
Bootstrapping regression

Consider the ordinary multiple regression model

Yi = x>i β + εi , for i = 1, . . . , n,

where εi are iid mean zero random variables with constant variance.

• Naive: Bootstrapping by resampling from response variables to

get distribution of β̂?. However Yi |x i are not iid!
• Correct: Bootstrap the residuals.

Review: Residuals

http://fsweb.bainbridge.edu/dbyrd/statistics/regression.htm

Bootstrap the residuals

1. Fit the regression model to the observed data and obtain the

�tted responses ŷi and residuals ε̂i .

2. Sample a bootstrap set of residuals ε̂?1, . . . , ε̂
?
n from the set of

�tted residuals completely at random and with replacement.

3. Generate a bootstrap set of pseudo responses

Y ?
i = ŷi + ε̂?i , for i = 1, . . . , n.

4. Regress Y ? on x to obtain a bootstrap estimate β̂?.

Repeat this process to get an empirical distribution of β̂?.

Bootstrapping residuals: Remarks

This approach is also used for autoregressive models, for example.

Note: Bootstrapping the residuals is reliant on

• The model provides an appropriate �t

• The residuals have a constant variance

Otherwise, a di�erent scheme is recommended.

Comment: No need to bootstrap for linear regression model and

least squares estimation, as analytical results are then available.



Paired bootstrap

Suppose response and predictors are measured from a collection of

individuals selected at random

⇒ Data pairs z i = (x i , yi ) can be regarded as iid realisation from

Z i = (X i ,Yi ) drawn from a joint response-predictor distribution.

Bootstrap:

• Sample Z ?
1, . . . ,Z

?
n completely at random with replacement

from z1, . . . , zn.

• Apply regression model on pseudo dataset to get β̂?.

Repeat this approach many times.

Note: Paired bootstrap is less sensitive to violation of assumptions,

e.g. adequacy of regression model, than bootstrapping the residuals.

Copper-nickel alloy

Data: 13 measurements of corrosion loss (yi ) in copper-nickel

alloys, each with a speci�c iron content (xi ).

Question: Change in corrosion loss in the alloys as the iron content

increases, relative to corrosion loss where there is no iron, i.e.

θ = β1/β0.

xi 0.01 0.48 0.71 0.95 1.19 0.01 0.48

yi 127.6 124.0 110.8 103.9 101.5 130.1 122.0

xi 1.44 0.71 1.96 0.01 1.44 1.96

yi 92.3 113.1 83.7 128.0 91.4 86.2

The observed data yield θ̂ = β̂1/β̂0 = −0.185.

Histogram of 10 000 bootstrap estimates
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Show R-code demo-pairedBootstrap.R

Bootstrap bias correction

The mean value of

θ̂? − θ̂

among the pseudo datasets is about −0.00125.

The bias-corrected bootstrap estimate of β1/β0 is

−0.18507− (−0.00125) = −0.184.



Con�dence intervals

A �simple-minded� two-sided con�dence interval with coverage

(1− α) for a parameter α is given by

[q?α/2, q
?
1−α/2]

where q?α is the α-bootstrap quantile in the distribution of θ̂?.

Experience: Often good, but often too low coverage, i.e the true α

for the interval is lower than the speci�ed value.

Note: Better bootstrap con�dence intervals exist and often have

better coverage accuracy � at the price of being somewhat more

di�cult to implement

Bootstrapping dependent data

Critical requirement: Boostrapped quantities are iid.

Consider a �rst-order stationary autoregressive process, the AR(1)

model:

Xt = αXt−1 + εt

where |α| < 1 and εt are iid with mean zero and constant variance.

Here, a method akin to bootstrapping the residuals for linear

regression can be applied.

AR(1) model: A model based approach

1. Use a standard method to estimate α

2. De�ne the estimated innovations êt = Xt − α̂Xt−1 for

t = 2, . . . , n and let ε̄ be the mean of these.

3. Recenter êt to have mean zero by de�ning ε̂t = êt − ē.

4. Resample n + 1 values from the set {ε̂2, . . . , ε̂n} with
replacement to yield pseudo innovations {ε?0, . . . , ε?n}.

5. Generate pseudo data as X ?
0 = ε?0 and X ?

t = α̂X ?
t−1 + ε?t for

t = 1, . . . , n.

6. From each bootstrap sample compute α̂?

AR(1) model: A model based approach

Issue: Pseudo-data series is not stationary.

Remedy: Sample larger number of pseudo innovations and generate

data series earlier, i.e. X ?
k for k much less than zero. The �rst

portion of the data can be discarded as burn-in.



Block bootstrap

An alternative bootstrap procedure for time series data is to draw

blocks from the observed series.

• Issue: We cannot simply sample from the individual

observations, as this would destroy the correlation that we try

to capture.

• Idea: Block data to preserve covariance structure within each

block, even though structure is lost between blocks.

Here, we consider

• Non-moving blocks bootstrap

• Moving blocks bootstrap

Non-moving blocks bootstrap

Illustration and example:

See blackboard

Non-moving blocks bootstrap (II)

• Split x1, . . . , xn into b non-overlapping blocks of length l ,

where ideally n = l · b.
• Sample B?1, . . . ,B?b independently from {B1, . . . ,Bb} with
replacement. Concatenate these blocks to form a pseudo

dataset X ? = (B?1, . . . ,B?b).

• Replicate this process B times and estimate for each bootstrap

sample θ̂?i .

• Approximate the distribution of θ̂ by the distribution of these

B pseudo values.

Moving blocks bootstrap

Illustration:

See blackboard

• Idea: With moving blocks bootstrap, choose block size l large

enough so that observations more than l units apart will be

nearly independent.

• Advantage: Less model dependent than residuals approach.

However, choice of block size l can be quite important, and

e�ective methods to choose l are still laking.



Permutation test

(related to idea of bootstrapping.)

Consider a medical experiment where rats are randomly assigned to

treatment and control groups. Under the null hypothesis the

outcome measured does not depend on the group assignment.

Idea: Shu�ing the labels randomly among rates will not change the

joint null distribution of the data.

Recall: P-value

• Let t1 denote the original test statistic, e.g. di�erence of group

mean outcomes, and t2, . . . , tB the test statistics computed

from the datasets resulting from B permutations of labels.

• Under the null hypothesis t2, . . . , tB are from the same

distribution that yielded t1 ⇒ We can compare them.

We can use the P-value:

P-value is the probability of obtaining a test statistic at

least as extreme as the one that was actually observed,

assuming that the null hypothesis is true.

Permutation test: Example

The simple model for independent data from two sources:

yi ∼ F1, i = 1, . . . ,m

zj ∼ F2, j = 1, . . . , n

x = (y , z) = (y1, . . . , ym, z1, . . . , zn)

The permutation method for hypothesis testing is based on

resampling under the null hypothesis H0 : F1 = F2, by permuting

the order of the original data to generate B Bootstrap samples x∗

valid given that the null hypothesis is true.

The p-value for a test based on a test quantity T (x) can be

estimated as #{T (x∗) ≥ T (x)}/B . H0 is rejected if the p-value is

smaller than a given threshold (typically 0.05 or 0.01)

Permutation test: Example

1. We test the hypothesis

H0 :F1 = F2 against H1 : F1 6= F2

using the test quantity T = |y − z |, by means of the

permutation method to compute an estimate of the p-value for

the test.

2. The test only tests for di�erences that can be detected by the

test quantity. Consider an alternative test quantity

T =
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Permutation test: R-code

see demo-permTest.R


