What are pseudo-random numbers?
A deterministic sequence of numbers in $[0,1]$ with the same statistical properties as a sequence of independent $\mathcal{U}(0,1)$ numbers.

Discrete random variables

A random variable X is discrete, if they can either take a finite or countable number of values.

We define the probability mass function $\mathrm{p}(x)$ of X by

$$
\mathrm{p}(x)=\mathrm{P}(X=x)
$$

The following properties have to be fulfilled:

$$
\sum_{i=1}^{\infty} \mathrm{p}\left(x_{i}\right)=1, \quad \mathrm{p}\left(x_{i}\right) \geq 0
$$

The cumulative distribution functions F can be expressed in terms of $p(a)$ by

$$
F(a)=\mathrm{P}(X \leq a)=\sum_{i: x_{i} \leq a} \mathrm{p}\left(x_{i}\right)
$$

We shall not always be interested in an experiment itself, but rather in some consequence of its random outcome.
Example: Rolling two dice
Let

$$
X:=\text { "Sum of the two dice" }
$$

Such consequences, when real-valued, may be thought of as functions which maps the state space S into the real line \mathbb{R}, and are called random variables.

- $F(x)$ is monotone increasing ("step function") .
- $F(x)$ is piece-wise constant with jumps at elements x_{i}, where $\mathrm{p}\left(x_{i}\right)>0$.
- $\lim _{x \rightarrow \infty} F(x)=1$.
- $\lim _{x \rightarrow-\infty} F(x)=0$.

Examples of discrete distributions
Definition of continuous random variables

- Bernoulli distribution, $\operatorname{Bin}(1, p)$
- Binomial distribution, $\operatorname{Bin}(n, p)$
- Geometric/Negative binomial distribution, NB($r, p)$
- Poisson distribution, $\mathrm{Po}(\lambda)$
- ...

Continuous distributions

A random variable X whose set of possible values is uncountable, is called a continuous random variable.
A random variable is called continuous, if there exists a function $f(x) \geq 0$, so that the cumulative distribution function $F(x)$ can be written as

$$
F(a)=P(X \leq a)=\int_{-\infty}^{a} f(x) d x
$$

Some consequences:

- $P(X=a)=\int_{a}^{a} f(x) d x=0$
- $P(X \in B)=\int_{B} f(x) d x$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- Idea: A random variable X is called continuous, if for two arbitrary values $a<b$ from the support of X, every intermediate value in the interval $[a, b]$ is possible.

The CDF $F(x)$ of continuous random variables

Properties:

- $F(a)$ is a nondecreasing function of a, i.e. if $x<y$ then $F(x)<F(y)$
- $\lim _{x \rightarrow-\infty} F(x)=0$
- $\lim _{x \rightarrow \infty} F(x)=1$
- $\frac{d}{d a} F(a)=f(a)$
- $P(a \leq X \leq b)=F(b)-F(a)=\int_{a}^{b} f(x) d x$
- $\mathrm{P}(X \geq a)=1-F(a)$

A normalising constant c is a multiplicative term in $f(x)$, which does not depend on x. The remaining term is called core:

$$
f(x)=c \underbrace{g(x)}_{\text {core }}
$$

We often write $f(x) \propto g(x)$.

Discrete distributions

Let X be a stochastic variable with possible values $\left\{x_{1}, \ldots, x_{k}\right\}$ and $\mathrm{P}\left(X=x_{i}\right)=p_{i}$. Of course $\sum_{i=1}^{k} p_{i}=1$.

An algorithm for simulating a value for x is then:

- Uniform distribution $\mathcal{U}[0,1]$
- Exponential distribution $\operatorname{Exp}(\lambda)$
- Gamma distribution $\operatorname{Ga}($ shape $=\alpha$, rate $=\beta)$
- Normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
- ...

Proof \& Note

Proof.

$$
\begin{aligned}
\mathrm{P}\left(X=x_{i}\right) & =\mathrm{P}\left(u \in\left(F_{i-1}, F_{i}\right]\right) \\
& =\mathrm{P}\left(u \leq F_{i}\right)-\mathrm{P}\left(u \leq F_{i-1}\right) \\
& =F_{i}-F_{i-1}=\left(p_{1}+\ldots+p_{i}\right)-\left(p_{1}+\ldots+p_{i-1}\right)=p_{i}
\end{aligned}
$$

Note: We may have $k=\infty$

- The algorithm is not necessarily very efficient. If k is large, many comparisons are needed.
- This generic algorithm works for any discrete distribution. For specific distributions there exist alternative algorithms.

Bernoulli distribution

Let $S=\{0,1\}, \mathrm{P}(X=0)=1-p, \mathrm{P}(X=1)=p$.
Thus $X \sim \operatorname{Bin}(1, p)$.

Geometric and negative binomial distribution

The negative binomial distribution gives the probability of needing x trials to get r successes, where the probability for a success is given by p. We write $X \sim \mathrm{NB}(r, p)$.
The generic algorithm can still be used, but an alternative is:
$s=0$
\triangleright (\# of successes)
\triangleright (\# of tries)
while $s<r$ do

$$
u \sim U[0,1]
$$

$$
x \leftarrow x+1
$$

$$
\text { if } u \leq p \text { then }
$$

$$
s \leftarrow s+1
$$

end if
end while
return \times

Binomial distribution

Let $X \sim \operatorname{Bin}(n, p)$.
The generic algorithm from before can be used, but involves tedious calculations which may involve overflow difficulties if n is large.

$$
\begin{aligned}
& \text { An alternative is: } \\
& \qquad \begin{array}{l}
x=0 \\
\text { for } i=1,2, \ldots, n \text { do } \\
\text { generate } u \sim U[0,1] \\
\text { if } u \leq p \text { then } \\
\quad x \leftarrow x+1 \\
\text { end if } \\
\text { end for } \\
\text { return } x
\end{array}
\end{aligned}
$$

Poisson distribution

$$
\text { Let } X \sim \operatorname{Po}(\lambda) \text {, i.e. } f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}, x=0,1,2, \ldots
$$

An alternative to the generic algorithm is:

$$
\begin{aligned}
& x=0 \\
& t=0 \\
& \triangleright \text { (\# of events) } \\
& \triangleright(\text { time }) \\
& \text { while } t<1 \text { do } \\
& \Delta t \sim \operatorname{Exp}(\lambda) \\
& t \leftarrow t+\Delta t \\
& x \leftarrow x+1 \\
& \text { end while } \\
& x \leftarrow x-1 \\
& \text { return } \mathrm{x} \\
& 0 \\
& t=1 \\
& \text { It remains to decide how to generate } \Delta t \sim \operatorname{Exp}(\lambda) \text {. }
\end{aligned}
$$

Change of variables formula
Let X be a continuous random variable with density $f_{X}(x)$.
Consider now the random variable $Y=g(X)$, where for example $Y=\exp (X), Y=X^{2}, \ldots$.
Question: What is the density $f_{Y}(y)$ of Y ?
For a strictly monotone and differentiable function g we can apply the change of variables formula:

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right) \cdot \underbrace{\left|\frac{d g^{-1}(y)}{d y}\right|}_{g^{-1^{\prime}}(y)}
$$

Proof over cumulative distribution function (CDF) $F_{Y}(y)$ of Y (blackboard).

Example

Consider $X \sim \mathcal{U}[0,1]$ and $Y=-\log (X)$, i.e. $y=g(x)=-\log (x)$.
The inverse function and its first derivative are:

$$
g^{-1}(y)=\exp (-y) \quad \frac{d g^{-1}(y)}{d y}=-\exp (-y)
$$

Application of the change of variables formula leads to:

$$
f_{Y}(y)=1 \cdot|-\exp (-y)|
$$

It follows: $Y \sim \operatorname{Exp}(1)!$ Thus, this is a simple way to generate exponentially distributed random variables!
More generally, leads $Y=-\frac{1}{\lambda} \log (x)$ to random variables from an exponential distribution with parameter $\lambda: Y \sim \operatorname{Exp}(\lambda)$.

Inverse cumulative distribution function

More generally, inversion method or the probability integral transform approach can be used to generate samples from an arbitrary continuous distribution with density $f(x)$ and CDF $F(x)$:

1. Generate random variable U from the standard uniform distribution in the interval $[0,1]$.
2. Then is

$$
X=F^{-1}(U)
$$

a random variable from the target distribution.
Proof.

$$
f_{X}(x)=\underbrace{f_{U}(F(X))}_{1} \cdot \underbrace{F^{\prime}(x)}_{f(x)}=f(x)
$$

Inverse cumulative distribution function (II)
Let X have density $f(x), x \in \mathbb{R}$ and CDF $F(x)=\int_{-\infty}^{x} f(z) d z$:

Simulation algorithm:

$$
u \sim U[0,1]
$$

$$
x=F^{-1}(u)
$$

return x

Standard Cauchy distribution

Density and CDF of the standard Cauchy distribution are:

$$
f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}} \quad \text { and } \quad F(X)=\frac{1}{2}+\frac{\arctan (x)}{\pi}
$$

The inverse CDF is thus:

$$
F^{-1}(y)=\tan \left[\pi\left(y-\frac{1}{2}\right)\right]
$$

Random numbers from the standard Cauchy distribution can easily be generated, by sampling U_{1}, \ldots, U_{n} from $\mathcal{U}[0,1]$, and then computing $\tan \left[\pi\left(U_{i}-\frac{1}{2}\right)\right]$.

Gamma distribution

Let $X \sim \mathrm{Ga}($ shape $=\alpha$, rate $=\beta$), i.e.

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta \cdot x}, x>0
$$

From stochastic processes we know that if $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Exp}(\lambda)$,
then $X_{1}+\ldots+X_{n} \sim \operatorname{Ga}(n, \lambda)$.
This gives how to simulate when α is an integer.

Gamma distribution

Further remember: $\chi_{\nu}^{2}=\operatorname{Ga}\left(\frac{\nu}{2}, \frac{1}{2}\right)$,
$X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}(0,1) \Rightarrow \sum_{i=1}^{n} X_{i}^{2} \sim \chi_{n}^{2}$.
Thus, we can simulate $X \sim \mathrm{Ga}\left(\frac{n}{2}, \frac{1}{2}\right)$ by

$$
x=0
$$

$$
\text { for } i=1,2, \ldots, n \text { do }
$$

$$
\text { generate } y \sim \mathcal{N}(0,1) \quad \triangleright \text { Still have to learn how }
$$

$$
x \leftarrow x+y^{2}
$$

end for
return x

Linear transformations

Many distributions have scale parameters, for example

$$
\begin{array}{lll}
X \sim \mathcal{N}(0,1) & \Leftrightarrow & \sigma X \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
X \sim \operatorname{Exp}(1) & \Leftrightarrow & \frac{1}{\lambda} X \sim \operatorname{Exp}(\lambda) \\
X \sim \mathcal{U}[0,1] & \Leftrightarrow & \beta X \sim \mathcal{U}[0, \beta]
\end{array}
$$

Adding a constant can also helping us in some situations

$$
X \sim \mathcal{N}(0,1) \quad \Leftrightarrow \quad X+\mu \sim \mathcal{N}(\mu, 1)
$$

and thereby

$$
X \sim \mathcal{N}(0,1) \quad \Leftrightarrow \quad \sigma X+\mu \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Gamma distribution (II)

β is a rate (inverse scale) parameter, i.e.

$$
X \sim \operatorname{Ga}(\alpha, 1) \quad \Leftrightarrow \quad X / \beta \sim \operatorname{Ga}(\alpha, \beta)
$$

Thus, we can simulate $X \sim \operatorname{Ga}\left(\frac{n}{2}, \beta\right)$ by the algorithm

$$
x=0
$$

$$
\text { for } i=1,2, \ldots, n \text { do }
$$

```
        generate \(y \sim \mathcal{N}(0,1)\)
\(\triangleright\) Still have to learn how
```

$$
x \leftarrow x+y^{2}
$$

end for

$$
\begin{array}{ll}
x \leftarrow \frac{1}{2} x & \triangleright \mathrm{Ga}\left(\frac{n}{2}, 1\right) \\
x \leftarrow \frac{1}{\beta} x & \triangleright \mathrm{Ga}\left(\frac{n}{2}, \beta\right)
\end{array}
$$

return x
Thus, we know how to simulate from a $\mathrm{Ga}(\alpha, \beta)$ whenever $\alpha=\frac{n}{2}$ where n is an integer.

Review: inverse transform technique

Let F be a distribution, and let $U \sim \mathcal{U}[0,1]$.
a) Let F be the distribution function of a random variable taking non-negative integer values. The random variable X given by

$$
X=x_{i} \quad \text { if and only if } \quad F_{i-1}<u \leq F_{i}
$$

has distribution function F.
b) If F is a continuous function, the random variable $X=F^{-1}(u)$ has distribution function F.

Review: inverse transform technique (II)
a) Discrete case:

b) Continuous case:

The inverse transform technique is conceptually easy, but

- in the discrete case, a large number of comparisons may be necessary.
- in the continuous case, F^{-1} must be available.

Bivariate techniques (II)

If we know how to simulate from $f_{X}\left(x_{1}, x_{2}\right)$ we can also simulate from $f_{Y}\left(y_{1}, y_{2}\right)$ by

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \sim f_{X}\left(x_{1}, x_{2}\right) \\
& \left(y_{1}, y_{2}\right)=g\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Bivariate techniques

$$
\begin{aligned}
& \text { Remember: } \\
& \text { If }\left(x_{1}, x_{2}\right) \sim f_{X}\left(x_{1}, x_{2}\right) \\
& \text { and }\left(y_{1}, y_{2}\right)=g\left(x_{1}, x_{2}\right) \\
& \uparrow \\
& \left(x_{1}, x_{2}\right)=g^{-1}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

where g is a one-to-one differentiable transformation. Then

$$
f_{Y}\left(y_{1}, y_{2}\right)=f_{X}\left(g^{-1}\left(y_{1}, y_{2}\right)\right)|\mathbf{J}|
$$

with the determinant of the Jacobian matrix J

$$
|\mathbf{J}|=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{1}} \\
\frac{\partial x_{1}}{\partial y_{2}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|
$$

\Rightarrow Multivariate version of the change-of-variables transformation

Example: Normal distribution (Box-Muller)

Return $\left(y_{1}, y_{2}\right)$.

