
Lecture 7: Brief reminder – Bayesian model

• data: y

• likelihood model: y |θ ∼ f (y |θ)

• prior distribution: θ ∼ f (θ)

• posterior distribution:

f (θ|y)︸ ︷︷ ︸
Posterior

∝ f (y |θ)︸ ︷︷ ︸
Likelihood

× f (θ)︸︷︷︸
Prior

Billard ball example

A billard ball dropped on line of length 1 generates a realisation of

U(0, 1).

• drop the ball once: denote the result by p.

• drop the ball n new times: denote result of ith drop by yi .

• let x =
∑n

i=1 I (yi ≤ p).

• want to estimate p based on x .

• statistic 1-solution: X ∼ Bin(n, p)

MLE:p̂ =
x
n

Alternative solution Bayesian point estimates

Statistical inference about θ is based solely on the posterior distribution

f (θ|x). Suitable point estimates are location parameters, such as:

• Posterior mean E(θ|x):

E(θ|x) =

∫
θf (θ|x)dθ.

• Posterior mode Mod(θ|x):

Mod(θ|x) = argmax
θ

f (θ|x)

• Posterior median Med(θ|x) is defined as the value a which satisfies
∫ a

−∞
f (θ|x)dθ = 0.5 and

∫ ∞

a
f (θ|x)dθ = 0.5



Binomial experiment

Let X ∼ Bin(n, p) with n known and p ∈ Π = (0, 1) unknown.

Since p is constrained to be within 0 and 1, a usual prior distribution is a

beta distribution, so that p ∼ Be(α, β) with α, β > 0 and T = (0, 1).
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Binomial experiment (2)

X ∼ Bin(n, p), x = 0, 1, . . . , n, p ∼ Be(α, β), 0 < p < 1

⇓ ⇓

L(p) = f (x |p) =

(
n
x

)
px(1− p)n−x f (p) =

1
B(α, β)

pα−1(1− p)β−1

∝ px(1− p)n−x ∝ pα−1(1− p)β−1

Thus, the posterior distribution results as:

f (p|x) ∝ f (x |p)× f (p)

= px(1− p)n−x × pα−1(1− p)β−1

= pα+x−1(1− p)β+n−x−1

This corresponds to the core of a beta distribution, so that

p|x ∼ Be(α + x︸︷︷︸
successes

, β + n − x︸ ︷︷ ︸
failures

)

Binomial experiment: Simple example
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E(π | x) = 0.733

0.769

Posterior
Prior

0.492 0.916

Posterior density of p|x for a Be(3, 2) prior and observation x = 8 in a

binomial experiment with n = 10 trials. An equi-tailed 95% credible

interval is also shown.

Using a Be(1,1) the posterior mode equals the Maximum Likelihood

(ML) estimate.

Credible interval

For fixed α ∈ (0, 1), a (1− α) credible interval is defined through two

real numbers tl and tu, so that
∫ tu

tl

f (θ|x)dθ = 1− α.

The number 1− α is called the credible level of the credible interval

[tl , tu].

There are infinitely many (1− α)-credible intervals for fixed α.

(At least if θ is continuous.)



Credible interval (II)

Equi-tailed credible interval
The same amount (α/2) of probability mass is cut from the left and right

tail of the posterior distribution, i.e. choose tl as the α/2-quantile and tu
as the 1− α/2-quantile.

Highest posterior density (HPD) intervals

Feature: The posterior density at any value of θ inside the credible

interval must be larger than anywhere outside the credible interval.

HPD-interval have the smallest width among all (1−α) credible intervals.
For symmetric posterior distributions HPD intervals are also equi-tailed.

Properties of the beta-distribution

Be(α, β) can be interpreted as that which would have arisen if we had

started with an “improper” Be(0, 0) prior and then observed α successes

in α + β trials. ⇒ n0 = α + β can be viewed as a prior sample size and

α/(α + β) as prior mean.

The posterior mean is given by:

E(p|x) =
α + x

α + β + n
=

α + β

α + β + n
· α

α + β︸ ︷︷ ︸
Weighted prior mean

+
n

α + β + n
· x
n︸ ︷︷ ︸

Weighted ML-estimate

The weights are proportional to the prior sample size and the data sample

size.

⇒ Observing more data leads to a decreasing influence of the prior.

Bayesian learning
An important feature of Bayesian inference is the consistent processing of

sequentially arising data.

• Suppose new independent data x2 from a Bin(n, p) arrive.

• The posterior distribution from the original observation (with x now

called x1) becomes the prior for x2:

f (p|x1, x2) ∝ f (x2|p, x1)× f (p|x1)

∝ f (x2|p)× f (p|x1)

Using f (p|x1) ∝ f (x1|p)× f (p) an alternative formula is

f (p|x1, x2) ∝ f (x2|p)× f (x1|p)× f (p)

= f (x1, x2|p)× f (p)

Thus, f (p|x1, x2) is the same whether or not the data are processed

sequentially.

Choice of prior distributions

• Under a uniform prior the posterior mode equals the MLE, as

f (θ|x) ∝ Lx(θ)

• The prior distribution has to be chosen appropriately, which often

causes concerns to practitioners.

• It should reflect the knowledge about the parameter of interest

(e.g. a relative risk parameter in an epidemiological study).

• Ideally it should be elicited from experts.

• In the absence of expert opinions, simple informative prior

distributions may still be a reasonable choice.



Choice of the prior distribution

Prior distributions incorporate prior beliefs in the Bayesian analysis. A

pragmatic approach is to choose a conjugate prior distribution.

Conjugate prior distribution
Let Lx(θ) = p(x |θ) denote a likelihood function based on the observation

X = x . A class G of distributions is called conjugate with respect to

Lx(θ) if the posterior distribution p(θ|x) is in G for all x whenever the

prior distribution p(θ) is in G.

Example
Binomial experiment Let X |p ∼ Bin(n, p). The family of beta

distributions, p ∼ Be(α, β), is conjugate with respect to Lx(p), since the

posterior distribution is again a beta distribution:

p|x ∼ Be(α + x , β + n − x)

List of conjugate prior distributions

Sequential processing:

• Sufficient to study conjugacy for one member of a random sample

X1, . . . ,Xn.

• The posterior after observing the first observation is of the same

type as the prior and serves as new prior distribution for the next

observation.

• Sequentially processing the data, only the parameters will change

and not the type of prior.

List of conjugate prior distributions

Likelihood Conjugate prior Posterior distribution

X |p ∼ Bin(n, p) p ∼ Be(α, β) p|x ∼ Be(α+ x , β + n − x)

X |p ∼ Geom(p) p ∼ Be(α, β) p|x ∼ Be(α+ 1, β + x − 1)

X |λ ∼ Po(e · λ) λ ∼ G(α, β) λ|x ∼ G(α+ x , β + e)

X |λ ∼ Exp(λ) λ ∼ G(α, β) λ|x ∼ G(α+ 1, β + x)

X |µ ∼ N (µ, σ2
?) µ ∼ N (ν, τ2) µ|x ∼ N

[
(A)−1 ( x

σ2 + ν
τ2

)
, (A)−1]

X |σ2 ∼ N (µ?, σ
2) σ2 ∼ IG(α, β) σ2|x ∼ IG(α+ 1

2 , β + 1
2 (x − µ)2)

?: known.

A = 1
σ2 + 1

τ2

Improper prior distributions

Maybe you feel uncomfortable putting a prior on an unknown parameter.

If you use a normal prior you can use a very large variance. In the limit

this leads to an improper prior distribution.

Improper prior distribution
For example, let µ ∼ N (µ,∞), i.e. f (µ) ∝ const. > 0.

∫
f (µ)dµ ≈ ∞

Priors such as f (µ) = const., f (σ) = 1/σ are improper, because they do

not integrate to 1.



Improper prior distributions (II)

In most cases, improper priors can be used in Bayesian analyses without

major problems. However, things to watch out for are:

• In a few models, the use of improper priors can result in improper

posteriors.

• Use of improper priors makes model selection difficult.

Uninformative priors

Though conjugate priors are computationally nice, priors might be

preferred which do not strongly influence the posterior distribution. Such

a prior is called an uninformative prior.

• The historical approach, followed by Laplace and Bayes, was to

assign flat priors.

• This prior seems reasonably uninformative. We do not know where

the actual value lies in the parameter space, so we might as well

consider all values equi-probable.

• However, this prior is not invariant to one-to-one transformations.

Harold Jeffreys’ prior

Definition
Let X denote a random variable with likelihood function p(x |θ) where θ is

an unknown scalar parameter. Jeffreys’ prior or Jeffreys’ rule is defined as

f (θ) ∝
√

J(θ),

where J(θ) is the expected Fisher information of θ.

Jeffreys’ prior has certain desired properties, e.g. invariance property.

Jeffreys’ prior for the geometric distribution
The geometric distribution models the number X of Bernoulli trials

needed to get the first success. Let X |π ∼ Geom(π), i.e.

P(x |π) = π · (1− π)x−1.

Thus:

lx(π) = log(π) + (x − 1) log(1− π)

l ′x(π) =
1
π
− x − 1

1− π
l ′′x (π) = −

1
π2 −

x − 1
(1− π)2

J(π) = −E
(
− 1
π2 −

x − 1
(1− π)2

)

=
1
π2 +

1
π
− 1

(1− π)2

=
1
π2 +

1− π
π(1− π)2

= π−2(1− π)−1

Jeffreys’ prior results as:

f (π) ∝
√

J(π) = π−1(1− π)−1/2

(can be seen as “Be(0, 0.5)”)
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⇒ Small values are favoured.



Introduction to Markov chain Monte Carlo
Application of ordinary Monte Carlo methods is difficult if the unknown

parameter is of high dimension. However, Markov chain Monte Carlo

(MCMC) methods will then be a useful alternative.

en.wikipedia.org/wiki/Markov_chain

Andrey Markov (1856 – 1922),

Russian mathematician.

Markov chain:

X1 X2 X3 X4 X5

Given the previous observation Xi−1, Xi is independent of the sequence

of events that preceded it.


