5 000 streamlines, using a standard two-point and the MsMFEM pressure
solver.

scaling is not truly linear as the number of streamlines becomes very small. However, this
is to be expected since our simulator is optimized for relatively large numbers of streamlines
and otherwise negligible overhead associated with streamline distribution, flux computations,
and saturation mappings may become significant when using a small number of streamlines.
Still, we see that going from 50 000 to 5 000 streamlines gives at least five times speedup for
the transport step.

As the number of streamlines is reduced, the total simulation time in Table 1 is dominated
by the solution of the pressure equation, Eq. 1. To obtain a more substantial speedup for
the overall simulation, we use the multiscale pressure solver introduced in Section 2.1 on
a 5 × 11 × 17 coarse grid. The fractional-flow curves shown in Fig. 6 demonstrate that
utilizing MsMFEM for the pressure equation does not yield a significantly reduced accuracy
in the production curves for the case with 5 000 streamlines, but the overall simulation time
is reduced from 8 minutes and 36 seconds to an impressive 2 minutes and 22 seconds.

Finally, we emphasize that scaling the time-of-flight is primarily aimed at improving the
global mass balance by increasing the accuracy of measuring reservoir production (i.e., global,
low-resolution flow responses). In the next section we will look at another technique more
aimed at improving local, high-resolution flow responses (pointwise saturation distributions).

3.3. Improving Local Mass Balance – Adaptive Streamline Coverage. The cor-
rection strategy introduced above is no guarantee for producing accurate saturation curves or
fractional-flow curves. Indeed, insufficient streamline coverage may still induce large errors
(for piston-like displacements) if we do not ensure that all grid cells are traversed by stream-
lines. This leads to errors in the computed pressure and velocity fields, thus shifting the
predicted time of breakthrough. For scenarios with high mobility ratios, the pressure/velocity
solutions are less sensitive to errors in the underlying saturation field, because the satura-
tion variation is generally much smoother. On the other hand, our correction strategy never
performs significantly worse than the original method, and can therefore always be applied
safely.

To alleviate the accuracy problems for favorable displacement conditions, we could trace
streamlines through every cell, using, e.g., the approach of Batycky (1997). However, many
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Table 2. Errors in fractional flows (δ(w)) and average number of streamlines
(NSL) on the homogeneous model for the original and the adaptive streamline
tracing for end-point mobility ratio Mend = 0.1.

β NSL P1 P2 P3 P4
— 2000 4.43e-02 9.30e-02 8.97e-02 9.47e-02
— 1500 5.27e-02 1.13e-01 8.96e-02 1.04e-01
— 1000 1.39e-01 1.62e-01 1.76e-01 1.67e-01
— 500 4.25e-01 4.34e-01 4.64e-01 4.61e-01
1.0 873 1.17e-02 7.52e-03 2.44e-02 1.37e-02
0.9 701 3.28e-02 2.95e-02 4.82e-02 2.17e-02
0.8 560 2.40e-01 2.31e-01 2.72e-01 2.43e-01
0.7 500 3.34e-01 3.85e-01 3.99e-01 3.90e-01
0.6 500 3.60e-01 3.78e-01 3.98e-01 3.86e-01

Table 3. Errors in fractional flow (δ(w)) and average number of streamlines
(NSL) on the homogeneous model for the original and the adaptive streamline
tracing for end-point mobility ratio Mend = 10.

β NSL P1 P2 P3 P4
— 2000 2.58e-02 2.45e-02 2.33e-02 8.44e-03
— 1500 3.14e-02 1.00e-02 3.88e-02 9.23e-03
— 1000 6.68e-02 2.29e-02 5.79e-02 4.14e-02
— 500 7.42e-02 9.58e-02 1.20e-01 8.96e-02
1.0 873 3.45e-02 2.21e-02 2.26e-02 2.04e-02
0.9 722 3.42e-02 2.39e-02 2.41e-02 2.79e-02
0.8 616 2.69e-02 2.44e-02 3.35e-02 2.77e-02
0.7 519 2.19e-02 2.50e-02 5.94e-02 2.43e-02
0.6 500 2.39e-02 3.60e-02 6.80e-02 3.49e-02

cells will typically be located in low-flow regions that do not significantly affect the solution.
We therefore propose an adaptive approach to streamline coverage, where we only demand
that a given fraction β of the pore volume should be traversed by streamlines. Before the
tracing starts, the cells are sorted in descending order by absolute velocity |~u|, and we trace
back from untouched blocks in sorted order until the given pore-volume target has been
met. We also ensure that each well is properly covered by starting a specified number of
streamlines from fluid sources/sinks, with the distribution of streamlines on the faces of grid
cells containing fluid sources/sinks given according to the fluxes, as before.

To demonstrate the effect of the adaptive tracing, we consider a homogeneous 32× 32× 8
model of aspect ratio 1 : 1 : 0.1, with wells placed in a five-spot pattern, where the four
producers operate at equal bottom-hole pressures. We assume quadratic relative permeability
curves with zero residual oil and water saturations, and perform simulations for two different
values of the end-point mobility ratio Mend = µo/µw; favorable displacement (Mend = 0.1)
and unfavorable displacement (Mend = 10). The dimensionless simulation time is 2.0 PVI,
and for both displacement scenarios we verified that the chosen number of time-steps was
sufficient for stability of the sequential time-stepping scheme.

Tables 2 and 3 show the average number of streamlines and errors in the fractional-flow
curves when applying the adaptive approach in combination with the modified streamline
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method. Initially we trace 100 streamlines from each well, which is why the minimum num-
ber of streamlines is 500. Compared with the non-adaptive version, the adaptive method
gives significantly more accurate production curves using fewer streamlines. As expected,
the optimal value of β depends on the displacement conditions, with favorable piston-like
displacement requiring a larger fraction of the pore volume to be covered. In the unfavorable
case, the production curves are good even without the adaptivity. In fact, we could actually
have used even fewer streamlines. This helps explain why we obtained accurate results using
very few streamlines for the SPE 10 model above.

4. Integration of Dynamic Data

In this section we present the inversion method in more detail and discuss its efficiency
and robustness using three numerical test cases. In the following we assume that the subsur-
face model has been conditioned to static data and available geological information, such that
the model already gives a reasonable description of the reservoir geology. Dynamic produc-
tion data generally have low resolution and cannot be used to infer small-scale variations in
reservoir properties. It is therefore important that changes to the subsurface model inferred
from the dynamic data are kept as minimal as possible to preserve geological realism.

4.1. Generalized Travel-Time Inversion. Our method for integrating fractional-flow
data utilizes approximate sensitivities calculated analytically along streamlines to update the
heterogeneous subsurface model based on observed dynamic data (Vasco et al., 1999; He
et al., 2002). The sensitivities quantify the influence of reservoir parameters on dynamical
responses of the reservoir. As such, these sensitivities provide the fundamental relationships
that allow us to integrate the dynamic reservoir responses. The major steps in our method
are:

(1) Multiscale-streamline simulation to compute production responses at the observation
points (wells) as discussed in Section 2.

(2) Quantification of the mismatch between observed and computed dynamic responses
via a generalized travel-time formulation. An optimal travel-time shift is computed
for each observation point (e.g., production well) by systematically shifting the com-
puted production responses towards the observed data until the cross-correlation
between the two is maximized (He et al., 2002).

(3) Computation of streamline-based analytic sensitivities of the production responses
(fractional-flow curves) to reservoir parameters, specifically permeability.

(4) Updating of reservoir properties to match the dynamical reservoir responses (pro-
duction data) via inverse modeling. To this end, we will use an iterative least-square
minimization algorithm (LSQR) (Vasco et al., 1999; He et al., 2002) to simultane-
ously minimize the travel-time misfit for all observation points, thereby matching all
dynamic data within a specified tolerance.

This four-step process is repeated until a satisfactory match is obtained. Next, we describe
the three last steps in more detail, starting with the formulation of a generalized travel-time
misfit to quantify mismatch in dynamic data.

Misfit in dynamic data is commonly represented by a least-squares functional of the form:

(19) E =
∑
k

∑
j

[
wobs
k (tkj )− wcalc

k (tkj )
]2
,
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where wobs
k (tkj ) and wcalc

k (tkj ) are the observed and calculated data, respectively, in well k at
time tkj . Direct minimization of Eq. 19 is called amplitude inversion, in which the observation
times are fixed and one seeks to match the amplitudes. Travel-time inversion, on the other
hand, chooses a specific point on the dynamic data curve (e.g., the breakthrough time or a
distinct peak) and adjusts the model parameters so that a similar point is obtained in the
computed reservoir response. Although crude, this approach has an important advantage:
whereas amplitude inversion is highly nonlinear, travel-time inversion has quasilinear proper-
ties (Cheng et al., 2005) and is thus more robust and less likely to be stuck in local minima.
However, the resulting overall data match of dynamic data may not be satisfactory since only
a single data point is matched (per well).

The generalized travel-time inversion combines the desirable properties of travel-time and
amplitude inversion into one step (He et al., 2002) by seeking a set of optimal time-shifts
∆t = {∆tk} that minimize the following misfit at each well:

(20) Ek(∆tk) =
∑
j

[
wobs
k (tkj + ∆tk)− wcalc

k (tkj )
]2
.

Hence we can match multiple data points as in the amplitude inversion, while retaining the
attractive quasilinear properties of the travel-time inversion. Computing time-shifts does
not require any new flow simulation, but can be done using data from the single forward
simulation used to evaluate the data mismatch.

Having determined the optimal time-shifts, the next step is to propagate them into changes
in the reservoir parameters. Mathematically, the inversion of the time-shifts ∆t leads to the
minimization of a penalized misfit function (Vasco et al., 1999; He et al., 2002):

(21) ‖∆t−Gδm‖+ β1‖δm‖+ β2‖L δm‖.

Here δm denotes the changes in the reservoir properties m, G contains the sensitivities of
the time shifts with respect to the reservoir parameters m, and L is a second-order (Laplace)
difference operator. The first term ensures that the difference between the observed and cal-
culated dynamic responses is minimized. The second term is a norm constraint that penalizes
deviations from the initial (prior) subsurface model and as such helps to preserve the geo-
logical realism of the inversion. The third term is a roughness constraint that measures the
regularity of the changes and is introduced to stabilize the inversion by only allowing large-
scale changes that are consistent with the low resolution of the production data. The weights
β1 and β2 determine the relative strengths of the two regularization terms. The minimum in
Eq. 21 can be obtained by the iterative least-square minimization algorithm, LSQR (Paige
and Saunders, 1982), for which the computational cost scales linearly with respect to the
number of degrees-of-freedom (Vega et al., 2004).

4.2. Time-Shift Sensitivities. For the sake of completeness, we briefly describe the
analytical calculation of streamline-based sensitivities, which can be computed using a single
flow simulation, leading to very fast algorithms for data integration or inverse modeling.
Because the sensitivities are simple integrals along streamlines, the computation time scales
very favorable with respect to the number of grid cells, thus making streamlines the preferred
approach for integrating dynamic data into highly-detailed subsurface models.
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The sensitivity of the shift in travel time ∆tk with respect to reservoir parameter m is
given by (Vasco et al., 1999; He et al., 2002)

(22)
∂∆tk
∂m

= − 1
Nd

Nd∑
j=1

∂taj
∂m

,

where Nd represents the number of observed data for the associated well and taj is the common
(or average) arrival time at the well for the connected streamlines. The sensitivity of the
common arrival time with respect to a reservoir parameter m, is calculated by a flux-weighted
average of the arrival-time sensitivities of the connected streamlines. The arrival-time in each
streamline is related to the streamline time-of-flight by assuming a Buckley–Leverett profile

(23) τ` = taj,` · f̃ ′w(S).

Here f̃ denotes the convex hull of the fractional flow curve, and the derivative f̃ ′w is evaluated
using the saturation at the outlet of streamline ` for streamlines with breakthrough, and
using the front saturation for streamlines without breakthrough. In other words, ∂taj,`/∂m is
proportional to the sensitivity of the time-of-flight, which can be computed analytically from
a single streamline simulation under the assumption that the streamlines do not shift because
of small perturbations in reservoir properties. For example, the sensitivity with respect to
permeability ki in cell Ki is given by

(24)
∂τ

∂ki
=

∫
Σi

∂s(ζ)
∂ki

dζ = −
∫

Σi

s(ζ)
ki

dζ = −∆τi
ki

,

where the integral is along the streamline trajectory Σi through Ki and ∆τi is the associated
incremental time-of-flight. Similarly, sensitivities can be calculated with respect to mobility
or to the product of mobility and permeability. Worth mentioning here is an important
practical aspect. Our experience indicates that the selective work-reduction strategy and
the data-integration process are more robust if the sensitivities are made dimensionless as
described by He et al. (2002).

We are now fully equipped to integrate dynamic data into high-resolution subsurface
models. In (Stenerud et al., to appear), the accuracy and robustness of our inversion method
were investigated for a small 2-D case with isotropic lognormal permeability and flow with
end-point mobility ratios (Mend = 0.2, 0.5, 10). In the next two subsections, we investigate the
accuracy and robustness of the proposed selective updating of basis functions more thoroughly
using two 2-D test cases that involve dynamic well configuration and multiple realizations,
respectively. To pose a further challenge for our multiscale simulator, both cases involve
anisotropic permeability structures with long streaks of high permeability aligned exactly with
the diagonal direction of the grid. As noted by Kippe et al. (to appear), this particular
permeability structure is a worst-case scenario for MsMFEM, where the solver may exhibit
loss of accuracy. For all other cases, the solver is generally very robust and accurate (Kippe
et al., to appear).

To measure the quality of the data integration, we use the amplitude residual
√
E (see

Eq. 19) and the time-shift residual ‖∆t‖2. We also report the average discrepancy between
the reference and matched permeability field measured by

(25) ∆ ln k =
1
N

N∑
i=1

∣∣ ln kref
i − ln kmatch

i

∣∣.
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Figure 7. The plots show, from upper left to lower right, ln(k) for the refer-
ence permeability field, the initial permeability field, and the match obtained
after eight iterations with and without updating basis functions.

4.3. Changing Well Conditions. We first consider a 2-D reservoir model with diagonal
permeability streaks and a dynamic well configuration. The lognormal permeability field is
given in terms of 50 × 50 uniform cells and has a diagonal structure with long correlation
length, see Fig. 7. As above, we assume quadratic relative permeability curves with zero
residual oil and water saturations and end-point mobility ratio Mend = µo/µw = 0.5. The
forward simulator is run with pressure steps of 80 days, and for the MsMFEM pressure solver
we construct a uniform 10× 10 coarse where each block contains 5× 5 fine cells.

Synthetic dynamic data were generated by adding 5% white noise to the fractional-flow
curves computed from the reference permeability using a streamline simulator with a two-
point pressure solver. Initially, the well configuration is a five-spot configuration, where the
four producers operate with equal constant rate. The producer in the south-west corner has
early breakthrough and is therefore converted to an injector after 640 days. Simultaneously,
two new producers are introduced in the middle of each opposite boundary (north and east).
After conversion and infill drilling, the south-west well is injecting 75% of the total injection
rate and all producers are producing at equal constant rate. The motivation for the updated
well configuration is to introduce an additional sweep from the south-west corner towards
the opposite boundaries. The updated well configuration is kept throughout the rest of
the production period. Hence, we wish to integrate 2000 days of production data from six
producers in total.

To match observed data, we start from the prior permeability field shown in Fig. 7 and
treat the permeability in each cell as an adjustable parameter, giving a total of 2500 unknown
parameters to be estimated. The time-shift sensitivities for each well are plotted in Fig. 8.
The sensitivities are quite distinct and localized in channels due to the diagonal permeability
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Figure 8. Streamline-based travel-time shift sensitivities for the six producers.
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Figure 9. Reduction of residuals for all producers.

streaks. Plots of the residuals with respect to time-shift and amplitude in Fig. 9 show that
the iteration converges very fast (after 4–5 iterations). Results after eight iterations, updating
all basis functions, are shown in Fig. 7. The updated permeability field is in general closer to
the reference, and the realism of the permeability field is not degraded by the data integration
process. Figure 10 shows a comparison of the initial and final match of the fractional-flow
curves for the wells with lowest initial, highest initial, and highest final mismatch (wells P3,
P6, and P6, respectively). Overall, the match to the production data is quite satisfactory.

To test the robustness of our work reduction strategy we use a 5× 5 test matrix with x%
dynamical and y% initial update for x, y = 0, 25, . . . , 100. Figure 11 shows the reduction
in residuals and permeability discrepancy after eight iterations. Judging from the amplitude
residual and the permeability discrepancy, the data are well matched for all parameters x, y >
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Figure 10. Fractional-flow curves for water for producers P3 (north-east),
and P6 (east).
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Figure 11. Robustness of selective work reduction.

0, and the quality of the match does not seem to decline dramatically compared with the TPFA
solver. The time-shift residuals for MsMFEM are somewhat higher than for TPFA. The
exception is (x, y) = (0, 0), for which there is a significant decay in the quality of the match,
in particular for the time-shift residual. Figure 7 shows the resulting permeability field for
(x, y) = (0, 0) and (100, 100). Even though the reduction in the residuals is significantly lower
with no updating, the realism of the resulting permeability field seems as good as for full
updating.

To explain the variations with respect to x and y, we consider the sensitivities. As seen
in Fig. 12, the sensitivities are quite distinct and localized in channels (see also Fig. 8).
The permeability field will typically change significantly from one iteration to the next in
these channels, and failing to update the corresponding basis functions will lead to inaccurate
results. However, for x, y > 0, our method seems to be able to select and update the basis
functions contributing most to the production curves, see Fig. 12. The localized nature of the
sensitivities makes it easier to cover the high-sensitivity areas with updated basis functions for
quite low percentage values for x and y. In addition, the smoothing of permeability changes
induced by the regularization in Eq. 21 will also counteract the effect of sharp changes.

Finally, we emphasize that the reduction in runtime mainly will result from reducing the
percentage of dynamically updated basis functions. It is therefore row (x, 100) in the matrix
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Figure 12. Stacked time-shift sensitivities (upper left). The three last figures
show the coverage of updated basis functions for 25%, 50% and 75% updating.
The four different levels of gray indicate the number of updated basis functions
that cover each coarse grid block (brightest = 1, darkest = 4).

in Fig. 11 that is of main interest when considering efficiency. In other words, we can avoid
strategies in the matrix that give less stable results, and still get the intended speedup of the
inversion process.

4.4. Multiple Equiprobable Realizations. We assume a multivariate Gaussian prior
distribution for a 2-D reservoir model given on a 50 × 50 grid. As in the previous example,
the prior distribution has long diagonal correlation length. The reference permeability field
for this case is drawn from a slightly different multi-Gaussian distribution, see Fig. 13. The
reservoir is produced from a five-spot pattern with an injector in the center and producers in
the corners. As above, we assume quadratic relative permeability curves with zero residual oil
and water saturations and end-point mobility ratio Mend = 0.5. For the MsMFEM pressure
solver we construct a uniform 10× 10 coarse grid such that each coarse block contains 5× 5
fine cells.

Synthetic dynamic data were given by the fractional-flow curves obtained from the ref-
erence permeability field using the streamline method with a standard two-point pressure
solver. To demonstrate the robustness of the generalized travel-time inversion, we match
the observed data starting from a set of 25 permeability realizations of the assumed prior
distribution. Here the permeability in each cell is treated as an adjustable parameter, giving
a total of 2500 unknown parameters to be estimated for each realization.

Figure 13 shows three of the initial realizations and the corresponding matches after
six iterations. The three matched permeability realizations are in closer agreement with the
reference permeability field; a unique solution is not obtained since the data integration is
ill-posed. Figure 14 shows a comparison of the initial and final match of the fractional-flow
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Figure 13. The plots show ln(k) for the reference permeability field (top)
and initial (second row) and matched (third row) permeability fields for three
different realizations.

Table 4. Mean and standard deviation of percentage reduction in misfit for
time-shift residual (T) and amplitude residual (A).

Misfit mean % Std.dev. %
Solver T A T A
Initial 100.0 100.0 100.0 100.0
TPFA 8.5 39.9 5.0 16.5
MsMFEM 7.8 38.9 4.6 17.6

curves for the set of permeability realizations for the four production wells. The time-shifts are
obviously reduced considerably, and the amplitude is to some extent improved; also indicated
in Table 4. Overall, the match to the production data is quite satisfactory.

Next we apply the same 5× 5 test matrix for the set of realizations described above and
measure the mean and standard deviations in the permeability discrepancy (Eq. 25) and
the reduction in time-shift and amplitude residuals. Figure 15 shows the result of the test
matrix compared with results obtained with the TPFA solver. The data are well matched
for all parameters x and y, and the quality of the history match does not seem to decline
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Figure 14. Fractional-flow curves prior and post data integration.

significantly compared with the TPFA solver even though a slight increase is observed by
updating fewer basis functions.

4.5. History Matching a Full 3-D Geomodel. In (Stenerud et al., to appear) we
demonstrated the integration of dynamic fractional-flow data into a high-resolution 3-D ge-
omodel with more than one million cells. We will now revisit this example and discuss the
accuracy, robustness, and efficiency of our data-integration strategy in some more detail. In
particular, we show that by combining generalized travel-time inversion with our modified
streamline formulation and the selective work reduction, the computational challenging task
of integrating data into a million-cell model can be surmounted in remarkable short time
using a standard desktop or laptop computer.
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Figure 15. Mean (upper row) and standard deviation (lower row) of the
reduction in time residuals, amplitude residuals and permeability discrepancies
for a set of 25 permeability realizations.

Figure 16. Permeability field and streamlines for the million-cell 3-D model.

The geomodel consists of a Cartesian fine grid with 256 × 128 × 32 cells, which gives a
total of 1 048 576 active cells, each of size 10×10×2 m. We form a uniform 32×16×8 coarse
grid in which each block consists of 8 × 8 × 4 fine cells. The permeability is log-normally
distributed with a mean of 2.2 mD, a minimum of 0.017 mD and a maximum of 79.5 mD (see
Fig. 16). The correlation length in the x- and y-directions is about 270 meters, and about
90 meters in the z-direction. The flow is described by the standard two-phase model with
quadratic relative permeability curves and an end-point mobility ratio of Mend = 5.

The production history consists of 2475 days of fractional-flow data from the 69 pro-
ducers, each operating with a constant rate fulfilling the total voidage rate induced by 32



24 V.R. STENERUD, V. KIPPE, K.–A. LIE, AND A. DATTA–GUPTA

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

days

fw

P2

 

 

obs
init
matched

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

days

fw

P6

 

 

obs
init
matched

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

days

fw

P47

 

 

obs
init
matched

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

days

fw

P65

 

 

obs
init
matched

Figure 17. Match of fractional-flow curves for four of the 69 production wells
included in the history match of the geologic model using the MsMFEM pres-
sure solver.

water injectors operating with constant total reservoir-volume rate of 1609 bbl/day. For all
simulations we used 15 pressure steps of 165 days. Good accuracy of the production curves
required about 500 000 in the original streamlines method and about 50 000 streamlines for
the modified formulation. Compared with the million-cell SPE 10 model in Section 3.2 this
is a modest reduction. However, the current model has twenty times as many wells and is
less dominated by heterogeneity structures compared with the SPE 10 model, in particular
the bottom fifty fluvial layers.

An initial permeability model was generated using sequential Gaussian simulation (Deutsch
and Journel , 1998) and conditioning on the permeability values in the well-blocks of the refer-
ence model. As reported in (Stenerud et al., to appear), the misfit in time shift and amplitude
had dropped appreciably after 5–6 iterations and the two pressure solvers gave almost identi-
cal derived permeability fields that both reserve the geologic continuity and the initial geologic
features to the maximum possible extent. Figure 17 shows initial and matched production
curves for four producers.

First, we investigate to what extent the use of the modified streamline formulation and
the multiscale pressure solver improves the computational efficiency of the data integration.
As an example of a personal workstation, we use a recent commodity PC with a 2.4 GHz
Intel Core 2 Duo processor with 4 Mb cache and 3 Gb memory. The TPFA pressure solver
was compiled with full optimization and with multicore support for the underlying AMG
linear solver. For MsMFEM, we were not able to optimize the underlying direct solver used
to compute basis functions, nor did we exploit the parallelism of the Core 2 Duo processor.
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Table 5. Reduction in percent in time-shift (T) and amplitude (A) residuals,
and reduction in average discrepancy in log permeability (∆ ln k). Runtimes
are measured on a workstation PC with a 2.4 GHz Intel Core 2 Duo processor
with 4 Mb cache and 3 Gb memory.

Misfit CPU-time (wall clock)
Solver O/M T A ∆ ln k Total Pressure Transport
Initial — 100.0 100.0 0.821 — — —
TPFA O 8.9 53.5 0.806 64 min 33 min 28 min
TPFA M 9.6 50.4 0.806 39 min 30 min 5 min
MsMFEM O 11.2 47.3 0.812 43 min 7 min 32 min
MsMFEM M 10.4 45.4 0.828 17 min 7 min 6 min

Table 5 reports computational times (and reduction in misfit) using the TPFA and the
MsMFEM pressure solvers in combination with the original and the modified streamline
method. Here the total simulation time includes time for inversion, input/output, and seven
forward simulations, each with fifteen pressure steps. Similarly, we report the total time for
the pressure solves and the transport solves (including mappings and tracing of streamlines).
Using the modified streamline method to reduce the number of streamlines from 500 000 to
50 000 reduced the time for the transport solves by 80% with negligible loss in accuracy. In
(Stenerud et al., to appear), we showed that reducing (or eliminating) the dynamical updates
has almost no effect on the quality of the derived match for unfavorable mobility ratios. For
MsMFEM, we used no initial and no dynamical updates and were thereby able to reduce
time for pressure solves by about 80%, giving a significant reduction in the total runtime.
Altogether, this meant that the full data integration could be performed in an impressive
runtime of 17 minutes on a workstation PC!

To test the robustness of our selective work reduction, we apply the same 5×5 test matrix
as in the two previous examples. For the strategies involving x = 0% dynamical update, no
sensitivities are required to determine which basis functions to update. We therefore present
results for both full dynamic update and no update during the first flow simulation for x = 0%.
Figure 18 shows the reduction in residuals and permeability discrepancy after six iterations.
Judging from the residuals and the permeability discrepancy, the data are well matched for
all parameters, and the quality of the match is similar as for the TPFA solver. Altogether,
the results indicate that the history-matching procedure is stable with respect to the selective
work-reduction strategies.

Finally, we have tested how the speed-up for pressure solves for MsMFEM versus TPFA
scales for the different work reduction strategies. To compare both solvers on more equal
terms, we apply a somewhat older laptop PC with a 1.7 GHz Intel Pentium M processor
so that both TPFA and the MsMFEM pressure solvers can be run with full optimization.
Further, we are running all strategies with full dynamical update for the first flow simulation
(because no sensitivities are available yet), except the strategies involving 0% dynamical
update. Those strategies are run both with no and full dynamic updating during the first
flow simulation. Figure 19 shows the speed-up for the different combinations of updating
strategies. The corresponding reduction in residuals and permeability discrepancy are shown
in Fig. 18. As expected, the reduction in dynamic updates gives the greatest contribution
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Figure 18. Robustness of selective work reduction. For 0% dynamical up-
date, the first row corresponds no dynamic update during the first forward
simulation and the second row to full update during the first simulation.
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Figure 19. Speed-up matrix for time spent on pressure solves during the data
integration. For 0% dynamical update, the first row corresponds no dynamic
update during the first forward simulation and the second row to full update
during the first simulation. Runtimes are measured on a 1.7 GHz Intel Dothan
Pentium M processor with 2 Mb cache and 1.5 Gb memory

to the speed-up. With no updates, what so ever, the total data integration took 36 minutes
on the laptop PC.

Finally, we notice that the memory requirements for the MsMFEM pressure solver are
quite low and this solver could easily have been run on far larger models, as opposed to TPFA,
for which the memory requirements of the AMG linear solver will rapidly limit the model
sizes that can be run on a workstation or laptop PC.

5. Summary and Conclusions

A novel approach to data integration using multiscale-streamline simulation and analytic
sensitivities is presented. There are four key components in our proposed approach:
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(1) Inverse modeling by generalized travel-time inversion with quasilinear properties.
(2) Production-response sensitivities calculated analytically along streamlines.
(3) A modified streamline method that greatly reduces the mass-balance errors when

simulating large and complex reservoir models using few streamlines.
(4) An efficient multiscale mixed finite-element method is applied as pressure solver,

where the multiscale basis functions are recomputed selectively based on sensitivities.

The power and utility of our proposed approach was demonstrated using two 2-D models
and a full field-scale geomodel consisting of more than a million grid cells. Starting with
a prior subsurface model, production data were integrated using a generalized travel time
inversion. The resulting permeability changes were found to be reasonable and geologically
realistic (i.e., consistent with the initial geological model). For the one-million 3-D problem,
the entire inversion process took about seventeen minutes using a commodity workstation
PC. The very efficient forward simulation and sensitivity computations may generally enable
history-matching of models with a large number of cells and/or a large number of (plausible)
model realizations.

Altogether, we have presented very versatile method for integrating dynamic data into
high-resolution subsurface models. The inversion method is applicable, with small modifica-
tions, to more general grid formats, as will be reported in (Stenerud et al., submitted). We
believe that using a MsMFEM pressure solver will prove particularly useful on complex grids,
since the multiscale formulation gives a natural and automatic way of upscaling the grid in
the pressure solver to speed up the forward simulation. Moreover, on highly skewed grids
(e.g., corner-point grids), MsMFEM uses an accurate multipoint flux-approximation scheme
to compute basis functions and therefore gives better spatial accuracy and more accurate
predictions of flow than for a standard two-point method, see (Aarnes et al., to appear).

Finally, we remark that the generalized travel-time inversion method has been extended
to compressible three-phase flow, so that fractional-flow curves and gas-oil ratios are jointly
incorporated (Cheng et al., 2006). Moreover, data integration using streamline sensitivities
has also been addressed for cases including gravity, changing field conditions, and fractured
reservoirs (He et al., 2002; Al-Harbi et al., 2005).
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