Lecture 9: Brief reminder Review: Metropolis-Hastings construction

Q(x* | x)a(x* | x), x* #x
1=2 0 Qz | ¥)a(z | x), x*=x

P(x* | x) =

e Problem: Sample from 7(x), x € S.

e MCMC idea: Construct Markov chain with 7(x) as limiting

distribution. Simulate the Markov chain for a long time.

a(x* | x) = min {17 m(x*) Qx| x*)}

() Q(x* [ x)

e Must check irreducibility, aperiodicity and positive recurrence in each

case.
Review: Metropolis-Hastings algorithm Review: Special cases Metropolis-Hastings
1: Init xg ~ g(Xo)
2 fori=1.2.... do e Metropolis algorithm: The proposal density is symmetric around the
3. Generate a proposal x* ~ Q(x*|xi_1) current value, that means
4: u~U(0,1) Qxi—1|x*) = Q(x*|xi—1).
Hence, .
* ! * * . *
5: if u<min |1, m(x") X Qxi—ax") then a = min (1, () X Q(x,*_1|x )> = min <1~, ) >
m(xi-1) ~ Q(x*|xi-1) m(xi-1)  Q(x*|xi-1) (xi—1)
[ ——

Proposal ratio o Independence sampler: The proposal distribution does not depend

Acceptance probability « on the current value Xi1
6 X; — X*
7: else Qx|xi-1) = Q(x).
8: Xj < Xj—1
o: end if Q(x) is an approximation to 7(x) = acceptance rate should be high.

10: end for



Efficiency of the Metropolis-Hastings algorithm

The efficiency and performance of the Metropolis-Hastings algorithm

depends crucially on the relative frequency of acceptance.

An acceptance rate of one is not always good. Consider the random walk

proposal:

e Too large acceptance rate = Slow exploration of the target density.

e Too small acceptance rate = Large moves are proposed, but rarely

accepted.

Tuning the acceptance rate:

e For random walk proposals, acceptance rates between 20% and 50%

are typically recommended. They can be achieved by changing the

variance of the proposal distribution.

e For independence proposals a high acceptance rate is desired, which

means that the proposal density is close to the target density.

Example of Rao (1973)

The vector y = (y1, 2, y3, ya) = (125,18, 20, 34) is multinomial
distributed with probabilities

1,01-01-69
24 4 0 4

We would like to simulate from the posterior distribution (assuming a
uniform prior)
f(Oly) o< (2 + 0)2(1 — 9)r21Y3p7s,
using MCMC and compare two proposal kernels:
1. independence proposal
2. random walk proposal

See R-code demo_mcmcRao.R.

Example: Random walk proposal

Exploration of a standard Gaussian distribution (A(0,1)) using a random
walk Metropolis algorithm. As proposal assume a Gaussian distribution

with variance o2, where.

e 0 =024
e g=24
e g =24

See R-code demo_mcmcRW.R.

Rao: Independence proposal

0% ~ N (Mod(dy), F? x I;1), (5)

where Mod(f|data) denotes the posterior mode, I, the negative curvature
of the log posterior at the mode, and F a factor to blow up the standard
deviation.

Of note, asymptotically the posterior distribution follows (5) for F = 1.



Rao: Random walk proposal

0* ~ U(% — d, 6% + d),

where 0(%) denotes the current state of the Markov chain and

d=+12/2-0.1.

Example: Ising/Potts model

Model developed in statistical mechanics (analysis of magnetic material)

and used also in image restauration for example.

Let x = (x%,...,x") represent the colors (black/white) in the pixels of a

given image, with x' € {0, 1}, where the distribution function is given by

m(x) = c-exp —ﬂZ/(xi # xJ)

i~j
where /(.) denotes the indicator function and

1
T (B (X £ X))

Note: The state space size and hence the number of terms in c is

2n = 240000 ~ 1012041 £or 3 200 x 200 grid. Thus, we cannot compute c.

Comments on the Metropolis-Hasting algorithm

e A trivial special case results when
Q(x"|xi-1) = m(x™),

That means, we propose realisations from the target distribution.

Then o = 1 and all proposals are accepted.

e The advantage of the MH-algorithm is that arbitrary proposal
kernels can be used. The algorithm will always converge to the

target distribution.

e However, the speed of convergence and the dependence between the

successive samples depends strongly on the proposal distribution.

Simualtion using Metropolis-Hastings algorithm

Current state x = (x%,...,x"). Propose a new state y = (y*,...,y") as
follows:
e draw a node k € {1,2,...,n} at random

e propose to reverse the value of node k, i.e.

1 k—1 Kk k+1 n
y=(x XL = XX XT).

Thus

if x and y differ in exactly one node

Qly | x) =

O 3

else.



Acceptance probability

o (<85, 1y # 1))
1, :
exp (*5 Ziwj I(x" # Xj))

= min

SR

—mind1, 2P (=B (X" #1—=xK))
Toexp (=B (X # xK))

Ising example: Traceplot

Traceplot showing the number of 1s.
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MCMC and iterative conditioning

The use of the MH-algorithms gains on importance when it is applied

iteratively on components of x.

Let x be decomposed by several (for simplicity scalar) components.

Now the MH-algorithm is applied iteratively on the components x/,

conditioning on the current values of x 7 with

—j (1 -1 _j+1
x = (xt T T L XP)



MCMC and iterative conditioning

To be concrete, one uses

e a proposal kernel Q(x/™* x{_l,xfjl), j=1,...,p.

e with acceptance probability

(L retx) QO X))
a=min |1, - —— X —— —
(G 1lxi?) QU *Ix 1, X))

This algorithm converges to the stationary distribution with density 7(x),

as long as all components are arbitrary often updated.

Gibbs sampling

Are all conditional densities 7(x/|x /), j = 1,..., p standard it seems

natural to use those as proposal kernel, i.e.
3% o -y — % |y )
QU Xy, x;71) = n(x*|x; 7))

In this case, we get o = 1 which leads to the well known Gibbs sampler,
which updates parameters iteratively by sampling from the corresponding

full conditional distributions.

Conditional densities

Of note, the acceptance probability a only uses the full conditional
densities m(x/|x7/), j =1,...,p, and not the joint density 7(x).
Both are related as follows

xx) = W(X) x m(x
mlod [x ) = 5 o (x)

Thus, the (non-normalised) conditional densities of x/|x~/ can be directly
derived from m(x) by omitting all multiplicative factors, that do not

depend on x/.

Gibbs-Sampling algorithm
Idea: Sequentially sampling from univariate conditional distributions

(which are often available in closed form).

1. Select starting values xg and set i = 0.

2. Repeatedly:

Sample x| ~ 7(x!x?, ..., xP)

Sample  x2 1| ~ 7(x%|x} 1, %7, xP)

Sample X;’+_11|- ~ 7T(xp_1|x,-1+1, x,-2+1, .. 7x,.er_12,x,.p)
-1

Sample  xP | ~ w(xP|xty, .., xP5Y)

where |- denotes conditioning on the most recent updates of all

other elements of x.

3. Increment i and go to step 2.



Remarks on Gibbs sampling

e High dimensional updates of x can be boiled down to scalar updates.

e Visiting schedule: Various approaches exist (and can be justified) to
ordering the variables in the sampling loop. One approach is random

sweeps: variables are chosen at random to resample.

e Gibbs sampling assumes that it is easy to sample from the
full-conditional distribution. This is sometimes not so easy.
Alternatively, a Metropolis-Hastings proposal can be used for the j-th
component, i.e. Metropolis-within-Gibbs = Hybrid Gibbs sampler.

Example: Deriving full-conditionals

Assume y;|u, k ~ N (p, k71), i=1,...,n. As prior for 1 and x we
choose a normal and gamma distribution, respectively, where:

m~ N(:U'O» /‘051)
K~ G(a, b)

The full-conditionals are

Hoko + YNk -
N|/‘5»y ~N (Wa(/‘ﬂoy n/<;) 1)

n 1< 5
Klu,y ~G <a+ §,b+52(y,—u) )

i=1

where y = %27:1 y; denotes the mean over all y.

Remarks on Gibbs sampling

e Blocking or grouping is possible, that means not all elements of x
are treated individually. Might be useful when elements of x are
correlated.

e Care must be taken when improper prior are used, which may lead to
an improper posterior distribution. Impropriety implies that there
does not exist a joint density to which the full-conditional

distributions correspond.



