Review: inverse transform technique

Let F be a distribution, and let $U \sim \mathcal{U}[0,1]$.
a) Let F be the distribution function of a random variable taking non-negative integer values. The random variable X given by

$$
X=x_{i} \quad \text { if and only if } \quad F_{i-1}<u \leq F_{i}
$$

has distribution function F.
b) If F is a continuous function, the random variable $X=F^{-1}(u)$ has distribution function F.

Review scaling: Change of variables

$X \sim \operatorname{Exp}(1)$. We are interested in $Y=\frac{1}{\lambda} X$, i.e. $y=g(x)=\frac{1}{\lambda} x$.

$$
g^{-1}(y)=\lambda y \quad \frac{d g^{-1}(y)}{d y}=\lambda
$$

Application of the change of variables formula leads to:

$$
f_{Y}(y)=\exp (-\lambda y) \lambda
$$

It follows: $Y \sim \operatorname{Exp}(\lambda)$.
Exercise: Check other transformations, we mentioned.

Review: inverse transform technique (II)
a) Discrete case:
b) Continuous case:

The inverse transform technique is conceptually easy, but

- in the discrete case, a large number of comparisons may be necessary.
- in the continuous case, F^{-1} must be available.

Review: Bivariate techniques

- $\left(x_{1}, x_{2}\right) \sim f_{X}\left(x_{1}, x_{2}\right)$
- $\left(y_{1}, y_{2}\right)=g\left(x_{1}, x_{2}\right) \Leftrightarrow\left(x_{1}, x_{2}\right)=g^{-1}\left(y_{1}, y_{2}\right)$
- $f_{Y}\left(y_{1}, y_{2}\right)=f_{X}\left(g^{-1}\left(y_{1}, y_{2}\right)\right) \cdot|\mathbf{J}|$

Example: Box-Muller to simulate from $\mathcal{N}(0,1)$

Review: Box-Muller algorithm

Let

$$
\begin{aligned}
& X_{1} \sim \mathcal{U}[0,2 \pi] \\
& X_{2} \sim \operatorname{Exp}\left(\frac{1}{2}\right)
\end{aligned}
$$

independently (We aleady know how to do this). Thus,

$$
f_{X}\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \cdot \frac{1}{2} \exp \left(-\frac{1}{2} x_{2}\right), \quad x_{1} \in[0,2 \pi], x_{2} \geq 0
$$

Review: Box-Muller algorithm

Thus,

$$
\begin{aligned}
f_{Y}\left(y_{1}, y_{2}\right) & =\frac{1}{2 \pi} \frac{1}{2} \exp \left(-\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)\right) \cdot 2 \\
& =\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)\right) \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y_{1}^{2}\right) \cdot \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y_{2}^{2}\right)
\end{aligned}
$$

so that $y_{1} \sim \mathcal{N}(0,1)$ and $y_{2} \sim \mathcal{N}(0,1)$ independently.
Graphical interpretation:
Relationship between polar and cartesian coordinates.

Review: Box-Muller algorithm
Let

$$
\left.\begin{array}{l}
y_{1}=\sqrt{x_{2}} \cos x_{1} \\
y_{2}=\sqrt{x_{2}} \sin x_{1}
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{l}
x_{1}=\tan ^{-1}\left(\frac{y_{2}}{y_{1}}\right) \\
x_{2}=y_{1}^{2}+y_{2}^{2}
\end{array}\right.
$$

This defines a one-to-one function g. Now we can define

$$
f_{Y}\left(y_{1}, y_{2}\right)=\frac{1}{2 \pi} \frac{1}{2} \exp \left(-\frac{1}{2}\left(y_{1}^{2}+y_{2}^{2}\right)\right) \cdot|\mathbf{J}|
$$

with

$$
\begin{aligned}
|\mathbf{J}| & =\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{1}} \\
\frac{\partial x_{1}}{\partial y_{2}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{1+\left(\frac{y_{2}}{y_{1}}\right)^{2}}\left(-\frac{y_{2}}{y_{1}^{2}}\right) & 2 y_{1} \\
\frac{1}{1+\left(\frac{y_{2}}{y_{2}}\right)^{2}} \frac{1}{y_{1}} & 2 y_{2}
\end{array}\right| \\
& =\left|-\frac{y_{2}}{y_{1}^{2}+y_{2}^{2}} \cdot 2 y_{2}-\frac{y_{1}}{y_{1}^{2}+y_{2}^{2}} \cdot 2 y_{1}\right|=|-2|=2
\end{aligned}
$$

Ratio-of-uniforms method

General method for arbitrary densities f known up to a proportionality constant.

Theorem
Let $f^{\star}(x)$ be a non-negative function with $\int_{-\infty}^{\infty} f^{\star}(x) d x<\infty$. Let $C_{f}=\left\{\left(x_{1}, x_{2}\right) \left\lvert\, 0 \leq x_{1} \leq \sqrt{f \star\left(\frac{x_{2}}{x_{1}}\right)}\right.\right\}$.
a) Then C_{f} has a finite area

Let $\left(x_{1}, x_{2}\right)$ be uniformly distributed on C_{f}.
b) Then $y=\frac{x_{2}}{x_{1}}$ has a distribution with density

$$
f(y)=\frac{f^{\star}(y)}{\int_{-\infty}^{\infty} f^{\star}(u) d u}
$$

Example: Standard Cauchy distribution
Algorithm to sample form a standard Cauchy

Generate $\left(x_{1}, x_{2}\right)$ from $\mathcal{U}\left(C_{f}\right)(\leftarrow$ How can we do this?)

see blackboard

$y=\frac{x_{2}}{x_{1}}$
return y.

Proof of theorem

How to sample from C_{f} ?

Methods based on mixtures

Remember: $f\left(x_{1}, x_{2}\right)=f\left(x_{1} \mid x_{2}\right) f\left(x_{2}\right)$

Thus: To generate $\left(x_{1}, x_{2}\right) \sim f\left(x_{1}, x_{2}\right)$ we can

- generate $x_{2} \sim f\left(x_{2}\right)$
- generate $x_{1} \sim f\left(x_{1} \mid x_{2}\right)$

Note: This mechanism automatically provides a value x_{1} from its marginal distribution, i.e. $x_{1} \sim f\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}$.
\Rightarrow We are able to generate a value for x_{1} even when its marginal density is awkward to sample from directly.

Example: Simulation from Student-t (I)

The density of a Student t distribution with $n>0$ degrees of freedom, mean μ and scale σ^{2} is

$$
f_{t}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{1}{\sqrt{n \pi \sigma^{2}}}\left[1+\frac{1}{n}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]^{-\frac{n+1}{2}}, \quad-\infty<x<\infty
$$

Let

$$
\begin{aligned}
x_{2} & \sim \mathrm{Ga}\left(\frac{n}{2}, \frac{n S}{2}\right) \\
x_{1} \mid x_{2} & \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{x_{2}}\right)
\end{aligned}
$$

It can be shown that then

$$
x_{1} \sim t_{n}\left(\mu, S \sigma^{2}\right) \quad \text { (show yourself) }
$$

Multivariate normal distribution

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma) \text { if the density is }
$$

$$
f(x)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \cdot \frac{1}{\sqrt{|\Sigma|}} \exp \left(-\frac{1}{2}(x-\boldsymbol{\mu})^{\top} \Sigma^{-1}(x-\boldsymbol{\mu})\right)
$$

with

- $x \in \mathbb{R}^{d}$
- $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{d}\right)^{\top}$
- $\Sigma \in \mathbb{R}^{d \times d}, \Sigma$ must be positive definite.

Another application is sampling from a mixture distribution, i.e. mixture of two normals.

Important properties (I)
Important properties of $\mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$
(known from "Linear statistical models")
i) Linear transformations:

$$
\begin{aligned}
& \boldsymbol{x} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma) \Rightarrow \boldsymbol{y}=\mathbf{A} \boldsymbol{x}+\boldsymbol{b} \sim \mathcal{N}_{r}\left(\mathbf{A} \boldsymbol{\mu}+\boldsymbol{b}, \mathbf{A} \Sigma \mathbf{A}^{\top}\right), \text { with } \\
& \mathbf{A} \in \mathbb{R}^{r \times d}, \boldsymbol{b} \in \mathbb{R}^{r} .
\end{aligned}
$$

ii) Marginal distributions:

Let $\boldsymbol{x} \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma)$ with

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad \mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right]
$$

Then

$$
\begin{aligned}
& x_{1} \sim \mathcal{N}\left(\mu_{1}, \Sigma_{11}\right) \\
& x_{2} \sim \mathcal{N}\left(\mu_{2}, \Sigma_{22}\right)
\end{aligned}
$$

Simulation from the multivariate normal

How can we simulate from $\mathcal{N}_{d}(\mu, \Sigma)$?

Let $x \sim \mathcal{N}_{d}(0, \mathrm{I})$

$$
y=\boldsymbol{\mu}+\mathbf{A x} \quad \stackrel{\text { i) }}{\Rightarrow} \quad y \sim \mathcal{N}\left(\boldsymbol{\mu}, \mathrm{AA}^{\top}\right)
$$

Thus, if we choose \mathbf{A} so that $\mathbf{A A}^{\top}=\Sigma$ we are done.

Note: There are several choices of \mathbf{A}. A popular choice is to let \mathbf{A} be the Cholesky decomposition of Σ.
iii) Conditional distributions:

With the same notation as in ii) we also have

$$
x_{1} \mid x_{2} \sim \mathcal{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

iv) Quadratic forms:

$$
x \sim \mathcal{N}_{d}(\boldsymbol{\mu}, \Sigma) \Rightarrow(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(x-\boldsymbol{\mu}) \sim \chi_{d}^{2}
$$

Read chapter 1.4.2 and 1.4.3 in Gamerman \& Lopes yourself

