
Lecture 9: Brief reminder

• Problem: Sample from π(x), x ∈ S .

• MCMC idea: Construct Markov chain with π(x) as limiting

distribution. Simulate the Markov chain for a long time.

Review: Metropolis-Hastings construction

•

P(x? | x) =





Q(x? | x)α(x? | x), x? 6= x

1−∑z 6=x Q(z | x)α(z | x), x? = x

•
α(x? | x) = min

{
1,
π(x?)

π(x)
· Q(x | x?)

Q(x? | x)

}

• Must check irreducibility, aperiodicity and positive recurrence in each

case.

Review: Metropolis-Hastings algorithm

1: Init x0 ∼ g(x0)

2: for i = 1, 2, . . . do
3: Generate a proposal x? ∼ Q(x?|xi−1)

4: u ∼ U(0, 1)

5: if u < min


1,

π(x?)

π(xi−1)
× Q(xi−1|x?)

Q(x?|xi−1)︸ ︷︷ ︸
Proposal ratio




︸ ︷︷ ︸
Acceptance probability α

then

6: xi ← x?

7: else
8: xi ← xi−1

9: end if
10: end for

Review: Special cases Metropolis-Hastings

• Metropolis algorithm: The proposal density is symmetric around the

current value, that means

Q(xi−1|x?) = Q(x?|xi−1).

Hence,

α = min
(
1,

π(x?)

π(xi−1)
× Q(xi−1|x?)

Q(x?|xi−1)

)
= min

(
1,

π(x?)

π(xi−1)

)

• Independence sampler: The proposal distribution does not depend

on the current value x i−1

Q(x |xi−1) = Q(x).

Q(x) is an approximation to π(x) ⇒ acceptance rate should be high.

Efficiency of the Metropolis-Hastings algorithm

The efficiency and performance of the Metropolis-Hastings algorithm

depends crucially on the relative frequency of acceptance.

An acceptance rate of one is not always good. Consider the random walk

proposal:

• Too large acceptance rate ⇒ Slow exploration of the target density.

• Too small acceptance rate ⇒ Large moves are proposed, but rarely

accepted.

Tuning the acceptance rate:

• For random walk proposals, acceptance rates between 20% and 50%

are typically recommended. They can be achieved by changing the

variance of the proposal distribution.

• For independence proposals a high acceptance rate is desired, which

means that the proposal density is close to the target density.

Example: Random walk proposal

Exploration of a standard Gaussian distribution (N (0, 1)) using a random

walk Metropolis algorithm. As proposal assume a Gaussian distribution

with variance σ2, where.

• σ = 0.24

• σ = 2.4

• σ = 24

See R-code demo_mcmcRW.R.

Example of Rao (1973)

The vector y = (y1, y2, y3, y4) = (125, 18, 20, 34) is multinomial

distributed with probabilities
{
1
2

+
θ

4
,
1− θ
4

,
1− θ
4

,
θ

4

}

We would like to simulate from the posterior distribution (assuming a

uniform prior)

f (θ|y) ∝ (2 + θ)y1(1− θ)y2+y3θy4 .

using MCMC and compare two proposal kernels:

1. independence proposal

2. random walk proposal

See R-code demo_mcmcRao.R.

Rao: Independence proposal

θ? ∼ N (Mod(θ|y),F 2 × I−1p), (5)

where Mod(θ|data) denotes the posterior mode, Ip the negative curvature

of the log posterior at the mode, and F a factor to blow up the standard

deviation.

Of note, asymptotically the posterior distribution follows (5) for F = 1.

Rao: Random walk proposal

θ? ∼ U(θ(k) − d , θ(k) + d),

where θ(k) denotes the current state of the Markov chain and

d =
√
12/2 · 0.1.

Comments on the Metropolis-Hasting algorithm

• A trivial special case results when

Q(x?|xi−1) = π(x?),

That means, we propose realisations from the target distribution.

Then α = 1 and all proposals are accepted.

• The advantage of the MH-algorithm is that arbitrary proposal

kernels can be used. The algorithm will always converge to the

target distribution.

• However, the speed of convergence and the dependence between the

successive samples depends strongly on the proposal distribution.

Example: Ising/Potts model

Model developed in statistical mechanics (analysis of magnetic material)

and used also in image restauration for example.

Let x = (x1, . . . , xn) represent the colors (black/white) in the pixels of a

given image, with x i ∈ {0, 1}, where the distribution function is given by

π(x) = c · exp


−β

∑

i∼j

I (x i 6= x j)




where I (.) denotes the indicator function and

c =
1∑

x exp(−β∑i∼j I (x i 6= x j))
.

Note: The state space size and hence the number of terms in c is

2n = 240 000 ≈ 1012 041 for a 200× 200 grid. Thus, we cannot compute c .

Simualtion using Metropolis-Hastings algorithm

Current state x = (x1, . . . , xn). Propose a new state y = (y1, . . . , yn) as

follows:

• draw a node k ∈ {1, 2, . . . , n} at random
• propose to reverse the value of node k , i.e.

y = (x1, . . . , xk−1, 1− xk , xk+1, . . . , xn).

Thus

Q(y | x) =





1
n if x and y differ in exactly one node

0 else.

Acceptance probability

α(y | x) = min
{
1,
π(y)

π(x)
· Q(x | y)

Q(y | x)

}

= min



1,

exp
(
−β∑i∼j I (y i 6= y j)

)

exp
(
−β∑i∼j I (x i 6= x j)

) ·
1
n
1
n





= min

{
1,

exp
(
−β∑i∼k I (x i 6= 1− xk)

)

exp (−β∑i∼k I (x i 6= xk))

}

Ising example
β = 0.8:

0n 200n 400n

600n 1000n 5000n

10000n 20000n 30000n

Ising example: Traceplot

Traceplot showing the number of 1s.

0
20

0
40

0
60

0
80

0

MCMC and iterative conditioning

The use of the MH-algorithms gains on importance when it is applied

iteratively on components of x .

Let x be decomposed by several (for simplicity scalar) components.

x = (x1, . . . , xp)

Now the MH-algorithm is applied iteratively on the components x j ,

conditioning on the current values of x−j with

x−j = (x1, . . . , x j−1, x j+1, . . . , xp)

MCMC and iterative conditioning

To be concrete, one uses

• a proposal kernel Q(x j,?|x j
i−1, x

−j
i−1), j = 1, . . . , p.

• with acceptance probability

α = min

(
1,
π(x j,?|x−j

i−1)

π(x j
i−1|x

−j
i−1)

× Q(x j
i−1|x j,?, x−j

i−1)

Q(x j,?|x j
i−1, x

−j
i−1)

)

This algorithm converges to the stationary distribution with density π(x),

as long as all components are arbitrary often updated.

Conditional densities

Of note, the acceptance probability α only uses the full conditional

densities π(x j |x−j), j = 1, . . . , p, and not the joint density π(x).

Both are related as follows

π(x j |x−j) =
π(x)

π(x−j)
∝ π(x)

Thus, the (non-normalised) conditional densities of x j |x−j can be directly

derived from π(x) by omitting all multiplicative factors, that do not

depend on x j .

Gibbs sampling

Are all conditional densities π(x j |x−j), j = 1, . . . , p standard it seems

natural to use those as proposal kernel, i.e.

Q(x j,?|x j
i−1, x

−j
i−1) = π(x j,?|x−j

i−1)

In this case, we get α = 1 which leads to the well known Gibbs sampler,

which updates parameters iteratively by sampling from the corresponding

full conditional distributions.

Gibbs-Sampling algorithm
Idea: Sequentially sampling from univariate conditional distributions

(which are often available in closed form).

1. Select starting values x0 and set i = 0.

2. Repeatedly:

Sample x1i+1|· ∼ π(x1|x2i , . . . , xp
i)

Sample x2i+1|· ∼ π(x2|x1i+1, x
3
i , . . . , x

p
i)

...

Sample xp−1
i+1 |· ∼ π(xp−1|x1i+1, x

2
i+1, . . . , x

p−2
i+1 , x

p
i)

Sample xp
i+1|· ∼ π(xp|x1i+1, . . . , x

p−1
i+1)

where |· denotes conditioning on the most recent updates of all

other elements of x .

3. Increment i and go to step 2.

Remarks on Gibbs sampling

• High dimensional updates of x can be boiled down to scalar updates.

• Visiting schedule: Various approaches exist (and can be justified) to

ordering the variables in the sampling loop. One approach is random

sweeps: variables are chosen at random to resample.

• Gibbs sampling assumes that it is easy to sample from the

full-conditional distribution. This is sometimes not so easy.

Alternatively, a Metropolis-Hastings proposal can be used for the j-th

component, i.e. Metropolis-within-Gibbs ⇒ Hybrid Gibbs sampler.

Remarks on Gibbs sampling

• Blocking or grouping is possible, that means not all elements of x
are treated individually. Might be useful when elements of x are

correlated.

• Care must be taken when improper prior are used, which may lead to

an improper posterior distribution. Impropriety implies that there

does not exist a joint density to which the full-conditional

distributions correspond.

Example: Deriving full-conditionals

Assume yi |µ, κ ∼ N (µ, κ−1), i = 1, . . . , n. As prior for µ and κ we

choose a normal and gamma distribution, respectively, where:

µ ∼ N (µ0, κ
−1
0)

κ ∼ G(a, b)

The full-conditionals are

µ|κ, y ∼ N
(
µ0κ0 + ȳnκ
κ0 + nκ

, (κ0, nκ)−1
)

κ|µ, y ∼ G
(

a +
n
2
, b +

1
2

n∑

i=1

(yi − µ)2

)

where ȳ = 1
n

∑n
i=1 yi denotes the mean over all y .

