Bootstrapping regression

Consider the ordinary multiple regression model

$$Y_i = \mathbf{x}_i^\top \boldsymbol{\beta} + \epsilon_i$$
, for $i = 1, \dots, n$,

where ϵ_i are iid mean zero random variables with constant variance.

- Naive: Bootstrapping by resampling from response variables to get distribution of $\hat{\beta}^*$. However $Y_i | x_i$ are not iid!
- Correct: Bootstrap the residuals.

Review: Residuals

http://fsweb.bainbridge.edu/dbyrd/statistics/regression.htm

Bootstrap the residuals

- 1. Fit the regression model to the observed data and obtain the fitted responses \hat{y}_i and residuals \hat{e}_i .
- 2. Sample a bootstrap set of residuals $\hat{\epsilon}_1^{\star}, \ldots, \hat{\epsilon}_n^{\star}$ from the set of fitted residuals completely at random and with replacement.
- 3. Generate a bootstrap set of pseudo responses

$$Y_i^{\star} = \hat{y}_i + \hat{\epsilon}_i^{\star}, \quad \text{for } i = 1, \dots, n.$$

- 4. Regress Y^* on x to obtain a bootstrap estimate $\hat{\beta}^*$.
- Repeat this process to get an empirical distribution of $\hat{\beta}^{\star}$.

Bootstrapping residuals: Remarks

This approach is also used for autoregressive models, for example.

Note: Bootstrapping the residuals is reliant on

- The model provides an appropriate fit
- The residuals have a constant variance

Otherwise, a different scheme is recommended.

Comment: No need to bootstrap for linear regression model and least squares estimation, as analytical results are then available.

Paired bootstrap

Suppose response and predictors are measured from a collection of individuals selected at random

⇒ Data pairs $z_i = (x_i, y_i)$ can be regarded as iid realisation from $Z_i = (X_i, Y_i)$ drawn from a joint response-predictor distribution.

Bootstrap:

- Sample Z^{*}₁,..., Z^{*}_n completely at random with replacement from z₁,..., z_n.
- Apply regression model on pseudo dataset to get $\hat{oldsymbol{eta}}^{\star}.$

Repeat this approach many times.

Note: Paired bootstrap is less sensitive to violation of assumptions, e.g. adequacy of regression model, than bootstrapping the residuals.

Histogram of 10 000 bootstrap estimates

Copper-nickel alloy

Data: 13 measurements of corrosion loss (y_i) in copper-nickel alloys, each with a specific iron content (x_i) .

Question: Change in corrosion loss in the alloys as the iron content increases, relative to corrosion loss where there is no iron, i.e. $\theta = \beta_1/\beta_0$.

xi	0.01	0.48	0.71	0.95	1.19	0.01	0.48
Уi	127.6	124.0	110.8	103.9	101.5	130.1	122.0
xi	1.44	0.71	1.96	0.01	1.44	1.96	
Уi	92.3	113.1	83.7	128.0	91.4	86.2	

The observed data yield $\hat{\theta} = \hat{\beta}_1 / \hat{\beta}_0 = -0.185$.

Bootstrap bias correction

The mean value of

 $\hat{\theta}^{\star} - \hat{\theta}$

among the pseudo datasets is about -0.00125.

The bias-corrected bootstrap estimate of β_1/β_0 is -0.18507 - (-0.00125) = -0.184.

Confidence intervals

A "simple-minded" two-sided confidence interval with coverage $(1-\alpha)$ for a parameter α is given by

$$[q_{\alpha/2}^{\star}, q_{1-\alpha/2}^{\star}]$$

where q_{α}^{\star} is the α -bootstrap quantile in the distribution of $\hat{\theta}^{\star}$.

Experience: Often good, but often too low coverage, i.e the true α for the interval is lower than the specified value. Note: Better bootstrap confidence intervals exist and often have better coverage accuracy — at the price of being somewhat more difficult to implement

Bootstrapping dependent data

Critical requirement: Boostrapped quantities are iid.

Consider a first-order stationary autoregressive process, the AR(1) model:

$$X_t = \alpha X_{t-1} + \epsilon_t$$

where $|\alpha| < 1$ and ϵ_t are iid with mean zero and constant variance. Here, a method akin to bootstrapping the residuals for linear regression can be applied.

AR(1) model: A model based approach

- 1. Use a standard method to estimate α
- 2. Define the estimated innovations $\hat{e}_t = X_t \hat{\alpha}X_{t-1}$ for t = 2, ..., n and let $\bar{\epsilon}$ be the mean of these.
- 3. Recenter \hat{e}_t to have mean zero by defining $\hat{\epsilon}_t = \hat{e}_t \bar{e}$.
- 4. Resample n + 1 values from the set $\{\hat{\epsilon}_2, \dots, \hat{\epsilon}_n\}$ with replacement to yield pseudo innovations $\{\epsilon_0^*, \dots, \epsilon_n^*\}$.
- 5. Generate pseudo data as $X_0^{\star} = \epsilon_0^{\star}$ and $X_t^{\star} = \hat{\alpha} X_{t-1}^{\star} + \epsilon_t^{\star}$ for $t = 1, \dots, n$.
- 6. From each bootstrap sample compute \hat{lpha}^{\star}

AR(1) model: A model based approach

Issue: Pseudo-data series is not stationary.

Remedy: Sample larger number of pseudo innovations and generate data series earlier, i.e. X_k^{\star} for k much less than zero. The first portion of the data can be discarded as burn-in.

Block bootstrap

An alternative bootstrap procedure for time series data is to draw blocks from the observed series.

- Issue: We cannot simply sample from the individual observations, as this would destroy the correlation that we try to capture.
- Idea: Block data to preserve covariance structure within each block, even though structure is lost between blocks.

Here, we consider

- Non-moving blocks bootstrap
- Moving blocks bootstrap

Non-moving blocks bootstrap (II)

- Split x_1, \ldots, x_n into b non-overlapping blocks of length l, where ideally $n = l \cdot b$.
- Sample \$\mathcal{B}_1^*, \ldots, \mathcal{B}_b^*\$ independently from \$\{\mathcal{B}_1, \ldots, \mathcal{B}_b\}\$ with replacement. Concatenate these blocks to form a pseudo dataset \$\mathcal{X}^* = (\mathcal{B}_1^*, \ldots, \mathcal{B}_b^*)\$.
- Replicate this process *B* times and estimate for each bootstrap sample $\hat{\theta}_i^{\star}$.
- Approximate the distribution of $\hat{\theta}$ by the distribution of these *B* pseudo values.

Non-moving blocks bootstrap

Illustration and example:

See blackboard

. . . .

Moving blocks bootstrap

Illustration:

See blackboard

- Idea: With moving blocks bootstrap, choose block size / large enough so that observations more than / units apart will be nearly independent.
- Advantage: Less model dependent than residuals approach. However, choice of block size / can be quite important, and effective methods to choose / are still laking.

Permutation test

(related to idea of bootstrapping.)

Consider a medical experiment where rats are randomly assigned to treatment and control groups. Under the null hypothesis the outcome measured does not depend on the group assignment.

Idea: Shuffling the labels randomly among rates will not change the joint null distribution of the data.

Permutation test: Example

The simple model for independent data from two sources:

$$y_i \sim F_1, \quad i = 1, \dots, m$$

$$z_j \sim F_2, \quad j = 1, \dots, n$$

$$\mathbf{x} = (\mathbf{y}, \mathbf{z}) = (y_1, \dots, y_m, z_1, \dots, z_n)$$

The permutation method for hypothesis testing is based on resampling under the null hypothesis $H_0: F_1 = F_2$, by permuting the order of the original data to generate *B* Bootstrap samples x^* valid given that the null hypothesis is true.

The p-value for a test based on a test quantity T(x) can be estimated as $\#\{T(x^*) \ge T(x)\}/B$. H_0 is rejected if the p-value is smaller than a given threshold (typically 0.05 or 0.01)

Recall: P-value

- Let t₁ denote the original test statistic, e.g. difference of group mean outcomes, and t₂,..., t_B the test statistics computed from the datasets resulting from B permutations of labels.
- Under the null hypothesis t₂,..., t_B are from the same distribution that yielded t₁ ⇒ We can compare them.

We can use the P-value:

P-value is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

Permutation test: Example

1. We test the hypothesis

 $H_0:F_1=F_2$ against $H_1:F_1\neq F_2$

using the test quantity $T = |\overline{y} - \overline{z}|$, by means of the permutation method to compute an estimate of the p-value for the test.

2. The test only tests for differences that can be detected by the test quantity. Consider an alternative test quantity

$$T = \left| \frac{\left(\frac{1}{m} \sum_{i=1}^{m} y_i\right)^2}{\frac{1}{m} \sum_{i=1}^{m} y_i^2} - \frac{\left(\frac{1}{n} \sum_{j=1}^{n} z_j\right)^2}{\frac{1}{n} \sum_{j=1}^{n} z_j^2} \right|$$

see demo-permTest.R