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What?

The short answer:

INLA is a fast method to do Bayesian inference with latent
Gaussian models and R-INLA is an R-package that implements this

method with a flexible and simple interface.

A much longer answer:
Rue, Martino, and Chopin (2009) “Approximate Bayesian inference for latent Gaussian

models by using integrated nested Laplace approximations.” Journal of the royal statistical

society: Series B. 319–392
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INLA - how it all began

— INLA is the result of many years of work,
mainly driven by Håvard Rue

— the first “user-friendly” implementation was built on a C-library
in 2007

— The first prototype of the R-interface came in Jan/Feb 2008
— today, the complete source-code is about 100 000 lines, in

R/C/C++ (view/track/download from inla.googlecode.com)
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... and the INLA group increased

There are
more:

. . .

(photo 2011)
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Where?
The software, information, examples and help can be found at
http://www.r-inla.org

A complete documentation about INLA is in progress.
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So... When can R-INLA be used?

— What type of problems can it solve?
— What type of models can be used?

www.ntnu.no A. Riebler, Introduction to INLA

http://www.r-inla.org


9

The core

We have observed something.

We have questions.

We want answers.
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How do we find answers?

We need to make choices:

Bayesian or frequentist?

How do we model the data?

How do we compute the answer?

These questions are not independent.

www.ntnu.no A. Riebler, Introduction to INLA

11

Example: Ski flying records
Assume a simple linear regression model with Gaussian
observations y = (y1, . . . , yn), where

E(yi) = µ+ βxi , Var(yi) = τ−1, 1, . . . ,n
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The Bayesian approach
Assign priors to the parameters α, β and τ and calculate posteriors:
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Real-world datasets are usually much
more complicated!

Using a Bayesian framework:
— Build (hierarchical) models to account for potentially

complicated dependency structures in the data.
— Attribute uncertainty to model parameters and latent variables

using priors.

Two main challenges:

— Need computationally efficient methods to calculate posteriors.
— Select priors in a sensible way.
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Bayesian hierarchical models

INLA can be used with Bayesian hierarchical models where we
model in different stages or levels:

Stage 1: What is the distribution of the responses?

Stage 2: What is the distribution of the underlying unobserved
(latent) components?

Stage 3: What are our prior beliefs about the parameters
controlling the components in the model?
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Stage 1

How is our data (y) generated from the underlying components (x)
and hyperparameters (θ) in the model:

— Gaussian response?
— Count data? (E.g. Poisson, negative binomial)
— Spatial point pattern?
— Binary data?
— . . .

This information is placed into our likelihood π(y |x ,θ)
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Stage 2

The underlying unobserved components x are called latent
components and can be:

— Covariates
— Unstructured random effects (individual effects, group effects)
— Structured random effects, for example an autorgressive

process of order 1 (AR(1)-process).

These are linked to the responses in the likelihood through linear
predictors.
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Stage 3

The likelihood and the latent model typically have hyperparameters
that control their behavior. The hyperparameters θ can include:

— Variance of observation noise
— Variance of unstructured effects
— Correlation of multivariate effects
— Autocorrelation parameter
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Example: Disease mapping in Germany
We observed larynx cancer mortality counts for males in 544
district of Germany from 1986 to 1990 and want to make a model.

Information available:

yi : The count at location i .
Ei : An offset; expected number of

cases in district i .
ci : A covariate (level of smoking

consumption) at location i
si : spatial location i (here, district).
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Stage 1: The data

First we decide on the likelihood for our data y

— Our responses are counts
— We decide to model our responses as

yi | ηi ∼ Poisson(Ei exp(ηi))

— ηi is a linear function of the latent components
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Stage 2: The latent model

The latent field x consists of two parts:
1. One fixed effect: the intercept µ
2. • The spatially structured effect fs.

• The unstructured effect u which accounts for non-observed
variability

• The unknown effect f (ci ) of the exposure covariate which
assumes value ci for district i .

These are combined for each location to give a linear predictor

ηi = µ+ fs(si) + f (ci) + ui

The latent field is x = (µ, {fs(·)}, {f (·)},u1,u2, . . . ,un)
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Stage 3: Hyperparameters

The structured and unstructured spatial effect as well as the
smooth covariate effect will be each controlled by one parameter

— τc , τf , τη: The precisions (inverse variances) of the covariate
effect, spatial effect and unstructured effect, respectively.

The hyperparameters are θ = (τc , τf , τη), and must be given a prior
π(τc , τf , τη).
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Quantities of interest
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Latent Gaussian models

This example is just one example of a very useful class of models
called Latent Gaussian models.

— The characteristic property is that the latent part of the
hierarchical model is Gaussian, x |θ ∼ N(0,Q−1)

— The expected value is 0

— The precision matrix (inverse covariance matrix) is Q
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The general set-up
The set up contains GLMs, GLMMs, GAMs, GAMMs, and more.
The mean of the observation i , µi , is connected to the linear
predictor, ηi , through a link function g,

ηi = g(µi) = µ+ z>i β +
∑
γ

wγ,i fγ(cγ,i) + ui , i = 1,2, . . . ,n

where

µ : Intercept
β : Fixed effects of covariates z

{fγ(·)} : Non-linear/smooth effects of covariates c
{wγ,i} : Known weights defined for each observed data point

u : Unstructured error terms
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Specification of the latent field

— Collect all parameters (random variables) in the linear
predictor in a latent field x = {µ,β, {fγ(·)},η}.

— A latent Gaussian model is obtained by assigning Gaussian
priors to all elements of x .

— Very flexible due to many different forms of the unknown
functions {fλ(·)}:

— Hyperparameters account for variability and length/strength of
dependence
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Flexibility through f -functions
The functions {fγ} in the linear predictor make it possible to capture
very different types of random effects in the same framework:

— f (time): For example, an AR(1) process, a random walk of
first or second order (RW1 or RW2)

— f (spatial location): For example, a Matérn field

— f (covariate): For example, a RW1 or RW2 on the covariate
values

— f (time, spatial location) can be a spatio-temporal effect

— And much more
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Additivity

— One of the most useful features of the framework is the
additivity.

— Effects can easily be removed and added without difficulty.

— Each component might add a new latent part and might add
new hyperparameters, but the modelling framework and
computations stay the same.
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A small point to think about

From a Bayesian point of view fixed effects and random effects are
all the same.

— Fixed effects are also random
— They only differ in the prior we put on them
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Example: Smoothing binary time-series

— Have observed a sequence y1, y2, . . . , yn of 0s and 1s
— Each time t has an associated covariate xt

— We want to smooth the time series by inferring the sequence
pt , for t = 1,2, . . . ,n, of probabilities for 1s at each time step
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Example: Smoothing time series

Stage 1: We choose a Bernoulli distribution for the responses,
so that

yt |ηt ∼ Bernoulli
(

exp (ηt )

1 + exp (ηt )

)
Stage 2: Covariates, AR(1) component, i.e. at = ρat−1 + εt , and

random noise are connected to likelihood by

ηt = β0 + β1xt + at + vt

Stage 3: ρ: Dependence parameter in AR(1) process

σ2
a: Marginal variance in AR(1) process
σ2

v : Variance of unstructured term
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Loads of examples

— Generalized linear and additive (mixed) models
— Disease mapping
— Survival analysis
— Log-Gaussian Cox-processes
— Spatio and spatio-temporal models
— Stochastic volatility models
— Measurement error models
— And more!
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Computations

So...

Now we have a modelling framework

But how do we get our answers?
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What do we care about?

It depends on the problem!
— A single element of the latent field (e.g. the sign or quantiles of

a fixed effect)
— A linear combination of elements from the latent field (the

average over an area of a spatial effect, the difference of two
effects)

— A single hyperparameter (the correlation)
— Predictions at unobserved locations
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What do we need to compute?
Often we are interested in the posterior probability density of an
element of the latent field

π(xi |y)

or the posterior probability density of an element of the
hyperparameters

π(θj |y)

or some other statistics

π(f (x ,θ)|y)

But, as always in Bayesian statistics, we need to do
high-dimensional integrals that cannot be computed analytically.
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Traditional approach: MCMC?

Based on sampling. Construct Markov chains with the target
posterior as stationary distribution.

— Extensively used within Bayesian inference since the 1980’s.
— Flexible and general, sometimes the only thing we can do!
— A generic tool is available with JAGS/OpenBUGS.
— Tools for specific models are of course available, e.g. BayesX

and stan.

? Markov chain Monte Carlo
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Approximate inference

Bayesian inference can (almost) never be done exactly. Some form
of approximation must always be done.

— MCMC “works” for everything, but it can be incredibly slow
— Is it possible to make a quicker, more specialized inference

scheme which only needs to work for this limited class of
models?
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Recall: What is our model framework?
Latent Gaussian models

y |x ,θ ∼
∏

i

π(yi |ηi ,θ)

x |θ ∼ π(x |θ) ∼ N (0,Q(θ)−1) Gaussian!
θ ∼ π(θ) Not Gaussian

where the precision matrix Q(θ) is sparse. Generally these
“sparse” Gaussian distributions are called Gaussian Markov
random fields (GMRFs).

The sparseness can be exploited for very quick computations for
the Gaussian part of the model through numerical algorithms for
sparse matrices.
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The INLA idea

Use the posterior distribution

π(x ,θ | y) ∝ π(θ)π(x | θ)π(y | x ,θ)

to approximate the posterior marginals

π(xi | y) and π(θj | y)

directly.

Let us consider a toy example to illustrate the ideas.
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Smoothing noisy observations (I)

Observations
yi = m(i) + εi , i = 1, . . . ,n

for Gaussian iid noise εi with known precision.

Will assume m(i) is a smooth function wrt i
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How does INLA work?
Observations

yi = m(i) + εi , i = 1, . . . ,n

Here, we assume that m(i) is a smooth function wrt i and
εi

iid∼ N (0, τ0) with known precision τ0.

1 n = 50
2 idx = 1:n
3 fun = 100*((idx -n/2)/n)^3
4 y = fun + rnorm(n, mean

=0, sd=1)
5 plot(idx , y)
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Assumed hierarchical model
1. Data: Gaussian observations with known precision

yi | xi , θ ∼ N (xi , τ0)

2. Latent model: A Gaussian model for the smooth function1

π(x | θ) ∝ θ(n−2)/2 exp

(
−θ

2

n∑
i=2

(xi − 2xi−1 + xi−2)2

)

3. Hyperparameter: The smoothing parameter θ which we assign
a Γ(a,b) prior

π(θ) ∝ θa−1 exp (−bθ) , θ > 0

1model="rw2"
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Derivation of posterior marginals (I)

Since
x ,y | θ ∼ N (·, ·)

(derived using π(x ,y | θ) ∝ π(y | x , θ) π(x | θ)),
we can compute (numerically) all marginals, using that

π(θ | y) ∝

Gaussian︷ ︸︸ ︷
π(x ,y | θ) π(θ)

π(x | y , θ)︸ ︷︷ ︸
Gaussian
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Posterior marginal for hyperparameter
Select a grid of points to represent the density θ | y . (Here, they
points are chosen to be equi-distant.)
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Derivation of posterior marginals (II)

From
x | y , θ ∼ N (·, ·)

we can compute

π(xi | y) =

∫
π(xi | θ,y)︸ ︷︷ ︸

Gaussian

π(θ | y) dθ

≈
∑

k

π(xi | θk ,y)π(θk | y)∆k

where θk , k = 1, . . . ,K , correspond to representative points of θ | y
and ∆k are the corresponding weights.
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Posterior marginal for latent parameters
Compute the conditional posterior marginal for each xi given
each θk .
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Posterior marginal for latent parameters
Weigh the resulting (conditional) marginal posteriors by the density
associated with each θk .
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Posterior marginal for latent parameters
Numerically sum over all conditional densities to obtain the
posterior marginal for each xi .
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Fitted spline
The posterior marginals are used to calculate summary statistics,
like means, variances and credible intervals:
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Extensions

This is the basic idea behind INLA. It is quite simple.

However, we need to extend this basic idea so we can deal with
— More than one hyperparameter
— Non-Gaussian observations
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The non-Gaussian part of the model

— In many cases π(x | y ,θ) is very close to a Gaussian
distribution, and can be replaced with a Laplace approximation

— This means that all the really hard, high-dimensional integrals
with respect to the latent field are easy, and only the integrals
with respect to the hyperparameters remain

— If the number of hyperparameters is low, these integrals can
be done efficiently numerically
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Limitations

— The dimension of the latent field x can be large (102–106)
— But the dimension of the hyperparameters θ must be small

(≤ 9)

In other words, each random effect can be big, but there cannot be
too many random effects unless they share parameters.
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How to use INLA?

INLA is implemented through the package R-INLA in the R software
which
— has a very user friendly formula interface

linear_model <- lm(weight ~ group)

Fits the linear model

weighti = µ+ groupi + εi
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Example: Ski flying records

Steps to run INLA
1. Make an object to store responses and covariates

data = list(y = y, x = x)

2. Make a formula specifying the model

formula = y~x

3. Call INLA

res=inla(formula, data=data, family="gaussian")
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Example: Summary

Call:
"inla(formula = formula, family = \"gaussian\", data = data)"

Time used:
Pre-processing Running inla Post-processing Total

0.0581 0.0161 0.0181 0.0924

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld

(Intercept) 137.0288 1.3929 134.2798 137.0288 139.7741 137.0288 0
x 2.1259 0.0526 2.0221 2.1259 2.2295 2.1259 0
...
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Summary of INLA

Three main ingredients in INLA
— Latent Gaussian models
— Laplace approximations
— Gaussian Markov random fields

These ingredients give a very nice tool for Bayesian inference
which is
— fast
— accurate
— scales well for moderate sizes
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