
Short reminder

What are pseudo-random numbers?

A deterministic sequence of numbers in [0, 1] with the same

statistical properties as a sequence of independent U(0, 1) numbers.

Random variables

We shall not always be interested in an experiment itself, but rather

in some consequence of its random outcome.

Example: Rolling two dice

Let

X := “Sum of the two dice”

Such consequences, when real-valued, may be thought of as

functions which maps the state space S into the real line R, and
are called random variables.

Discrete random variables

A random variable X is discrete, if they can either take a finite or

countable number of values.

We define the probability mass function p(x) of X by

p(x) = P(X = x)

The following properties have to be fulfilled:

∞∑

i=1

p(xi ) = 1, p(xi ) ≥ 0.

The cumulative distribution functions F can be expressed in terms

of p(a) by

F (a) = P(X ≤ a) =
∑

i :xi≤a

p(xi )

Properties of the cumulative distribution function (CDF)

• F (x) is monotone increasing (“step function”) .

• F (x) is piece-wise constant with jumps at elements xi , where

p(xi ) > 0.

• limx→∞ F (x) = 1.

• limx→−∞ F (x) = 0.



Examples of discrete distributions

• Bernoulli distribution, Bin(1, p)

• Binomial distribution, Bin(n, p)

• Geometric/Negative binomial distribution, NB(r , p)

• Poisson distribution, Po(λ)

• . . .

Definition of continuous random variables

• Idea: A random variable X is called continuous, if for two

arbitrary values a < b from the support of X , every

intermediate value in the interval [a, b] is possible.

Continuous distributions

A random variable X whose set of possible values is uncountable, is

called a continuous random variable.

A random variable is called continuous, if there exists a function

f (x) ≥ 0, so that the cumulative distribution function F (x) can be

written as

F (a) = P(X ≤ a) =

∫ a

−∞
f (x)dx

Some consequences:

• P(X = a) =
∫ a
a f (x)dx = 0

• P(X ∈ B) =
∫
B f (x)dx

•
∫∞
−∞ f (x)dx = 1

The CDF F (x) of continuous random variables

Properties:

• F (a) is a nondecreasing function of a,

i.e. if x < y then F (x) < F (y)

• limx→−∞ F (x) = 0

• limx→∞ F (x) = 1

• d
daF (a) = f (a)

• P(a ≤ X ≤ b) = F (b)− F (a) =
∫ b
a f (x)dx

• P(X ≥ a) = 1− F (a)



Normalising constant

A normalising constant c is a multiplicative term in f (x), which

does not depend on x . The remaining term is called core:

f (x) = c g(x)︸︷︷︸
core

We often write f (x) ∝ g(x).

Examples of continuous distributions

• Uniform distribution U [0, 1]

• Exponential distribution Exp(λ)

• Gamma distribution Ga(shape = α, rate = β)

• Normal distribution N (µ, σ2).

• . . .

Discrete distributions

Let X be a stochastic variable with possible values {x1, . . . , xk} and
P(X = xi ) = pi . Of course

∑k
i=1 pi = 1.

An algorithm for simulating a value for x is then:

u ∼ U[0, 1]

for i = 1, 2, . . . , k do

if u ∈ (Fi−1,Fi ] then

x ← xi

end if

end for

Each interval Ii = (Fi−1,Fi ]

corresponds to single value of x . F0 = 0
p1 = F1

p1 + p2 = F2

p1 + p2 + p3 = F3

Fk−1

Fk = 1

u

p1

p2

Proof & Note

Proof.

P(X = xi ) = P(u ∈ (Fi−1,Fi ])

= P(u ≤ Fi )− P(u ≤ Fi−1)

= Fi − Fi−1 = (p1 + . . .+ pi )− (p1 + . . .+ pi−1) = pi

Note: We may have k =∞
• The algorithm is not necessarily very efficient. If k is large,

many comparisons are needed.

• This generic algorithm works for any discrete distribution. For

specific distributions there exist alternative algorithms.



Bernoulli distribution

Let S = {0, 1}, P(X = 0) = 1− p, P(X = 1) = p.

Thus X ∼ Bin(1, p).

The algorithm becomes now:

u ∼ U[0, 1]

x = I (u ≤ p)

0

p

1

p

1 − p

Binomial distribution

Let X ∼ Bin(n, p).

The generic algorithm from before can be used, but involves tedious

calculations which may involve overflow difficulties if n is large.

An alternative is:

x = 0

for i = 1, 2, . . . , n do

generate u ∼ U[0, 1]

if u ≤ p then

x ← x + 1

end if

end for

return x

Geometric and negative binomial distribution

The negative binomial distribution gives the probability of needing

x trials to get r successes, where the probability for a success is

given by p. We write X ∼ NB(r , p).

The generic algorithm can still be used, but an alternative is:

s = 0 . (# of successes)

x = 0 . (# of tries)

while s < r do
u ∼ U[0, 1]

x ← x + 1

if u ≤ p then
s ← s + 1

end if
end while
return x

Poisson distribution

Let X ∼ Po(λ), i.e. f (x) = λx

x! e
−λ, x = 0, 1, 2, . . ..

An alternative to the generic algorithm is:

x = 0 . (# of events)

t = 0 . (time)

while t < 1 do
∆t ∼ Exp(λ)

t ← t + ∆t

x ← x + 1

end while
x ← x − 1

return x

0 t = 1

It remains to decide how to generate ∆t ∼ Exp(λ).



Change of variables formula

Let X be a continuous random variable with density fX (x).

Consider now the random variable Y = g(X ), where for example

Y = exp(X ), Y = X 2, . . . .

Question: What is the density fY (y) of Y ?

For a strictly monotone and differentiable function g we can apply

the change of variables formula:

fY (y) = fX (g−1(y)) ·
∣∣∣∣
dg−1(y)

dy

∣∣∣∣
︸ ︷︷ ︸

g−1′ (y)

Proof over cumulative distribution function (CDF) FY (y) of Y

(blackboard).

Example

Consider X ∼ U [0, 1] and Y = − log(X ), i.e. y = g(x) = − log(x).

The inverse function and its first derivative are:

g−1(y) = exp(−y)
dg−1(y)

dy
= − exp(−y)

Application of the change of variables formula leads to:

fY (y) = 1 · |− exp(−y)|

It follows: Y ∼ Exp(1)! Thus, this is a simple way to generate

exponentially distributed random variables!

More generally, leads Y = − 1
λ log(x) to random variables from an

exponential distribution with parameter λ: Y ∼ Exp(λ).

Inverse cumulative distribution function

More generally, inversion method or the probability integral

transform approach can be used to generate samples from an

arbitrary continuous distribution with density f (x) and CDF F (x):

1. Generate random variable U from the standard uniform

distribution in the interval [0, 1].

2. Then is

X = F−1(U)

a random variable from the target distribution.

Proof.
fX (x) = fU(F (X ))︸ ︷︷ ︸

1

·F ′(x)︸ ︷︷ ︸
f (x)

= f (x)



Inverse cumulative distribution function (II)

Let X have density f (x), x ∈ R and CDF F (x) =
∫ x
−∞ f (z)dz :
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Simulation algorithm:

u ∼ U[0, 1]

x = F−1(u)

return x

Standard Cauchy distribution

Density and CDF of the standard Cauchy distribution are:

f (x) =
1
π
· 1
1 + x2 and F (X ) =

1
2

+
arctan(x)

π

The inverse CDF is thus:

F−1(y) = tan
[
π

(
y − 1

2

)]

Random numbers from the standard Cauchy distribution can easily

be generated, by sampling U1, . . . ,Un from U [0, 1], and then

computing tan[π(Ui − 1
2)].

Note

The inversion method cannot always be used! We must have a

formula for F (x) and be able to find F−1(u). This is for example

not possible for the normal, χ2, gamma and t-distributions.

Gamma distribution

Let X ∼ Ga(shape=α, rate=β), i.e.

f (x) =
βα

Γ(α)
xα−1e−β·x , x > 0.

From stochastic processes we know that if X1, . . . ,Xn
iid∼ Exp(λ),

then X1 + . . .+ Xn ∼ Ga(n, λ).

This gives how to simulate when α is an integer.



Gamma distribution

Further remember: χ2
ν = Ga(ν2 ,

1
2),

X1, . . . ,Xn
iid∼ N (0, 1)⇒∑n

i=1 X
2
i ∼ χ2

n.

Thus, we can simulate X ∼ Ga(n
2 ,

1
2) by

x = 0

for i = 1, 2, . . . , n do

generate y ∼ N (0, 1) . Still have to learn how

x ← x + y2

end for

return x

Gamma distribution (II)
β is a rate (inverse scale) parameter, i.e.

X ∼ Ga(α, 1) ⇔ X/β ∼ Ga(α, β)

Thus, we can simulate X ∼ Ga(n
2 , β) by the algorithm

x = 0

for i = 1, 2, . . . , n do

generate y ∼ N (0, 1) . Still have to learn how

x ← x + y2

end for

x ← 1
2x . Ga(n

2 , 1)

x ← 1
β x . Ga(n

2 , β)

return x
Thus, we know how to simulate from a Ga(α, β) whenever α = n

2

where n is an integer.

Linear transformations
Many distributions have scale parameters, for example

X ∼ N (0, 1) ⇔ σX ∼ N (0, σ2)

X ∼ Exp(1) ⇔ 1
λ
X ∼ Exp(λ)

X ∼ U [0, 1] ⇔ βX ∼ U [0, β]

Adding a constant can also helping us in some situations

X ∼ N (0, 1) ⇔ X + µ ∼ N (µ, 1)

and thereby

X ∼ N (0, 1) ⇔ σX + µ ∼ N (µ, σ2)

Review: inverse transform technique

Let F be a distribution, and let U ∼ U [0, 1].

a) Let F be the distribution function of a random variable taking

non-negative integer values. The random variable X given by

X = xi if and only if Fi−1 < u ≤ Fi

has distribution function F .

b) If F is a continuous function, the random variable X = F−1(u)

has distribution function F.



Review: inverse transform technique (II)
a) Discrete case:

0.0

0.2

0.4

0.6

0.8

1.0

x1 x2 x3 x4 x5 x6

u

x
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The inverse transform technique is conceptually easy, but

• in the discrete case, a large number of comparisons may be

necessary.

• in the continuous case, F−1 must be available.

Bivariate techniques

Remember: If (x1, x2) ∼ fX (x1, x2)

and (y1, y2) = g(x1, x2)

m
(x1, x2) = g−1(y1, y2)

where g is a one-to-one differentiable transformation. Then
fY (y1, y2) = fX (g−1(y1, y2))|J|

with the determinant of the Jacobian matrix J

|J| =

∣∣∣∣∣
∂x1
∂y1

∂x2
∂y1

∂x1
∂y2

∂x2
∂y2

∣∣∣∣∣

⇒ Multivariate version of the change-of-variables transformation

Bivariate techniques (II)

If we know how to simulate from fX (x1, x2) we can also simulate

from fY (y1, y2) by

(x1, x2) ∼ fX (x1, x2)

(y1, y2) = g(x1, x2)

Return (y1, y2).

Example: Normal distribution (Box-Muller)

see blackboard


