
Lecture 8: Markov chain Monte Carlo
• Goal: Generation of samples or approximation of an expected value

for a (possibly high-dimensional) density π(x).

• Application of ordinary Monte Carlo methods is difficult.
• However, Markov chain Monte Carlo (MCMC) methods will then be

a useful alternative.

en.wikipedia.org/wiki/Markov_chain

Andrey Markov (1856 – 1922),

Russian mathematician.

Markov chain:

X1 X2 X3 X4 X5

Given the previous observation Xi−1, Xi is independent of the sequence

of events that preceded it.

Idea of Markov chain Monte Carlo

Idea
Simulate a Markov chain X1, . . . ,Xi , . . . , which is designed in a way such

that P(Xi = x) converges to the target distribution π(x), e.g. the

posterior distribution.

Properties:

• After convergence, one obtains random samples from the target

distribution, which can be used to estimate posterior characteristics.

• Samples will typically be dependent.

Central algorithms:

• Metropolis-Hasting algorithm

• Gibbs sampling

Review: Markov chains

A Markov chain is a stochastic process {Xi}∞i=0, Xi ∈ S , where given the

present state, past and future states are independent (Markov

assumption):

P(Xi+1 = xi+1 | X0 = x0,X1 = x1, . . . ,Xi = xi ) = P(Xi+1 = xi+1 | Xi = xi )

Review: Markov chains

A Markov chain with stationary transition probabilities can be specified

by:

• the initial distribution P(X0 = x0) = g(x0)

• the transition matrix

P(x? | x) = P(Xi+1 = x? | Xi = x) [= Pxx? ]



Review: Markov chains

A Markov chain has a unique limiting distribution π(x) if the chain is

irreducible, aperiodic, and positive recurrent. If so, the limiting

distribution π(x) = limi→∞ P(Xi = x) is given by

π(x?) =
∑

x∈S

π(x)P(x? | x) for all x? ∈ S

∑

x∈S

π(x) = 1
(1)

A sufficient condition for (1) is the detailed balance condition:

π(x)P(x? | x) = π(x?)P(x | x?) for all x , x? ∈ S (2)

which gives a time-reversible Markov chain.

Problem statement

In stochastic processes course: The Markov chain is given, i.e. P(x? | x)

is given, find π(x).

Now: π(x), x ∈ S is given, want to find P(x? | x), x , x? ∈ S so that

π(x?) =
∑

x∈S

π(x)P(x? | x) for all x? ∈ S

∑

x∈S

π(x) = 1

However, # unknowns: |S | · (|S | − 1); # equations: |S |.

⇒ many solutions exist – we want one!

(Note: |S | can be huge, so solving this as a matrix equation is not

possible.)

Idea

Focus on (2) instead. We want to find P(x? | x) that solves

π(x)P(x? | x) = π(x?)P(x | x?) for all x , x? ∈ S

Here, we still have many solutions. However, we do not need a general

solution, one (good) solution is enough.

Idea II

Try:

P(x? | x) = Q(x? | x)α(x? | x), x? 6= x

P(x | x) = 1−
∑

x? 6=x

Q(x? | x)α(x? | x)

so that
∑

x?∈S P(x? | x) = 1.

Here:

• Q(x? | x) is an almost arbitrary transition matrix (proposal kernel)

for some other irreducible Markov chain.

• α(x? | x) ∈ [0, 1] is an acceptance probability.



Metropolis-Hastings algorithm

1: Init x0 ∼ g(x0)

2: for i = 1, 2, . . . do
3: Generate a proposal x? ∼ Q(x?|xi−1)

4: Compute the acceptance probability α(x? | xi−1)

5: u ∼ U(0, 1)

6: if u < α(x? | xi−1) then
7: xi ← x?

8: else
9: xi ← xi−1

10: end if
11: end for

What is Q and α?

See blackboard

Metropolis-Hastings algorithm

1: Init x0 ∼ g(x0)

2: for i = 1, 2, . . . do
3: Generate a proposal x? ∼ Q(x?|xi−1)

4: u ∼ U(0, 1)

5: if u < min


1,

π(x?)

π(xi−1)
× Q(xi−1|x?)

Q(x?|xi−1)︸ ︷︷ ︸
Proposal ratio




︸ ︷︷ ︸
Acceptance probability α

then

6: xi ← x?

7: else
8: xi ← xi−1

9: end if
10: end for

Acceptance step

• In the acceptance step the proposal x? is accepted with

probability α as new value of the Markov chain.

• This is similar to rejection sampling. However, here no constant c

needs to be determined.

• Further, if we reject, then we retain the sample.



History of Metropolis-Hastings

• The algorithm was presented 1953 by Metropolis, Rosenbluth,

Rosenbluth, Teller and Teller from the Los Alamos group. It is

named after the first author Nicholas Metropolis.

• W. Keith Hastings extended it to the more general case in 1970.

• It was then ignored for a long time.

• Since 1990 it has been used more intensively.

Toy example

Setting see blackboard and computer

Toy example

We considered the Poisson distribution

π(x) =
10x

x!
e−10, x = 0, 1, 2, . . .

Choose proposal kernel

• If x = 0

Q(x?|0) =





1
2 for x? ∈ {0, 1}
0 otherwise

• For x > 0

Q(x?|x) =





1
2 for x? ∈ {x − 1, x + 1}
0 otherwise

Toy example

• If x = 0

α(0|0) = min {1, 1} = 1

α(1|0) = min {1, 10} = 1

• If x > 0

α(x − 1|x) = min



1,

10x−1

(x−1)!e
−10

10x

(x)!e
−10 ·

1
2
1
2



 = min

{
1,

x
10

}
(3)

α(x + 1|x) = min



1,

10x+1

(x+1)!e
−10

10x

(x)!e
−10 ·

1
2
1
2



 = min

{
1,

10
x + 1

}
(4)

From (3) we see that α = 1 if x > 9 and x/10 else.

From (4) we see that α = 1 if x ≤ 9 and 10/(x + 1) else.



Toy example

Note this gives for x > 0:

P(x − 1|x) =
1
2
min

{
1,

x
10

}
=





x
20 for x ≤ 9
1
2 for x > 9

P(x + 1|x) =
1
2
min

{
1,

10
x + 1

}
=





1
2 for x ≤ 9
5

x+1 for x > 9

P(x |x) follows directly.

(For x = 0 we have P(0|0) = 1/2 and P(1|0) = 1/2).

However, we do not have to compute these values! (Show R-code

demo_toyMCMC2.R)

What about

• Irreducible: Must be checked in each case. Must choose Q(x? | x)

so that this is ok.

• Aperiodic: Sufficient that P(x | x) > 0 for one x ∈ S , so sufficient

that α(x? | x) < 1 for one pair x?, x ∈ S .

• Positive recurrent: for finite S , irreducibility is sufficient. More

difficult in general, but if Markov chain is not recurrent we will see

this as drift in the simulations. (In practice usually no problem).

Remarks on the Metropolis-Hastings algorithm

• Under some regularity conditions it can be shown that the

Metropolis-Hasting algorithm converges to the target distribution

regardless of the specific choice of Q(x |xi−1).

• However, the speed of convergence and the dependence between the

successive samples depends strongly on the proposal distribution.

• Since we only need to compute the ratio π(x?)/π(xi−1), the

proportionality constant is irrelevant.

• Similarly, we only care about Q(.) up to a constant.

• Often it is advantageous to calculate the acceptance probability on

log-scale, which makes the computations more stable.

Special cases of the Metropolis-Hastings algorithm

Depending on the choice of Q(x?|x) different special cases result. In

particular, two classes are important

• The independence proposal

• The Metropolis algorithm



Independence proposal

• The proposal distribution does not depend on the current value xi−1

Q(x |xi−1) = Q(x).

• Q(x) is an approximation to π(x).

• The sampler is closer to rejection sampler. However, here if we

reject, then we retain the sample.

Experience:

• Performance is either very good or very bad, usually very bad.

• The tails of the proposal distribution should be at least as heavy as

the tails of the target distribution.

The Metropolis algorithm
The proposal density is symmetric around the current value, that means

Q(xi−1|x?) = Q(x?|xi−1).

Hence,

α = min
(
1,

π(x?)

π(xi−1)
× Q(xi−1|x?)

Q(x?|xi−1)

)
= min

(
1,

π(x?)

π(xi−1)

)

A particular case is the random walk proposal, defined as the current

value xi−1 plus a random variate of a 0-centred symmetric distribution.

−1 0 1 2 3 4 5 6
x

● ●

● ●

xi−1 x*

Q(xi−1|x*) = = Q(x*|xi−1)0.235

N(µ=xi−1,σ
2= 1)

N(µ=x*,σ2= 1)

Examples for random walks proposal

Assume x is scalar.

Then all proposal kernels, which add a random variable generated from a

zero-symmetrical distribution to the current value xi−1, are random walk

proposals. For example:

x? ∼ N (xi−1, σ
2)

x? ∼ tν(xi−1, σ
2)

x? ∼ U(xi−1 − d , xi−1 + d)

Efficiency of the Metropolis-Hastings algorithm

The efficiency and performance of the Metropolis-Hastings algorithm

depends crucially on the relative frequency of acceptance.

An acceptance rate of one is not always good. Consider the random walk

proposal:

• Too large acceptance rate ⇒ Slow exploration of the target density.

• Too small acceptance rate ⇒ Large moves are proposed, but rarely

accepted.

Tuning the acceptance rate:

• For random walk proposals, acceptance rates between 20% and 50%

are typically recommended. They can be achieved by changing the

variance of the proposal distribution.

• For independence proposals a high acceptance rate is desired, which

means that the proposal density is close to the target density.



Example: Random walk proposal

Exploration of a standard Gaussian distribution (N (0, 1)) using a random

walk Metropolis algorithm. As proposal assume a Gaussian distribution

with variance σ2, where.

• σ2 = 0.24

• σ2 = 2.4

• σ2 = 24

See R-code demo_mcmcRW.R.

Example of Rao (1973)

The vector y = (y1, y2, y3, y4) = (125, 18, 20, 34) is multinomial

distributed with probabilities
{
1
2

+
θ

4
,
1− θ
4

,
1− θ
4

,
θ

4

}

We would like to simulate from the posterior distribution (assuming a

uniform prior)

f (θ|y) ∝ (2 + θ)y1(1− θ)y2+y3θy4 .

using MCMC and compare two proposal kernels:

1. independence proposal

2. random walk proposal

See R-code demo_mcmcRao.R.

Rao: Independence proposal

θ? ∼ N (Mod(θ|y),F 2 × I−1p ), (5)

where Mod(θ|data) denotes the posterior mode, Ip the negative curvature

of the log posterior at the mode, and F a factor to blow up the standard

deviation.

Of note, asymptotically the posterior distribution follows (5) for F = 1.

Rao: Random walk proposal

θ? ∼ U(θ(k) − d , θ(k) + d),

where θ(k) denotes the current state of the Markov chain and

d =
√
12/2 · 0.1.


