
Lecture 10: Review Gibbs sampling
Idea: Sequentially sampling from univariate conditional distributions

(which are often available in closed form).

1. Select starting values x0 and set i = 0.

2. Repeatedly:

Sample x1i+1|· ∼ π(x1|x2i , . . . , xp
i )

Sample x2i+1|· ∼ π(x2|x1i+1, x
3
i , . . . , x

p
i )

...

Sample xp−1
i+1 |· ∼ π(xp−1|x1i+1, x

2
i+1, . . . , x

p−2
i+1 , x

p
i )

Sample xp
i+1|· ∼ π(xp|x1i+1, . . . , x

p−1
i+1 )

where |· denotes conditioning on the most recent updates of all

other elements of x .

3. Increment i and go to step 2.

Why is the acceptance rate 1?
For ease of notation let x denote the current state and x? the proposed

new state where we update the j−th component of x , so that:

x = (x1, . . . , x j−1, x j , x j+1, . . . , xp)>

x? = (x1, . . . , x j−1, x?,j , x j+1, . . . , xp)>

where x?,j denotes the propsed value for the j−th component. Then

π(x?)

π(x)
· Q(x | x?)

Q(x? | x)
=
π(x?,j | x?,−j)π(x?,−j)

π(x j | x−j)π(x−j)
· Q(x | x?)

Q(x? | x)

=
π(x?,j | x−j)π(x−j)

π(x j | x−j)π(x−j)
· Q(x | x?)

Q(x? | x)

=
π(x?,j | x−j)π(x−j)

π(x j | x−j)π(x−j)
· π(x j | x?,−j)

π(x?,j | x−j)

= 1

Example: Deriving full-conditionals

Assume yi |µ, κ ∼ N (µ, κ−1), i = 1, . . . , n. As prior for µ and κ we

choose a normal and gamma distribution, respectively, where:

µ ∼ N (µ0, κ
−1
0 )

κ ∼ G(a, b)

The full-conditionals are

µ|κ, y ∼ N
(
µ0κ0 + ȳnκ
κ0 + nκ

, (κ0, nκ)−1
)

κ|µ, y ∼ G
(

a +
n
2
, b +

1
2

n∑

i=1

(yi − µ)2

)

where ȳ = 1
n

∑n
i=1 yi denotes the mean over all y .

Implementation and convergence diagnostics

Source: http://i.telegraph.co.uk/multimedia/archive/02365/coding_alamy_2365972b.jpg



Numerical note

How should you compute

α = min
(
1,

π(x?)

π(xi−1)
× Q(xi−1|x?)

Q(x?|xi−1)

)

See blackboard

Burn-in

In practice, one waits until the Markov chain is converged. Let K denote

the burn-in period. Then the realisations xK+1, xK+2, . . . , xK+N are used

to estimate characteristics of the target distribution.

The empirical determination of K is difficult. Often it is determined

based on the trace plot of the Markov chain.

Convergence diagnostics

Valid inferences from sequences of MCMC outputs are based on the

assumption that the outputs are from the desired target distribution.

• There is no overall minimum number of samples to ensure

approximation.

• Consequently methods for testing convergence, known as

convergence diagnostics, have to be applied.

• However it has to emphasised that these diagnostics do not

guarantee convergence.

Trace plots

An initial possibility for deciding if a MCMC output does not converge to

the desired posterior distributions is to look at the sample trace for each

variable.

• If our chain is taking a long time to move around the parameter

space, then it will take longer to converge.

• If the samples form a homogene band (no wave movements or other

rare fluctuations), convergence might be indicated.

• Vastly different values at the beginning of the trace indicate burn-in

iterations, which should be discarded.



Autocorrelation

To examine dependencies of successive MCMC samples, the

autocorrelation function can be used. Let x1, . . . , xN , where N denotes

the number of samples, denote our MCMC chain.

The lag k autocorrelation ρ(k) is the correlation between every draw and

its k-th lag. For N reasonably large

ρ(k) ≈
∑N−k

i=1 (xi − x̄)(xi+k − x̄)
∑N

i=1(xi − x̄)2
,

where x̄ = 1
N

∑N
i=1 xi is the overall mean.

• With increasing lag k we expect lower autocorrelations.

• If autocorrelation is still relatively high for higher values of k , this

indicates high degree of correlation between our draws and slow

mixing.

Geweke diagnostics

The MCMC chain is divided into two windows

• the first x%, and

• the last y% of the iterates

(coda default: x = 10, y = 50). For both windows the mean is

calculated.

If the chain is stationary both values should be equal and Geweke’s test

statistic (z-score) follows an asymptotical standard normal distribution.

Further reading

There are several convergence diagnostics:

• some are based on a single Markov chain run

• some are based on several Markov chain runs

For further reading see for example

• Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (1996) Markov

Chain Monte Carlo in Practice, Chapman & Hall, London,

Different approaches are implemented in the

• R-package coda. (Plummer et al., 2006)

Effective sample size

A useful measure to compare the performance of different MCMC

samplers is the effective sample size (ESS) Kass et al. (1998) American

Statistician 52, 93–100..

• The ESS is the estimated number of independent samples needed to

obtain a parameter estimate with the same precision as the MCMC

estimate based on N dependent samples.

ESS =
N
τ
, τ = 1 + 2 ·

∞∑

k=1

ρ(k),

where τ is the autocorrelation time and ρ(k) the autocorrelation at

lag k .



Autocorrelation time

• There are different stopping criteria for the sum. Geyer (1992,

Statistical Science, page 477)) proposed the initial monotone sequence

estimator, where

τ = 1 + 2 ·
2m+1∑

k=1

ρ(k)

where m is chosen to be the largest integer such that

Γi = ρ(2i) + ρ(2i + 1), i = 1, . . . ,m

is positive and the sequence Γ1, . . . , Γm is monotone decreasing.

Beetle mortality data (Bliss (1935), Annals of Applied Biology, 22: 134–167)

Beetles are exposed to gaseous carbon disulphide at various

concentrations for five hours.

• yi number killed out of ni at i-th dose level, i = 1, . . . , 8.

• xi log dose.

Dose, xi Number of Number

(log10 CS2mgl−1) beetles, ni killed, yi

1.6907 59 6

1.7242 60 13

1.7552 62 18

1.7842 56 28

1.8113 63 52

1.8369 59 53

1.8610 62 61

1.8839 60 60

Logistic regression model
• Assuming independence of the beetles, yi ∼ Bin(ni , πi ):

p(y |πi ) =
8∏

i=1

(
ni

yi

)
πyi

i (1− πi )
ni−yi

where πi denotes the probability of being killed at the i-th dose level.

(Comment: Independence assumption would not be appropriate if the

deaths were caused by a contagious disease)

• Logistic model:

logit(πi ) = log
(

πi

1− πi

)
= α + β(xi − x̄)

πi = expit(α + β(xi − x̄)) =
exp(α + β(xi − x̄))

1 + exp(α + β(xi − x̄))

• Independent normal prior distribution

α ∼ N (0, σ2α) β ∼ N (0, σ2β)

• Choose precisions, τα = 1/σ2α, and τβ = 1/σ2β , to be small;

e.g. 10−4.

Posterior distribution
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The posterior distribution is

p(α, β|y ,n, x) ∝ p(α) p(β)
8∏

i=1

p(yi |α, β, ni , xi ),

which is no standard distribution. For estimating α and β we implement

an Metropolis-Hastings algorithm with

• two univariate random walk proposals (Metropolis-within-Gibbs).

• one bivariate random walk proposal.



Target densities

Univariate update
• The full-conditional distributions are:

p(α|y ,n, x , β) ∝ p(α)
8∏

i=1

p(yi |α, β, ni , xi )

p(β|y ,n, x , α) ∝ p(β)
8∏

i=1

p(yi |α, β, ni , xi )

• For each parameter we choose a normal proposal with mean equal to

the current value and variances tuned to get acceptance rates

between 20− 50%.

Target densities

Bivariate update
• Here, the target density is the posterior distribution.

• Choose a normal proposal with mean equal to the current value and

covariance matrix

Σ = c · I−1p ,

where I−1p denotes the negative inverse curvature of the log posterior

at the posterior mode and c is a factor to tune the acceptance rate.

Univariate update: Diagnostic checks
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Bivariate update: Diagnostic checks

0 5000 10000 15000 20000 25000 30000

0.
4

0.
8

1.
2

Index

al
ph

a_
sa

m
pl

es

0 5000 10000 15000 20000 25000 30000

25
30

35
40

45

Index

be
ta

_s
am

pl
es

0.4 0.6 0.8 1.0 1.2

0.
0

1.
0

2.
0

3.
0

alpha_samples

25 30 35 40 45

0.
00

0.
04

0.
08

0.
12

beta_samples

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F
Series  alpha_samples

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

A
C

F

Series  beta_samples



Exploration of posterior

Univariate update
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Bivariate update
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Results
> ## Fit a generalized linear model to compare
> m1 <- glm(formula = cbind(y, n - y) ~ x, family = binomial)
> # Estimate Std. Error z value Pr(>|z|)
> #(Intercept) 0.7438 0.1379 5.396 6.83e-08 ***
> #x 34.2703 2.9121 11.768 < 2e-16 ***
>
> ## Univariate Update
> #> summary(alpha_samples)
> # Min. 1st Qu. Median Mean 3rd Qu. Max.
> # 0.2256 0.6582 0.7505 0.7501 0.8378 1.3340
> #> summary(beta_samples)
> # Min. 1st Qu. Median Mean 3rd Qu. Max.
> # 24.26 32.58 34.47 34.56 36.46 46.76
>
> ## Bivariate Update
> #> summary(alpha_samples)
> # Min. 1st Qu. Median Mean 3rd Qu. Max.
> # 0.2569 0.6566 0.7470 0.7505 0.8400 1.3540
> #> summary(beta_samples)
> # Min. 1st Qu. Median Mean 3rd Qu. Max.
> # 23.77 32.54 34.50 34.57 36.51 47.59

Dose-response curve
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Updating schemes

1. Update α and β separately ⇒ Two acceptance steps.

2. Update α and β jointly ⇒ One acceptance step.
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1. Single site update
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2. Joint update

α

β

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Joint updates might be more efficient, however for some parameter

combinations the acceptance rates can be very low.


