
Review: inverse transform technique

Let F be a distribution, and let U ∼ U [0, 1].

a) Let F be the distribution function of a random variable taking

non-negative integer values. The random variable X given by

X = xi if and only if Fi−1 < u ≤ Fi

has distribution function F .

b) If F is a continuous function, the random variable X = F−1(u)

has distribution function F.

Review: inverse transform technique (II)
a) Discrete case:
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b) Continuous case:
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The inverse transform technique is conceptually easy, but

• in the discrete case, a large number of comparisons may be

necessary.

• in the continuous case, F−1 must be available.

Review scaling: Change of variables

X ∼ Exp(1). We are interested in Y = 1
λX , i.e. y = g(x) = 1

λx .

g−1(y) = λy
dg−1(y)

dy
= λ

Application of the change of variables formula leads to:

fY (y) = exp(−λy)λ

It follows: Y ∼ Exp(λ).

Exercise: Check other transformations, we mentioned.

Review: Bivariate techniques

• (x1, x2) ∼ fX (x1, x2)

• (y1, y2) = g(x1, x2)⇔ (x1, x2) = g−1(y1, y2)

• fY (y1, y2) = fX (g−1(y1, y2)) · |J|

Example: Box-Muller to simulate from N (0, 1)



Review: Box-Muller algorithm

Let

X1 ∼ U [0, 2π]

X2 ∼ Exp
(
1
2

)

independently (We aleady know how to do this). Thus,

fX (x1, x2) =
1
2π
· 1
2
exp
(
−1
2
x2

)
, x1 ∈ [0, 2π], x2 ≥ 0

Review: Box-Muller algorithm
Let

y1 =
√
x2 cos x1

y2 =
√
x2 sin x1



⇔




x1 = tan−1

(
y2
y1

)

x2 = y2
1 + y2

2

This defines a one-to-one function g . Now we can define

fY (y1, y2) =
1
2π

1
2
exp
(
−1
2

(y2
1 + y2

2 )

)
· |J|.

with
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· 2y1| = | − 2| = 2

Review: Box-Muller algorithm

Thus,

fY (y1, y2) =
1
2π

1
2
exp
(
−1
2

(y2
1 + y2

2 )

)
· 2

=
1
2π

exp
(
−1
2

(y2
1 + y2

2 )

)

=
1√
2π

exp
(
−1
2
y2
1

)
· 1√

2π
exp
(
−1
2
y2
2

)

so that y1 ∼ N (0, 1) and y2 ∼ N (0, 1) independently.

Graphical interpretation:

Relationship between polar and cartesian coordinates.

Ratio-of-uniforms method
General method for arbitrary densities f known up to a

proportionality constant.

Theorem
Let f ?(x) be a non-negative function with

∫∞
−∞ f ?(x)dx <∞. Let

Cf = {(x1, x2) | 0 ≤ x1 ≤
√

f ?
(

x2
x1

)
}.

a) Then Cf has a finite area

Let (x1, x2) be uniformly distributed on Cf .

b) Then y = x2
x1

has a distribution with density

f (y) =
f ?(y)∫∞

−∞ f ?(u)du



Example: Standard Cauchy distribution

see blackboard

Algorithm to sample form a standard Cauchy

Generate (x1, x2) from U(Cf ) (← How can we do this?)

y = x2
x1

return y .

Proof of theorem

see blackboard

How to sample from Cf ?



Methods based on mixtures

Remember: f (x1, x2) = f (x1|x2)f (x2)

Thus: To generate (x1, x2) ∼ f (x1, x2) we can

• generate x2 ∼ f (x2)

• generate x1 ∼ f (x1|x2)

Note: This mechanism automatically provides a value x1 from its

marginal distribution, i.e. x1 ∼ f (x1) =
∫∞
−∞ f (x1, x2)dx2.

⇒ We are able to generate a value for x1 even when its marginal

density is awkward to sample from directly.

Example: Simulation from Student-t (I)

The density of a Student t distribution with n > 0 degrees of

freedom, mean µ and scale σ2 is

ft(x) =
Γ
(n+1

2

)

Γ
(n

2

) 1√
nπσ2

[
1 +

1
n

(
x − µ
σ

)2
]− n+1

2

, −∞ < x <∞.

Let
x2 ∼ Ga

(
n
2
,
nS
2

)

x1|x2 ∼ N
(
µ,
σ2

x2

)

It can be shown that then

x1 ∼ tn(µ, Sσ2) (show yourself)

Example: Simulation from Student-t (II)

Thus, we can simulate x1 ∼ tn(µ, σ2) by

x2 ∼ Ga
(n
2
,
n
2

)

x1 ∼ N
(
µ,
σ2

x2

)

return x1.

Another application is sampling from a mixture distribution, i.e.

mixture of two normals.

Multivariate normal distribution

x = (x1, . . . , xd )> ∼ Nd (µ,Σ) if the density is

f (x) =
1

(2π)
d
2
· 1√
|Σ|

exp
(
−1
2

(x − µ)>Σ−1(x − µ)

)

with

• x ∈ Rd

• µ = (µ1, . . . , µd )>

• Σ ∈ Rd×d , Σ must be positive definite.



Important properties (I)
Important properties of Nd (µ,Σ)

(known from “Linear statistical models”)

i) Linear transformations:

x ∼ Nd (µ,Σ) ⇒ y = Ax + b ∼ Nr (Aµ + b,AΣA>), with

A ∈ Rr×d , b ∈ Rr .

ii) Marginal distributions:

Let x ∼ Nd (µ,Σ) with

x =

[
x1

x2

]
, µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]

Then

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)

Important properties (II)

iii) Conditional distributions:

With the same notation as in ii) we also have

x1|x2 ∼ N (µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11 − Σ12Σ−1

22 Σ21)

iv) Quadratic forms:

x ∼ Nd (µ,Σ) ⇒ (x − µ)>Σ−1(x − µ) ∼ χ2
d

Simulation from the multivariate normal

How can we simulate from Nd (µ,Σ)?

Let x ∼ Nd (0, I)

y = µ + Ax
i)⇒ y ∼ N (µ,AA>)

Thus, if we choose A so that AA> = Σ we are done.

Note: There are several choices of A. A popular choice is to let A

be the Cholesky decomposition of Σ.

Read chapter 1.4.2 and 1.4.3 in Gamerman & Lopes yourself


