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About the choice of prior distributions
The issue of setting prior distributions on model parameters is a
difficult issue in applied Bayesian statistics, in particular for
parameters further down the model hierarchy, such as precision or
correlation parameters.

What is the current practice?

— Choose priors based on
computational convenience.

— Choose priors used in the literature
and hope to avoid criticism.

— Ignore the problem and hope that
the data will dominate the prior.
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About prior choices

Martins, Simpson, Riebler, Rue and Sørbye (2014)

“Prior selection is the fundamental issue in Bayesian statistics.
Priors are the Bayesian’s greatest tool, but they are also the
greatest point for criticism: the arbitrariness of prior selection
procedures and the lack of realistic sensitivity analysis are a
serious argument against current Bayesian practice.”

Reference:
Martins, T. G., Simpson, D. P., Riebler, A., Rue, H. and Sørbye, S. H. (2014). Penalising
model component complexity: A principled practical approach to constructing priors.
arXiv:1403.4630.

www.ntnu.no A. Riebler, PC-priors



5

Assignment of hyperpriors

The scaling problem of intrinsic model components
— Models for splines (rw1, rw2)

— Thin-plate splines (dimension > 1, rw2d)
— The “CAR” model/Besag-model for area/regional models

(besag)
— and others...

Problem:

— These models are unscaled and their properties change with
locations/dimension/graph.

Sørbye and Rue, 2014, Spat Stat
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Illustration RW1: Marginal variance
Consider the characteristic marginal variance

σ2
τ =

1
τ

exp

(
1
n

n∑
i=1

log([R−1]ii)

)
1 > rw1 (5)

2 [1,] 1 -1 . . .

3 [2,] -1 2 -1 . .

4 [3,] . -1 2 -1 .

5 [4,] . . -1 2 -1

6 [5,] . . . -1 1

7 > geom.mean(diag(ginv(rw1(5))))

8 [1] 0.73

9 > geom.mean(diag(ginv(rw1 (50))))

10 [1] 7.55

11 > geom.mean(diag(ginv(rw1 (500))))

12 [1] 75.580
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IGMRFs need to be scaled

That means:
— An uninformative prior on τ could be very informative on σ2.
⇒ Scale the IGMRF such that σ2

τ = 1/τ .

In R-INLA

1 formula = f(.,model="..", hyper =..., scale.model=T)
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How to choose our parameters?

— Assume τ ∼ Gamma(a,b) where E(τ) = a/b.
— We can say something about the scale of the effect with

σ =
√

1/τ
For example:

Prob(σ > U) = α

From this we can derive parameter b, if we fix a value for a,
say.

Sørbye and Rue, 2014, Spat Stat; Papoila et al., 2014, Biom J

— This isn’t enough: Why are we using a Gamma distribution,
why not half-Cauchy . . . ?
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9

Penalised complexity (PC) priors

Martins et al. (2014) introduced a new concept of defining priors
that are robust, invariant to reparameterisations and principle
based.

Main idea: Occam’s razor—a principle of parsimony

Simpler model formulations should be preferred until there is
enough support for a more complex model.
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Our background: R-INLA

Building models adding up model components

η = Xβ + f1(...;θ1) + f2(...;θ2) + · · ·

— Many model components represent a flexible extension of a
base model.

— Put a prior on the distance between the flexible model and the
base model.

— Important: Mode should be at a distance equal to zero.
— Transform the prior back to the parameter of interest.
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1. Principle: Occam’s razor

— Many model components represent a flexible extension of a
base model. For each model component x we define a flexible
model

f = π(x |ξ)

where ξ is interpreted as a flexibility parameter.
— f is a flexible version of a base model

g = π(x |ξ = ξ0)

www.ntnu.no A. Riebler, PC-priors
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Examples for base models

Case Parameter ξ Base model

IID τ (precision) ξ = 1/τ ξ = 0 (no random effect)

Student-t ν (dof) ξ = 1/ν ξ = 0 (Gaussian)

IGMRF τ (precision) ξ = 1/τ ξ = 0 (constant, line, plane)

AR1 ρ (correlation) ξ = ρ ξ = 0 (no time-dependence)

ξ = 1 (no change in time)

Correlation Q ξ = Q ξ = I (no correlation)
matrix

Side comment: In a BYM model we would have nested base models:

Base model = 0→ iid→ dependence = more flexible model

www.ntnu.no A. Riebler, PC-priors
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1. Occams razor

— The prior for ξ ≥ 0 should penalise the complexity introduced
by ξ

— The prior should be decaying with increasing measure by the
complexity (the mode should be at the base model)

A prior will cause overfitting (force complexity) if, loosely,

πξ(ξ = 0) = 0
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2. Principle: Measure of complexity
Use Kullback-Leibler discrepancy to measure the increased
complexity introduced by ξ > 0,

KLD(f‖g) =
∫

f (x) log
(

f (x)
g(x)

)
dx

for flexible model f and base model g.

Example

Assume that the flexible model f is a (ξ;1) where ξ > 0. The base
model g refers to ξ = 0. Then

KLD(f‖g) = ξ2

2

www.ntnu.no A. Riebler, PC-priors
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3. Principle: Constant-rate penalisation
Main idea
Assign priors to “distances” between models, instead of assigning
priors to the parameters.

— Define the (uni-directional) “distance”

d(ξ) =
√

2 KLD(ξ)

— Assign an exponential distribution to d(ξ):

π(d(ξ)) = λexp (−λd(ξ)) , λ > 0

which has mode at d(ξ) = 0.

— Do the change-of-variables to get a prior for the parameter of
interest.

www.ntnu.no A. Riebler, PC-priors
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4. Principle: User-defined scaling

— Determine λ based on some knowledge of the model
component, for example in terms of prior mass in the tail.

— A natural criterion for IGMRFs is

P(σ > U) = P
(

1√
τ
> U

)
= α

where U is an upper limit for the standard deviation and α is a
small probability.

— The scale U determines the magnitude of the effect of a model
component and how informative the prior will be.
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Example: Precision of a Gaussian

Analytic result in this case (type-2 Gumbel):

π(τ) =
θ

2
τ−3/2 exp

(
−θ/
√
τ
)
, E(τ) =∞,

where Prob(σ > U) = α gives

θ = − ln(α)
u

Alternative interpretation

π(σ) = λexp(−λσ)
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Comparison to a similar gamma prior
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PC-prior with U = 0.3/0.31, α = 0.01 (solid).

Gamma prior with shape 1 and rate a, with a = 0.0076, to get same marginal variance

(dashed).
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How to do this in INLA

Specifying the pc-prior in the f-function:

1 hyper = list(precision =

2 list(prior = "pc.prec",

3 param = c(u, alpha)))

Documentation:

1 inla.doc("pc.prec")

www.ntnu.no A. Riebler, PC-priors
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Discussion: PC priors

— The new principled constructive approach to construct priors
seems very promising.

— Easy and very natural interpretation + a well defined
shrinkage.

— We can chose the degree of “informativeness”.
— Exciting extensions will grow out this (not discussed)
— Not all cases are easy...
— A lot of work to integrate this into R-INLA
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Other (theoretical) things...

— Good large-sample behaviour (via BvM theorem)
— Very good risk results in Stein-type situations
— Strong links to shrinkage priors, although you may consider a

heavier tail...
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Thank you for your attention!
Thanks goes:
— to you for coming.

— to the whole INLA + friends team.

If you have any doubts or questions, please write me:
andrea.riebler@math.ntnu.no
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