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ABSTRACT
The focus of the study is on lithology-fluid inversion from prestack seismic data in a

3D reservoir. The inversion is defined in a Bayesian framework where the complete

solution is the posterior pdf. The likelihood model relates the lithology-fluid classes

to elastic variables and the seismic data, and it follows the lines of Larsen et al.

(2006). The prior model for the lithology-fluid characteristics is defined as a profile

Markov random field, where allowances to strong lateral couplings between the

lithology-fluid classes can be made. The vertical profiles are further defined to

follow Markov chain models upward through the reservoir. The likelihood model

is approximated, and the corresponding approximate posterior model is given

as the complete set of full conditional pdf’s for the lithology-fluid classes in the

vertical profiles. The approximated posterior model is explored using a block Gibbs

simulation algorithm laterally. The profiles are further simulated exactly using the

efficient upward-downward algorithm defined in Larsen et al. (2006). The inversion

is evaluated on a synthetic 2D reservoir. The lithology-fluid classes in the synthetic

reservoir have strong horizontal continuity with thin layers of shale, and the fully

coupled 3D model provides reliable results.

INTRODUCTION
Prediction and simulation of lithology-fluid (LF) characteristics is important
for development of petroleum reserves. The LF characteristics are normally
predicted from geological understanding of the reservoir combined with well
observations and seismic data. The LF classification problem is ill-posed, as several
configurations of LF classes may produce the same seismic data. The focus of the
study is on classification of LF classes in a 3D reservoir or general target zone
from prestack seismic AVO data. The study draws heavily on results in Buland
and Omre (2003) and Larsen et al. (2006). In Buland and Omre (2003) a Bayesian
seismic AVO inversion method for elastic parameters was defined. In Larsen et al.
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(2006) the inversion was expanded into discrete LF classes along a vertical profile.
The major contribution of the current study is on expanding the model into 3D,
where lateral continuity of the lithologies is included in the model. We have chosen
to define the prior model for the LF classes as a Markov random field, such that
spatial couplings are a part of the prior knowledge. This approach appears to be in
accordance with the geologists understanding of the problem.

NOTATION

The objective of the study is to map lithology-fluid (LF) classes in a reservoir. The
LF classes are denoted π : {πx,t ;(x, t) ∈LD} where LD is a discretization of the
reservoir in lateral positions x ∈ L x

D corresponding to inline and xline positions,
and in time t ∈ {1, . . . ,T} ∈ L t

D downward. The inversion is performed from
seismic prestack data d for a set of reflection angles. In order to link the LF classes
and the seismic data, the elastic parameters P-wave velocity, S-wave velocity and
density are used. The logarithm of these elastic parameters is denoted m.

STOCHASTIC MODEL

The inversion problem is defined in a Bayesian setting where the complete solution
is the posterior probability density function (pdf)

p(π|d) = const× p(d|π) p(π),

with p(d|π) being the likelihood model, p(π) the prior model and const a
normalizing constant which ensures that the posterior pdf integrates to one. From
the posterior pdf, the locationwise most probable LF characteristics solution π̂ and
realizations of π are available.

Likelihood Model

In order to link the seismic data and the LF classes, the likelihood is defined as the
integral over the elastic parameters m like in Larsen et al. (2006)

p(d|π) =
∫

. . .
∫

p(d|m) p(m|π)dm

where p(d|m) is a seismic response likelihood function and p(m|π) is a rock
physics likelihood function. The rock physics likelihood model is defined
locationwise, see Larsen et al. (2006), and it can be written as the product

p(m|π) = ∏
x

∏
t

p(mx,t |πx,t)

with x taken over L x
D and t over L t

D when not explicitly expressed.
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The seismic response likelihood model is defined by a vertical convolution model
like in Buland and Omre (2003) given by

d = s+ e = Gm+ e

where s is the seismic signal, e is observation error and G is a modeling matrix.
The modeling matrix is further defined

G = WAD

where W is a convolution matrix containing wavelets for different incident angles,
A contains linearized Aki-Richards coefficients and D is a differential matrix giving
the contrasts of the elastic parameters in m.

If m is approximated by a Gaussian random field p∗(m) and the observation error e
is Gaussian, the associated posterior pdf p∗(m|d) is also Gaussian and analytically
available. The seismic response likelihood model is then defined like in Larsen
et al. (2006)

p(d|m) = const× p∗(m|d)
p∗(m)

where p∗(m) and p∗(m|d) are Gaussian prior and posterior pdf’s for linearized
Zoeppritz AVO inversion, see Buland and Omre (2003).

Prior Model
In the prior model, strong horizontal and vertical coupling between the LF classes is
modeled. The horizontal coupling is modeled by defining the reservoir as a profile
Markov random field. Under this model formulation, the conditional pdf’s of the
LF profiles πx : {πx,t ; t ∈ L t

D} given the LF profiles in the rest of the field are
only dependent upon the LF profiles in a neighborhood of x in L x

D . This Markov
property is expressed

p(πx|π−x) = p(πx|πy;y ∈ δ (x)); all x ∈L x
D

where π−x : {πy;y ∈L x
D ,y 6= x} and δ (x) is a fixed neighborhood of x in L x

D . The
vertical couplings are modeled by defining the profiles πx as Markov chain models
upwards through the target zone like in Larsen et al. (2006). This Markov chain
model is expressed

p(πx|πy;y ∈ δ (x)) = ∏
t

p(πx,t |πx,t+1,πy,t ;y ∈ δ (x)); all x ∈L x
D

with p(πx,T |πy,T ;y ∈ δ (x)) = p(πx,T |πx,T+1,πy,T ;y ∈ δ (x)) for notational
convenience. It can be shown that given the LF classes immediately above and
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below in addition to the LF classes in the lateral neighborhood, each node is
independent of the LF classes in the rest of the field. Hence π is a Markov random
field in the traditional sense, see Besag (1974).

Posterior Model
The posterior pdf is completely determined by the likelihood and prior models, and
it is given by

p(π|d) = const×
[∫

. . .
∫ p∗(m|d)

p∗(m) ∏
x

∏
t

p(mx,t |πx,t)dm
]

p(π).

The integral is over all configurations of the three elastic parameters in the field,
hence computer demanding. An approximation of the likelihood like in Larsen
et al. (2006) is used, where spatial correlations in the pdf’s p∗(m) and p∗(m|d) are
ignored. The approximate posterior pdf is then given by

p̃(π|d) = const×∏
x

∏
t

[∫ ∫ ∫ p∗(mx,t |d)
p∗(mx,t)

p(mx,t |πx,t)dmx,t

]
p(π).

The integral is now of dimension three, and numerically tractable. As the prior
model follows a Markov random field model and the likelihood model factorizes,
the associated approximate conditional posterior pdf’s can be written

p̃(πx|π−x,d) = const×∏
t

l(d|πx,t) p(πx,t |πx,t+1,πy,t ;y ∈ δ (x)); all x ∈L x
D

where l(d|πx,t) is the integral within the parentheses in the expression above.

Assessment of Posterior Model
The conditional posterior pdf’s follow inhomogeneous Markov chain models
upward through the reservoir, hence the efficient upward-downward recursive
algorithm used to explore the 1D posterior pdf in Larsen et al. (2006) can be used
to simulate the conditional pdf’s exactly. As the profile Markov random field is
defined by the complete set of conditional pdf’s, a block Gibbs sampling algorithm
may be used laterally. Note that although the model is defined in 3D, the iterative
Gibbs sampling algorithm only operates in 2D. The third dimension is simulated
by the extremely fast recursive upward-downward algorithm. The Gibbs algorithm
actually used is:
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Simulation Algorithm
Initiate

Generate arbitrary π

Iterate
Draw x uniform randomly from L x

D
Generate πx from p̃(πx|π−x,d) by the upward-downward simulation algorithm

The algorithm converges such that π will be a sample from p̃(π|d).

EMPIRICAL STUDY

The inversion model is evaluated on a synthetic 2D reference reservoir containing
the four LF classes gas-, oil-, brine-saturated sandstone and shale. The reference
reservoir is shown in Figure 1. Note that the reservoir contains some thin layers
of shale in the range 1-3 ms, which is thinner than what is normally referred to
as seismic resolution. We use observations in two well locations, and observe
the LF characteristics from the corresponding profiles in the reference reservoir
exactly without observation error. The well profiles are kept unchanged in the
Gibbs sampler algorithm.

The prior model is constructed to model lateral continuity and vertical ordering of
the LF classes. We consider a first order neighborhood in each lateral direction,
such that δ (x) = (x− 1,x + 1), and by lateral symmetry we obtain 10 transition
matrices. These matrices are constructed such that most probability is assigned
to the transitions with neighbors identical to the node under consideration, and
low probability to all possible transitions. The transition matrix with both lateral
neighbors being shale is for example

Pt
SH,SH =


0.0002 0 0 0.9998
0.0002 0.0002 0 0.9996
0.0002 0.0002 0.0002 0.9994
0.0002 0.0002 0.0002 0.9994


with rows and columns corresponding to gas-, oil-, brine-saturated sandstone and
shale, respectively.

The rock physics likelihood model is defined by samples from a rock physics model
like in Larsen et al. (2006), see Figure 2. When generating the synthetic data, the
average value of the samples corresponding to each LF class is used with added
heterogeneity.

The seismic response likelihood model is defined by a vertical convolution model
with additive noise. The Aki-Richards coefficient in the convolution model is
a function of the incidence angles θ = (0,10,20,30,40)°, and we use a Ricker
wavelet with frequency 30 Hz and length 61 ms. The observation error is wavelet
colored noise. The synthetic seismic signal is generated profilewise from the
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convolution model, and observation error is added to the signal to obtain the seismic
data with signal-to-noise ratio of two. The seismic data stack is shown in Figure 1.

We initiate the simulation algorithm from four extreme configurations of the LF
classes and monitor the portion of the LF classes after each sweep, with one sweep
corresponding to one update of all the profiles. The convergence plot is shown in
Figure 3. It appears that the simulations have converged after 2000 sweeps, which
is defined to be the burn-in period.

Results and Discussion
The focus of the study is on LF characteristics π , and the complete solution is
defined as the approximate posterior pdf p̃(π|d). We calculate the locationwise
most probable prediction from the expression

π̂x,t ;{argmax
πx ,t

p̃(πx,t |d); all (x, t) ∈LD}.

Figure 4 contains the locationswise most probable prediction π̂ and the reference
LF reservoir. The structure in the prediction and the reference reservoir is mostly
the same. The well observations do not stand out, indicating that the prediction is
reliable in near-well areas and that information contained in the wells is an integral
part of the solution. One of the main challenges of the study is to classify thin
layers of shale, and we see that layers down to one ms are identified. This is caused
by the spatial coupling in the prior model.

Figure 5 contains three independent realizations of LF characteristics generated
from the approximate posterior pdf p̃(π|d). The realizations represent the
prediction uncertainty, and they can be considered as possible LF characteristics.
The deviation between the realizations is small, indicating very little prediction
uncertainty.

Figure 1: Reference LF characteristics π with two well profiles marked, with gas-saturated sandstone
(red), oil-saturated sandstone (green), brine-saturated sandstone (blue) and shale (black); and
synthetic seismic data d stacked from the angles θ = (0,10,20,30,40) °.
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Figure 2: Elastic variables m represented by P-wave velocity (Vp), S-wave velocity (Vs) and density (ρ)
given gas-saturated sandstone (red), oil-saturated sandstone (green), brine-saturated sandstone
(blue) and shale (black).

Figure 3: Convergence plot monitoring the portion of the LF classes after each sweep of the simulation
algorithm with gas-saturated sandstone (red), oil-saturated sandstone (green), brine-saturated
sandstone (blue) and shale (black)
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Figure 4: Locationwise most probable LF characteristics prediction π̂; and reference LF characteristics
π .

Figure 5: Independent realizations of LF characteristics from approximate posterior pdf p̃(π|d).
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CONCLUSIONS
The LF inversion is based on a profile Markov random field prior model and
an approximate likelihood model. The resulting approximate posterior model is
explored using a block Gibbs sampling algorithm where one dimension is assessed
using the recursive upward-downward algorithm. The inversion is evaluated on a
synthetic case.

The prediction appears reliable. The LF characteristics have strong lateral and
vertical continuity, and thin layers of shale are identified due to spatial couplings
in the prior model. The model formulation makes it possible to include wells, such
that the well information becomes an integral part of the solution.
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