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Abstract

We propose an extension to general unstructured grids for the so-called generalized
travel-time inversion method for inversion of production data. The framework of
the inversion method applies directly to general unstructured grids, but there are
aspects regarding sensitivities and regularization that have to be addressed. First, we
propose a generalized smoothing operator for the regularization to impose smooth
modification on reservoir parameters. Second, to handle reservoir models with great
heterogeneity in cell sizes, we investigate the use of rescaled sensitivities (average
cell volume multiplied by local sensitivity density) in the inversion.

We demonstrate the utility of our extensions by three numerical examples. First,
we validate the inversion method by applying it to a reservoir model represented
both on a Cartesian and on a refined triangular grid. Second, we apply the method
for a highly unstructured grid with large differences in cell sizes. Finally, we con-
sider an example with faults and non-neighboring connections. All examples show
that our method is able to match the data with the same quality as has been ob-
tained earlier on structured grids and without degrading the realism of the reservoir
parameters.
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1 Introduction

The generalized travel-time (GTT) inversion method was introduced by Vasco
et al. (1999) and He et al. (2002) and has been successfully applied to several
field cases; see e.g., Qassab et al. (2003) and Hohl et al. (2006). Although the
inversion method itself does not require a streamline simulator (Cheng et al.,
2005b), it is most efficient if the required production-response sensitivities are
approximated by analytical integrals streamlines and a streamline simulator
is used for the forward simulation. However, the inversion method can be
implemented on top of any simulator on a Cartesian grid that outputs velocity
fields during the forward simulation (Cheng et al., 2005b). In this paper we
discuss how to extend the GTT inversion method to general unstructured
grids.

Although the framework of the inversion method in principle can be gener-
alized to unstructured grids, the method has not yet been applied to general
unstructured grids in practice, and there are issues to address regarding regu-
larization and the use of sensitivities. First, the smoothing operator involved
in the regularization has to be generalized to unstructured grids. For moder-
ately skewed, logically Cartesian grids, finite-difference approximations for the
Laplacian is used to measure the smoothness. The key question is therefore
whether this stencil is directly generalizable or if one has to introduce some
sort of spatial weighting. Second, the computation of production-response sen-
sitivities on unstructured grids has to be investigated and verified. In addition,
non-neighboring connections that can occur in connection with faults and gen-
eral unstructured grids have to be addressed.

In two recent papers (Stenerud et al., to appear,s) we proposed to combine
GTT inversion with a highly efficient multiscale-streamline solver on Carte-
sian grids. In particular, we demonstrated how the sensitivities from the in-
version method can be used to make certain simplifications in the multiscale
flow solver in regions of low sensitivity, thereby reducing the total simulation
time considerably with negligible loss in accuracy compared with a standard
finite-difference simulator. The underlying multiscale mixed finite-element for-
mulation (Chen and Hou, 2002; Aarnes, 2004) has later been extended as a
very efficient flow solver for highly heterogeneous reservoirs on unstructured
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grids (Aarnes et al., to appear). We are confident that the combination of a
multiscale-streamline simulator and sensitivity-based work-reduction strategy
of (Stenerud et al., to appear) can easily be extended to unstructured grids,
thereby giving significant speedup of the forward simulations. Herein, how-
ever, we only use a standard mixed finite-element method (MFEM) as our
flow solver. Moreover, we implicitly assume that the grid has adequate mesh
quality to provide forward simulations of sufficient accuracy. Mesh quality is
often determined by the smallest angles in the grid and a grid with quite equi-
lateral cells therefore indicates good mesh quality. Hence, grids with high mesh
quality can still have large differences in cell sizes, used to refine important
regions of the reservoir, for instance in the near-well regions or near channels,
flow barriers, etc.

The outline of the paper is as follows: First, we present the forward model and
the inversion method and describe how to compute analytical approximations
to the sensitivities. Then, we propose smoothing operators which are intended
to be robust and avoid grid effects for general unstructured 3-D grids with large
differences in cell sizes. Finally, the applicability of our method is discussed
in terms of a few numerical examples. In particular, we compare the new
smoothing operator(s) with the standard finite-difference approximations for
the Laplacian. In addition, we address aspects related to grid heterogeneity,
sensitivities, robustness, and non-neighboring connections. For simplicity, we
only consider two-dimensional triangular and quadrilateral grids.

2 Flow Model

We consider incompressible two-phase flow of oil and water in a non-deformable
and permeable medium. For simplicity, we neglect the effects of gravity, com-
pressibility, and capillary forces and assume no-flow boundary conditions. Our
flow model then consists of an elliptic pressure equation

∇ · ~u = qt, ~u = −λt(S)K∇p, (1)

and a quasilinear hyperbolic transport equation

φ
∂S

∂t
+∇ · (fw(S)~u) = qw. (2)

The primary unknowns in the coupled system (1)–(2) are the pressure p, the
total Darcy velocity ~u, and the water saturation S. The underlying porous
rock formation is modeled in terms of the absolute permeability K and the
porosity φ, which henceforth are assumed to depend on the spatial variable
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only. Further, qt and qw represent fluid sources and sinks (e.g., injection and
production wells). Finally, λt = λw + λo denotes the total mobility, where
the mobility λj of each phase (j = o, w) is given as the relative permeability
krj divided by the phase viscosity µj, and fw = λw/λt is the fractional-flow
function of water.

By making a coordinate transformation, the three-dimensional transport equa-
tion can be decoupled into a family of one-dimensional transport equations.
Rather than using the arc length along the streamline as a spatial coordinate,
we use the time-of-flight defined by,

τ =
∫
Σ

φ(ξ)

|~u(ξ)|
dξ =:

∫
Σ

s(ξ) dξ,

where Σ denotes the streamline trajectory and s denotes the so-called slow-
ness function φ/|~u|. The operator identity ~u · ∇ = φ ∂

∂τ
together with the

incompressibility condition ∇ · ~u = 0 can be used to rewrite (2) as a family of
one-dimensional transport equations along streamlines

∂S

∂t
+

∂fw

∂τ
= 0. (3)

The solution of (2) is obtained by tracing a set of streamlines, mapping the ini-
tial saturations from the 3-D pressure grid to 1-D streamlines, and then solving
(3) along each streamline forward in time. Afterwards, the new streamline sat-
urations are mapped (or averaged) back to the underlying 3-D grid to update
mobilities before the pressure equation (1) is solved to recompute the pressure
and velocity field. This solution process continues forward in time, alternating
between a pressure step and a transport step for fluid saturation.

3 The Inversion Method

The heart of the inversion method is to determine perturbations δm that
minimize the following function on a given simulation grid

arg min
δm

‖δd−Gδm‖+ β1‖δm‖︸ ︷︷ ︸
norm

+ β2‖L δm‖︸ ︷︷ ︸
smoothing

. (4)

The first term of (4) is the data-misfit term, where d denotes the observed

data points, m the reservoir parameters, and G = { ∂dj

∂mi
} is the sensitivity

matrix. The other two terms are regularization terms used to stabilize the
under-determined inversion problem and β1 and β2 are scalars used to weight
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the importance of each regularization term. The norm constraint ‖δm‖ mea-
sures the magnitude of δm and seeks to minimize the modifications made to
the reservoir parameter m. In the last term, L is a smoothing operator that
measures the local roughness of δm. This term therefore tends to keep the
modifications made to the reservoir parameter m as smooth as possible. In
other words, changes in the reservoir parameters are induced by size and sign
of the data shifts δd and the magnitude and distribution of sensitivities G,
diminished by the norm regularization, and smeared out by the smoothing
term.

A minimum for (4) can be obtained by a least-square solution of the augmented
linear system

G

β1I

β2L

 δm =


δd

0

0

 . (5)

This system is typically solved with the iterative least-square minimization
algorithm, LSQR (Paige and Saunders, 1982). This minimization method has
proven to be robust and applicable for permeability fields on non-deformable
logically Cartesian grids; see e.g., Qassab et al. (2003) and Hohl et al. (2006).
Even though each grid cell in a logically Cartesian grid is identified by an
ijk-triple, it is often convenient to give the grid cells a natural numbering
G = {1, 2, . . . , N}. Hence, the framework can be applied directly to general
unstructured grids (e.g., triangular or tetrahedral grids). However, as men-
tioned above there are issues to rule out to verify the applicability for general
unstructured grids.

3.1 Quantification of Data Misfit

Misfit in dynamic data is commonly represented by a least-squares functional
of the form:

E =
Nw∑
k=1

Nk
d∑

j=1

wkj

[
yobs

k (tkj )− ycalc
k (tkj )

]2
. (6)

Here yobs
k and ycalc

k are the observed and calculated production responses in
well k at time tkj ; Nw and Nk

d denote the number of wells and the number
of observed data per well, respectively; and wkj represent data weights. The
production responses can for instance be dynamic pressure, water cut, and/or
gas-oil ratio. Henceforth we only consider water cut data.
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Rather than minimizing (6) directly, we will use a one-step generalized travel-
time (GTT) inversion (He et al., 2002), for which we seek a set of time-shifts
∆t = {∆tk} for the calculated production responses. A time-shift simply
expresses how much a calculated production curve should be shifted in time
to maximize the cross-correlation with the observed curve. To determine the
optimal time-shifts, we minimize the following misfit at each well:

Ek(∆tk) =

Nk
d∑

j=1

[
yobs

k (tkj + ∆tk)− ycalc
k (tkj )

]2
. (7)

Using the GTT inversion, we can match multiple data points as in amplitude
inversion, while retaining the attractive quasilinear properties of travel-time
inversion (Cheng et al., 2005a). We emphasize that computing time-shifts does
not require new flow simulations, but can be done using data from the single
forward simulation used to evaluate the data mismatch.

In practice, we do not use (7) directly. Instead we maximize the coefficient of
determination:

R2
k(∆tk) = 1−

∑Nk
d

j=1

[
yobs

k (tkj + ∆tk)− ycalc
k (tkj )

]2
∑Nk

d
j=1

[
yobs

k (tkj )− yobs
k

]2 , (8)

where yobs
k is the average over all Nk

d data points at well k. Having determined
the optimal time-shifts ∆t, the next step is to propagate them into changes
in the reservoir parameters. For this we apply (5) with δd = ∆t.

Finally, to measure the misfit in water cut during the inversion process we will
use the amplitude and time-shift residuals (wkj = 1 in (6))

Eamplitude =
√

E, Etime−shift =
( N∑

k=1

(∆tk)
2
)1/2

.

3.2 Sensitivities on Unstructured Grids

For the sake of completeness, we briefly describe the analytical calculation of
streamline-based approximate sensitivities. To this end, we consider a pertur-
bation δm in the reservoir parameters, which will result in a time-shift δt in
the calculated production curve for a given well. Thus, for each observation
we have that (Vasco et al., 1999; He et al., 2002)

δt = δtj =
[ ∂tj
∂m

]
· δm. (9)
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Summing this equation over all data points Nd, we obtain an expression for
the overall time-shift δt of the calculated production curve. By convention,
∆t = −δt (see (7)) and the sensitivity of the shift in the generalized travel
time ∆t with respect to reservoir parameter mi is given by

∂∆t

∂mi

= − 1

Nd

Nd∑
j=1

∂tj
∂mi

. (10)

Production data are calculated by averaging the flow rates of each connected
streamline. Now we fix the water cut ycalc

k and the fractional flow contribu-
tions from each streamline. Then, by assuming a Buckley–Leverett profile
along each streamline, the fractional flow at the outlet can be related to the
streamline time-of-flight using the expression f̃ ′w(So,`) = τ`/tj, where f̃w is the
convex hull of fw and So,` is the saturation at the outlet of streamline `. Since
f̃ ′w(So,`) is fixed, it follows that ∂tj/∂mi is proportional to the sensitivity of
the time-of-flight, which can be computed analytically from a single streamline
simulation under the assumption that the streamlines do not shift because of
small perturbations in reservoir properties. For example, the sensitivity of τ`

with respect to permeability Ki in cell i is given by

∂τ`

∂Ki

=
∂∆τ`,i

∂Ki

=
∫

Σ`,i

∂s(ξ)

∂Ki

dξ = −
∫

Σ`,i

s(ξ)

Ki

dξ = −∆τ`,i

Ki

, (11)

where the integral is along the streamline trajectory Σ`,i through cell i and
∆τ`,i is the associated incremental time-of-flight. Because the sensitivities are
simple integrals along streamlines, the computation time scales very favor-
ably with respect to the number of grid cells, thus making streamline-based
sensitivities the preferred approach for integrating dynamic data into highly-
detailed subsurface models.

As seen above, the parameter sensitivities in G can be computed as analytical
integrals along streamlines and be obtained by post-processing output from a
single flow simulation As such, the sensitivities are independent of the underly-
ing grid geometry, which is accounted for in the tracing process. In the current
paper, the tracing is performed by subdividing general polyhedral cells into
triangles in 2-D and tetrahedra in 3-D and then computing the incremental
streamline path analytically on each subcell. The sensitivity for an aggregated
cell consisting of a collection of subcells can be obtained by summing the
sensitivities of the subcells (Yoon et al., 2001). This follows from specifying
a differential for the production response based on an equal perturbation of
each subcell parameter. Further, from (11) it is observed that the time-of-flight
sensitivities can be computed for any convex grid cell as long as one is able
to trace the streamline to obtain the time-of-flight over the cell. Hence, the
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volume of the cell is implicitly accounted for through the time-of-flight over
the cell, which is in agreement with the additivity.

A problem with defining sensitivities this way is that small cells will in general
have smaller sensitivities, and contrary large cells will in general have larger
sensitivities. Thus, smaller modifications will in general be imposed on small
cells, and grid effects may therefore occur if there are (large) variations in
cell sizes in the underlying unstructured grid. This effect will, to a certain
extent, be counteracted by the smoothing regularization if there are other
cells with potential for greater modifications in the vicinity of a small cell.
One way to remedy these grid effects is to apply rescaled sensitivities defined
as the local sensitivity density (sensitivity per area/volume) multiplied by
the average cell volume. Since the sensitivities are spatially additive, applying
these rescaled sensitivities should therefore give a distribution more equal
to the sensitivity distribution obtained on a equisized grid. Another way to
remedy the problem is to lump together small cells to larger cells, to get a more
uniform grid for the history matching. However, this will in general require
some kind of upscaling/downscaling of the reservoir parameters m and will
not be considered herein. We will return to a discussion of grid effects due to
variations in cell sizes in the numerical examples below.

4 Generalized Smoothing Stencil

The smoothing operator L has to be generalized for general unstructured grids.
For Cartesian grids the smoothing operator L was constructed by applying a
finite-difference approximation for the Laplacian. More precisely, the well-
known five-point and seven-point stencils were used for 2-D and 3-D grids,
respectively. Four-point and five-point finite-difference approximations for the
Laplacian can also be derived on uniform triangular and tetrahedral grids
(Iserles, 1996) (possibly also for non-uniform grids). Equivalent stencils for
the Laplacian can also be derived as finite-volume stencils using two-point
approximations. These stencils only involve the nearest neighbors and may be
less robust because the triangles and tetrahedra have fewer nearest neighbors
than the quadrilaterals and hexahedra, respectively. In 3-D, it is sometimes
appropriate to use a separate stencil in the z-direction (vertical), because
parameters in different layers are usually less correlated. In that way it is
possible to match each layer more independently.

All the stencils discussed above can be written on the following general form

Li m ∝
( ∑

j∈N (i)

wjmj

)
− wimi, wi =

∑
j∈N (i)

wj. (12)
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Here the neighborhood N (i) contains other cells sufficiently spatially close
that will contribute to the smoothing stencil of a given cell i. Notice that cell
i is not included in N (i).

A naive direct generalization of the finite-difference stencils applied for log-
ically Cartesian grids (using the nearest neighbors) may work fine for grids
with quite equisized and equilateral grid cells. However, the generalized sten-
cil will lack robustness and result in grid effects for the smoothing of general
unstructured grid that possibly has large variations in cell sizes. On the other
hand, the smoothing operator does not necessarily have to accurately approx-
imate the Laplacian; it is most important is that the operator results in a
proper smoothing. Indeed, a good smoothing operator for unstructured grids
should try to fulfill the following criteria:

(1) The operator should coincide with the five-point (or seven-point) stencil
for uniform 2-D (or 3-D) Cartesian grids.

(2) The operator should give the same smoothing effect independently of the
local grid density (unless some spatially varying smoothing parameter is
incorporated).

(3) The smoothing of each grid cell i should be influenced by an appropriate
neighborhood N (i).

(4) The influence of each neighbor should decay (or stay constant) by the
distance ζ(i, j), and be zero outside some range.

(5) The influence of a neighbor should be bounded as the distance ζ(i, j) goes
to zero.

To meet these criteria, we propose a generalized smoothing stencil on the form

wj = wnorm · ρ(ζ(i, j); R, . . .), for j ∈ N (i), (13)

where N is either the radius or k-ring neighborhood, ρ(ζ; R, . . .) is a standard
correlation function from geostatistics, and wnorm is a normalization weight
used to ensure that the influence of each neighborhood is approximately the
same. The generalized correlation length R is used to control the range of
influence for ρ.

4.1 Neighborhood

The k-ring neighborhoodNk(i) includes all cells that can be reached by k edges
or less in the connectivity graph in which the centroids of each cell is a ver-
tex; see Figure 1. The centroids can be precomputed efficiently by decomposing
polyhedral cells into triangles/tetrahedra and using area/volume-weighted av-
erage of the centroids of the resulting subcells. The 1-ring neighborhood of cell
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Cell i

1 1

1

2 2

2 2

2 2

3 3 3

3 3

3 3

3 3

Fig. 1. (Left) An example of the connectivity graph, where the centroids of the
triangles represent the vertices of the graph. (Right) An example of a k-ring neigh-
borhood Nk(i) for k = 1, 2, 3.

i will be the collection of all cells adjacent to cell i. Figure 1 illustrates the 1-
ring, 2-ring, and 3-ring neighborhood for grid cell i in a regular triangular grid.
Note that in general N1(i) ⊆ N2(i) ⊆ N3(i) ⊆ . . .. The k-ring neighborhood
is sometimes referred to as a kth order neighborhood.

Second, the radius neighborhood, with a radius of x length units, is denoted
by Nr=x(i). The radius neighborhood include all (i, j) that are reachable by a
search in the connectivity graph without violating ζ(i, j) ≤ x. As our distance
function, we will use the standard Euclidean distance between the cell cen-
troids. To account for anisotropy, one may alternatively use a non-Euclidean
distance measure

ζK(i, j) = ‖~ζ‖K =
√

~ζtK~ζ,

where ~ζ(i, j) = [ζx, ζy, ζz] is the vector containing the Euclidean distance in
each coordinate direction and K is positive semi-definite.

Both the k-ring neighborhood and the radius neighborhood give symmetric
neighborhood configurations in the sense that if i ∈ N (j) then j ∈ N (i). For
the k-ring neighborhood, the number of cells are bounded so that

|Nk(i)| ≤ k × (#edges/faces per cell).

The more equisized and equilateral the grid cells are, the closer to the upper
bound will in general the number of cells in the k-ring neighborhood be. In
general the number of cells in the different k-ring neighborhoods will not
vary much over the grid (for a fixed k). On the other hand, for a radius
neighborhood the number of cells in a neighborhood can have great variations
over the grid. By a proper weighting, we expect the radius neighborhood
to give a more robust and less grid-dependent smoothing since the area of
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influence does not vary much over the grid. Nevertheless, when defining the
neighborhood radius one should take some considerations. The radius should
be chosen so that the neighborhood of all cells at least includes the nearest
neighboring cells, i.e.,N1(i) ⊆ Nr=x(i). The radius neighborhood will therefore
in general have a greater extent, so a smoothing stencil where the weights decay
by distance may therefore be reasonable.

For a grid with non-neighboring connections it is not obvious how to define
the neighborhood. For instance, close to a fault the grid cells on each side do
not necessarily have faces that overlap completely, and consequently a grid
cell can have several neighbors with partial overlap of faces. A simple solution
is to define the ”partial” neighbors as ordinary neighbors. Consequently, the
connectivity graph can be defined, and thereby the neighborhood. A more
thorough approach would be to in some sense weigh the partial neighbor con-
nections in the stencil. However, in the numerical examples in this paper we
will apply the simple approach without weighting.

4.2 Correlation Function

Correlation functions (Abrahamsen, 1997) are used to model the covariance
structure of a random spatial quantity and are usually designed to be positive
definite by satisfying the following criteria:

ρ(0) = 1, |ρ(ζ)| ≤ 1 ∀ζ, ρ(ζ) ∈ C0 for ζ > 0, lim
ζ→∞

ρ(ζ) = 0. (14)

Positive definiteness is not an issue for our smoothing stencil, and we are there-
fore free in general to choose from a broader range of functions. However, even
though there are higher-order finite-difference stencils for the Laplacian with
weights alternating sign based on distance (Iserles, 1996), we will henceforth
stick to positive correlation functions. Hence, the first relation in (14) fulfills
Requirement 5 above.

A correlation function usually has a parameter R called correlation length
or range, which is often considered as the distance ζ for which ρ ≈ 0.05, i.e.,
|ρ(ζ)| . 0.05 for ζ > R. Moreover, some readers may be more familiar with the
variogram function γ(ζ; R) than the correlation function, which for stationary
Gaussian random fields are given by γ(ζ; R) = σ2(1 − ρ(ζ; R)), where σ2 is
the variance.
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Fig. 2. Exponential correlation functions for R = 1 plotted as solid curves for
ν = 1.0, 2.0 (indicated on plot) and as dashed curves for ν =0.50, 0.75, 1.25, 1.50,
and 1.75.

In the following we consider either the constant correlation function,

ρconst(ζ; R) =

 1 , for 0 ≤ ζ ≤ R,

0 , else,

which is discontinuous and thus violates (14), and the exponential correlation
function

ρexp,ν(ζ; R, ν) = e−3(ζ/R)ν

, 0 < ν ≤ 2,

which decays with increasing distance. For ν = 2 the corresponding correla-
tion function is sometimes referred to as the Gaussian correlation function.
Figure 2 depicts some exponential correlation functions for different values of
the parameter ν. To fulfill Requirement 4 and because positive definiteness is
not an issue for our purpose, we set ρ(ζ) to zero for ζ > R.

In spatial statistics it is common to replace ( ζ
R
) with ‖[ ζx

Rx
, ζy

Ry
, ζz

Rz
]‖2 in the

correlation functions ρ to account for anisotropy in the principal coordinate
directions. For Rx = Ry = Rz = R the two representations will coincide.
If the anisotropy directions are not aligned with the principal directions, a
coordinate transformation may be required. This can be performed by mea-
suring ζ through ‖ · ‖K as described above. Another possibility to account
for anisotropy, which is applied in geostatistics, is to construct the correla-
tion function as a product of correlation functions related to different spatial
directions, e.g., ρ(ζ) = ρxy(ζ) · ρz(ζ).
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4.3 Normalization Weights

For wnorm we seek a normalization weight such that the influence of each neigh-
borhood is approximately the same. Inspired by Taubin (1995) we therefore
propose the following choices:

wnorm =
( ∑

j∈N (i)

ρ(ζ(i, j))
)−1

, (15)

wnorm =
(
ρ̄ · |N (i)|

)−1
. (16)

Here ρ̄ is the average correlation over all neighborhoods of the grid:

ρ̄ =
1

|G| |N (i)|
∑
i∈G

∑
j∈N (i)

ρ(ζ(i, j)).

The ρ̄ function can be preprocessed or computed when the neighborhoods
are traversed. The evaluation of ρ̄ only involves arithmetic operations and is
thus very fast. Further, since ρ̄ can be accumulated, it does not increase the
memory requirements.

The weight(15) multiplied by ρ sums to unity for all j ∈ N (i) and therefore
gives the same weight to all neighborhoods. Further, (16) will also give a
normalization on average over all neighborhoods, but (16) adaptively gives
more weight to a neighborhood based on the average generalized correlation
for the neighborhood. Further, both (16) and (15) will ensure that the total
weight given to the smoothing in (4) does not vary much by changing the
particular form of the ρ function. We will stick to (16), because it gives an
adaptive weighting. Hence, in our weighting operator we have not taken any
specific actions to account for boundary effects.

A natural question is if there should be a correspondence between the correla-
tion length in the different directions of the permeability field and the correla-
tion length used in the generalized stencil. In general it should not. The reason
is that we assume the basic structure of the permeability field is incorporated
into the prior/initial permeability field. The main task of the smoothing sten-
cil is therefore just to preserve the structure by enforcing smooth changes in
the inversion process, so the correlation length for the smoothing stencil is
therefore more dependent on the grid density. However, it can for instance
be advantageous to let the permeabilities change more independently in the
different layers, and possibly also on each side of faults. This can partially be
incorporated by the approach for anisotropic correlation functions described in
Section 4.2. However, the layers and faults are not necessarily aligned with spe-
cific coordinate axes. A more advanced generalized correlation function that
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incorporates not only the distance function, but also layer information may
therefore be required. In other words, spatially varying stencil/neighborhood
parameters are required.

For a uniform Cartesian grid, the standard five-point stencil can be represented
by our definition by letting the neighborhood be N1 or Nr=h, and wnorm be
given by either (16) or (15). Further, ρ(ζ) will have the same value for the
different adjacent grid cells for any positive bounded real function. Hence,
Requirement 1 can be fulfilled for the generalized smoothing stencil.

In the next section we apply the proposed generalized smoothing stencil to a
few numerical examples and discuss its utility.

5 Numerical Examples

For simplicity, we will in the following only focus on 2-D test cases using
the simplified flow model for an incompressible, immiscible oil-water system
as described in Section 2. First, we compare the performance of the general-
ized travel-time inversion on uniform Cartesian and uniform triangular grids
(Case 1). Second, we investigate the applicability of the generalized travel-time
inversion on a non-uniform, highly unstructured triangular grid (Case 2). Fi-
nally, we try to apply the generalized stencil to a corner-point grid with faults
and non-neighboring connections at the faults (Case 3).

For all cases the flow is described using quadratic relative permeability curves
with individually specified end-point mobility ratios. Further, for the forward
simulations are performed with a streamline simulator where the pressure
solver is a standard two-point flux-approximation (TPFA) scheme for Carte-
sian grids and a mixed finite-element method (MFEM) for triangular grids. For
MFEM we apply the lowest-order Raviart–Thomas basis functions (Raviart
and Thomas, 1977). Moreover, for all cases we match synthetic water-cut data
obtained from a flow simulation on a reference permeability field. The perme-
ability for each grid cell is treated as an adjustable parameter. Next, starting
from an initial (prior) permeability field, we match the water-cut data via the
generalized travel-time inversion method.

5.1 Case 1: Cartesian versus Triangular Grid

This synthetic case involves reconstruction of a reference permeability field
given on a uniform 21×21 Cartesian grid (see Figure 3) based on the observed
water-cut production history from a 9-spot pattern on the Cartesian grid (see
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reference rectangular triangular

Fig. 3. Case 1: Reference and derived permeability fields on the rectangular grid
with Laplacian smoothing and on the triangular grid with smoothing Stencil 3. In
the top row Mend = 0.2, and in the bottom rowMend = 10.

Figure 4) with 5% white noise added. The permeability is reconstructed both
on the rectangular grid and on a triangular grid obtained by subdividing each
cell in the rectangular grid into two triangles. Hence, the history-matching
problem will be more under-determined for the triangular grid, because twice
as many parameters have to be matched by the same number of data points
(a total of 441 and 882 parameters, respectively).

The dimension of the reservoir is 420× 420 meters, and the flow is described
by two different end-point mobility ratios, Mend = 0.2 and Mend = 10. We
use a homogeneous permeability as the initial model and apply a standard
five-point Laplacian regularization on the rectangular grid. For the triangular
grid we apply four different generalized stencils described in Table 1, of which
Stencil 1 corresponds with the five-point stencil on the rectangular grid.

The derived permeability fields are shown in Figure 3. Further, Table 1 reports
the average discrepancy between the reference and derived permeability field
measured by

∆ ln K =
1

Ā

N∑
i=1

Ai| ln Kref
i − ln Kmatch

i |. (17)

Here Ā is the average area for all cells and Ai is the area of cell i. Clearly,
the final permeability models capture the large-scale trends of the reference
permeability field on both grids. Figure 4 shows a comparison of the initial
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Table 1
Case 1: Reduction in percent in residual for time-shift (T) and amplitude (A), and
reduction in permeability discrepancy (∆ lnK) on the Cartesian grid with Laplacian
smoothing and on the triangular grid with four different stencils.

Mend = 0.2 Mend = 10

Strategy Nbh ρ T A ∆ lnK T A ∆ lnK

Initial - - 100.0 100.0 1.045 100.0 100.0 1.045

Cartesian - - 6.8 12.7 0.570 7.5 21.7 0.548

Stencil 1 N1 ρconst 5.5 13.7 0.614 7.5 23.0 0.599

Stencil 2 N2 ρexp,2 (R = 30) 6.0 13.7 0.601 8.8 23.2 0.590

Stencil 3 Nr=30 ρexp,2 (R = 30) 6.2 13.6 0.595 9.5 22.9 0.575

Stencil 4 Nr=30 ρexp,2 (R = 50) 6.5 13.4 0.572 12.0 23.1 0.558
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Fig. 4. Case 1: Water-cut curves for Stencil 3 on the triangular grid for producers
P2 (North West), P4 (South East), and P8 (East). Mobility ratio Mend = 0.2.

and final match of the water-cut curves for Mend = 0.2 for three wells with
lowest initial (P2), highest initial (P4), and highest final mismatch (P8) for
Stencil 3. Figure 5 shows the reduction in time-shift and amplitude residuals
for each iteration using Stencil 3. Further, the reduction in water-cut residuals
is also reported in Table 1 for the different stencils. Overall, the match to the
production data is quite satisfactory.

The quality of the derived match is similar for all stencils reported in Ta-
ble 1. The permeability discrepancy is slightly smaller for stencils with radius
neighborhood. Conversely, using k-ring neighborhood gives a somewhat lower
time-shift residual. A plausible explanation is that the radius neighborhoods
usually involve couplings with more distant grid cells, causing the permeabil-
ity modifications to be more spatially distributed. In other words, more of the
modifications occur away from the high sensitivity regions where they would
have the greatest impact. This tendency can be controlled by varying the
neighborhood radius, the ρ function, and the R parameter.
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Fig. 5. Case 1: Reduction of residuals for all producers using Stencil 3 for mobility
ratios Mend = 0.2 and Mend = 10.

Grid and wells Stencil 1 Stencil 2

Reference Stencil 3 Stencil 4

Fig. 6. Case 2: Grid and well-configuration, reference permeability field, and derived
permeability fields for Stencils 1 to 4 using sensitivity.

5.2 Case 2: Nine-Spot with a Highly Unstructured Grid

Next we consider the reconstruction of a reference permeability field on an un-
structured triangular grid with 581 grid cells. The dimensions of the bounding
box for the reservoir is 322× 318 meters. Further, the grid is highly unstruc-
tured with a ring of high grid density; see Figure 6. This grid is not very
realistic for a real reservoir, but was chosen to investigate the effect of vary-
ing cell sizes. The initial permeability field for this case is homogeneous with
a permeability mean of 7.0 mD. Moreover, the end-point mobility ratio is
Mend = 0.5.

Synthetic production data are obtained by simulating 1200 days of produc-
tion from a 9-spot pattern (see Figure 7) with 5% white noise added. In the
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Table 2
Case 2: Reduction in percent in residual for time-shift (T) and amplitude (A), and
reduction in permeability discrepancy (∆ lnK) with four different stencils using
sensitivity (Rows 3–6) and rescaled sensitivity (Rows 7–10).

Strategy Nbh ρ T A ∆ lnK

Initial - - 100.0 100.0 1.165

Stencil 1 N1 ρconst 6.0 14.2 0.771

Stencil 2 N2 ρconst 8.2 18.9 0.612

Stencil 3 Nr=30 ρexp2 (R = 50) 9.5 18.6 0.585

Stencil 4 Nr=40 ρexp2 (R = 50) 12.0 20.9 0.555

Stencil 1 N1 ρconst 7.0 16.1 0.631

Stencil 2 N2 ρconst 12.6 22.5 0.525

Stencil 3 Nr=30 ρexp2 (R = 50) 12.1 20.8 0.546

Stencil 4 Nr=40 ρexp2 (R = 50) 12.4 21.7 0.568

inversion we only use data from the first 800 days. Data from the remaining
400 days are used to assess the predictive ability of our inversion methods.

Table 2 reports the reduction in time-shift and amplitude residuals for four dif-
ferent stencils and Figure 6 shows the derived permeability fields. All four sten-
cils capture the large-scale trends of the reference permeability, even though
the derived permeability fields, especially for the radius neighborhood, are a
bit too smooth. This is to be expected since there is no heterogeneity to pre-
serve from the initial (prior) permeability field. As in the previous example,
the time-shift residuals are lowest for the k-ring neighborhoods. On the other
hand, Stencils 1 and 2 give undesired grid effects inside the ring with small
cells, in which the initial homogeneous permeability field is still visible, in
particular for Stencil 1 in the quadrant bounded by the injector and wells P6,
P4 and P4. Stencils 3 and 4 are more able to capture the large-scale perme-
ability structures, as seen in Figure 6 and from the permeability discrepancy.
However, small artifact are also visible for these stencils, especially for Sten-
cil 3. Without smoothing, small cells with small sensitivity will in general get
smaller modifications than larger cells. However, the smoothing will tend to
distribute the modifications. For the 1- and 2-ring neighborhoods, the stencils
were not able to span over the ring with small cells and therefore resulted in
too small modifications in this high-density band. For the radius neighbor-
hood, on the other hand, the region of influence crosses over the high-density
band and therefore distributed the modifications more properly.

Figure 7 shows a comparison of the initial and final match of the water-cuts
for Stencil 4. The overall match to the production data is satisfactory, and
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Fig. 7. Case 2: Water-cut match for Stencil 4 for the wells P1–P8. The time span
0–800 days is the matching period, while the time span 800–1200 days is prediction.

sensitivity sensitivity density equisized grid

Fig. 8. Case 2: Time-shift sensitivity and sensitivity density (not rescaled) computed
for a homogeneous permeability field for wells P4 (top) and P6 (bottom).

the prediction in the period from 800 to 1200 days shows good agreement. In
particular, the prediction for well P4 is good, given that this well had almost
no significant water responses during the matching period.

19



reference sensitivity rescaled sensitivity

Fig. 9. Case 2: Permeability field derived using Stencil 1 with sensitivity and rescaled
sensitivity.

In Section 3.2 we proposed to use rescaled sensitivities rather than sensitivities
in the inversion process to counteract effects from heterogeneous cell sizes.
The rescaled sensitivity of a cell i is computed by GiV̄ /Vi, where Gi is the
sensitivity and Vi is the volume for cell i and V̄ is the average volume of all
cells. Figure 8 shows sensitivities Gi and sensitivity densities Gi/Vi for wells
P4 and P6. As expected, the sensitivities for small cells are in general smaller
than for large cells. The sensitivity densities, on the other hand, do not show
any grid effects and are similar to those computed on an (almost) equisized
grid. However, as seen in Figure 8, the sensitivities and sensitivity densities
are of different magnitude. We therefore suggest to multiply the sensitivity
densities by the average volume of all cells V̄ to obtain what we will refer to
as rescaled sensitivities. Hence, the sensitivities and the rescaled sensitivities
will be more of the same magnitude and will coincide on uniform grids. The
drawback with using rescaled sensitivities is that it might be harder to match
the data, because rescaled sensitivities will enforce greater modifications in
cells that are less important with respect to shifting the production curves
(less sensitivity).

Figure 9 shows a comparison of the derived permeabilities for Stencil 1 using
sensitivities and rescaled sensitivities, respectively. The resulting permeability
field applying the rescaled sensitivities does not show indications of grid effects
from the high-density band. Further, Table 2 shows the reduction in residuals
and average permeability discrepancies for both applying the sensitivities and
the rescaled sensitivities for different stencils. The permeability discrepancies
seems to improve by applying rescaled sensitivities. Especially the k-ring sten-
cils seem to improve the quality of the derived permeability fields. Even so,
the reduction in the residuals is in general slightly degraded, as expected.

To test the robustness of the generalized stencil, the neighborhood, and the
application of rescaled sensitivities, we have systematically performed the in-
version for different stencil parameters for the stencil (ρexp2,Nr=x). The results
are presented in three 7 × 7 test matrices with the correlation length R and
the neighborhood radius r as parameters. The correlation length takes the
values R ∈ {20, 30, 40, 50, 60, 70,∞}, while the the neighborhood radius takes
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Fig. 10. Case 2: Robustness of stencil parameter R and neighborhood radius r.

Fig. 11. Case 2: Altered well-configuration.

the values r ∈ {10, 20, 30, 40, 50, 60, 70}; both measured in meters. Hence, by
letting R go to infinity the exponential correlation function will approach the
constant correlation function. Figure 10 shows the reduction of time-shift and
amplitude residuals after eight iterations, as well as the average discrepancy
between matched and reference permeability fields. Judging from the residual
plots, it seems like the more weight is given to the smoothing stencil away from
the center cell, the harder it is to match the data. In other words, more of the
modifications are made away from where they would have the greatest impact
on the simulated production responses. Even so, the quality of the match is
not degraded considerably. The permeability discrepancy is very robust with
respect to the smoothing parameters. There seems to be a lower and upper
limit for the stability region with respect to the neighborhood extent, but the
radius of the stable region is quite large given the dimension of the reservoir.

Finally, we test the predictive abilities of the derived permeability fields for the
altered well-configuration shown in Figure 11. Table 3 reports the reduction
in amplitude and time-shift residuals compared with a simulation using the
prior homogeneous model. Here the best results, by far, are obtained using
the radius neighborhood.

5.3 Case 3: Faulted Corner-Point Grid

We consider a 2-D corner-point reservoir model with diagonal permeability
streaks, dynamic well configuration and non-sealing faults that induce non-
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Table 3
Case 2: Reduction in percent for misfit in time-shift (T) and amplitude (A) by
applying the derived permeability fields for the altered well-configuration.

Strategy Nbh ρ T A

Initial - - 100.0 100.0

Stencil 1 N1 ρconst 47.1 50.4

Stencil 2 N2 ρconst 33.4 38.3

Stencil 3 Nr=30 ρexp2 (R = 50) 27.8 33.0

Stencil 4 Nr=40 ρexp2 (R = 50) 27.0 32.0

Fig. 12. Case 3: Grid and well-configuration (upper left), reference permeability field
(upper right), initial (prior) permeability field (lower left) and derived permeability
field by Stencil 3 (lower right).

neighboring connections; see Figure 12. The lognormal permeability field has
a 50×50 logical structure, but because of the faults, the grid has three shifted
sections. Further, the dimensions of bounding box for the reservoir is 646×605
meters, and the end-point mobility ratio is Mend = 0.5.

The history-matching will be performed on the corner-point grid, but to be
able to trace streamlines over the non-neighboring connections, we simulate
the flow on a triangular grid where we have subdivided each corner-point cell
into two triangles and in addition refined the grid by triangles close to the

22



Fig. 13. Case 3: Time-shift sensitivities for the five producers.

faults to obtain a matching grid. Hence, no upscaling/downscaling is required
between the simulation grid and the history-matching grid because the perme-
ability field originally is given on the coarsest grid. For each forward simulation
we use a pressure steps of 100 days. In Section 4.1 we discussed how to handle
the non-matching cell faces at the faults when defining the neighborhood.

Synthetic production data were generated by adding 15% white noise to the
water-cut curves computed from the reference permeability. Initially, the well-
configuration is a kind of five-spot configuration, with an injector in the center
and four producers in the corners; see Figure 12. Further, the producers op-
erate at equal constant rate. Producer P4 in the south-west corner has an
early breakthrough and is therefore converted to an injector after 900 days.
Simultaneously, a new producer (P5) is introduced in the lower-left corner
of the section in the middle (south). This part of the reservoir has not been
depleted at all yet. The new injector is injecting 3/5 of the total injection
rate. The motivation for the updated well-configuration is also to introduce
an additional sweep from the south-west corner. After the well conversion, all
producers operate at constant equal rate. The updated well-configuration is
kept throughout the rest of the production period. Thus, we wish to integrate
2500 days of production data from five producers in total.

To match observed data, we start from the prior permeability field shown in
Figure 12 and treat the permeability in each corner-point cell as an adjustable
parameter, giving a total of 2500 unknown parameters to be estimated. The
corner-point sensitivities are obtained by summing the sub-cell sensitivities;
see Figure 13. Table 4 reports the reduction in residuals with respect to time-
shift and amplitude. The resulting permeability field for Stencil 3 after eight
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Table 4
Case 3: Reduction in percent for misfit in time-shift (T) and amplitude (A), and
reduction in average discrepancy in log permeability ∆ lnK).

Strategy Nbh ρ T A ∆ lnK

Initial - - 100.0 100.0 0.421

Stencil 1 N1 ρconst 5.5 35.0 0.334

Stencil 2 N2 ρconst 4.9 35.0 0.332

Stencil 3 Nr=30 ρexp2 (R = 50) 5.8 35.2 0.334

Stencil 4 Nr=40 ρexp2 (R = 50) 5.7 35.8 0.332
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Fig. 14. Case 3: Water-cut match for the Stencil 3 for wells P1–P5. The time span
0–2500 days is the matching period, while the time span 2500–3000 days is predic-
tion.

iterations is shown in Figure 12. The updated permeability field is in general
closer to the reference, and the realism of the permeability field is not degraded
by the history matching. This is also confirmed by the average permeability
discrepancies in Table 4. In the derived permeability fields there was no in-
dications of smearing across the faults. This is caused by the regularization
that keeps the modifications small and smooth, and the localization of the
sensitivities; see Figure 13. Figure 14 shows a comparison of the initial and
the final match of the water-cut curves for the production wells obtained with
Stencil 3. Overall, the match to the production data and the quality of the
derived permeability fields are satisfactory.
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Concluding Remarks

The generalized travel-time method for inversion of production data has been
successfully applied to unstructured grids. For equisized grids, the original
framework developed previously by Vasco et al. (1999) and He et al. (2002)
can be applied almost directly, as has previously been done for grids that
are logically Cartesian and quite uniform. For general unstructured grids that
may have (large) differences in cell sizes and in the number of connections,
our investigations revealed that a generalized smoothing operator should be
introduced to obtain a good match. Our new smoothing stencils introduce
a few extra regularization parameters, but the inversion is robust to these
parameter values and it is easy to make a good choice by considering the cell
sizes of the grid.

Similarly, we found that rescaled sensitivities should be incorporated to give
permeability fields without undesired heterogeneities induced by grid effects.
The magnitude of potential modifications of the reservoir parameters are de-
termined by the sensitivities and data misfits. Since small grid cells generally
have smaller sensitivities than larger cells, the magnitude of the induced pa-
rameter modifications will depend on heterogeneity of the grid. Because the
production-response sensitivities are spatially additive, it will often be better
to use rescaled sensitivities instead of sensitivities in the inversion to obtain re-
alistic modifications, even though this can make it slightly harder to match the
observed data. For uniform grids the sensitivities and the rescaled sensitivities
will coincide.

In the current paper we have only investigated two-dimensional numerical ex-
amples, including non-neighboring connections. This is partly because 2-D ex-
amples are well suited for visualization and for detecting the principal effects.
Real 3-D reservoir models are, of course, much more challenging. Although the
framework we have proposed for applying the generalized travel-time inver-
sion on general unstructured grids is general and should apply to 3-D grids as
well, additional effects like layering and various grid-degeneracies may prove
important in 3-D. Extensions to real-life 3-D models is therefore a topic of
future research.
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