Bootstrapping regression

Consider the ordinary multiple regression model
Y,-:x,-Tﬁ—i—e,-, fori=1,... n,

where ¢; are iid mean zero random variables with constant variance.

e Naive: Bootstrapping by resampling from response variables to

get distribution of B*. However Yi|x; are not iid!

e Correct: Bootstrap the residuals.

Bootstrap the residuals

1. Fit the regression model to the observed data and obtain the

fitted responses y; and residuals €;.

2. Sample a bootstrap set of residuals €7, ..., €, from the set of

fitted residuals completely at random and with replacement.

3. Generate a bootstrap set of pseudo responses

Y'=yi+é&, fori=1,...,n

1

4. Regress Y* on x to obtain a bootstrap estimate B*.

Repeat this process to get an empirical distribution of B*.

Review: Residuals
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Bootstrapping residuals: Remarks

This approach is also used for autoregressive models, for example.

Note: Bootstrapping the residuals is reliant on
e The model provides an appropriate fit
e The residuals have a constant variance

Otherwise, a different scheme is recommended.

Comment: No need to bootstrap for linear regression model and

least squares estimation, as analytical results are then available.



Paired bootstrap

Suppose response and predictors are measured from a collection of

individuals selected at random

= Data pairs z; = (xj, yi) can be regarded as iid realisation from

Z; = (Xj, Y;) drawn from a joint response-predictor distribution.

Bootstrap:

e Sample Z7,..., Z} completely at random with replacement

from zy,...,z,.
e Apply regression model on pseudo dataset to get B*.

Repeat this approach many times.

Note: Paired bootstrap is less sensitive to violation of assumptions,

e.g. adequacy of regression model, than bootstrapping the residuals.
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Show R-code demo-pairedBootstrap.R

Copper-nickel alloy

Data: 13 measurements of corrosion loss (y;) in copper-nickel

alloys, each with a specific iron content (x;).

Question: Change in corrosion loss in the alloys as the iron content

increases, relative to corrosion loss where there is no iron, i.e.

0 = B1/bo-

x; 001 048 071 09 119 0.01 048
yi 1276 1240 1108 103.9 101.5 130.1 122.0

x; 144 071 196 001 144 196
yi 923 11311 83.7 128.0 914 86.2

The observed data yield 6= 31/‘@0 = —0.185.

Bootstrap bias correction

The mean value of

0~ —0

among the pseudo datasets is about —0.00125.

The bias-corrected bootstrap estimate of 51/ is
—0.18507 — (—0.00125) = —0.184.



Confidence intervals

A “simple-minded” two-sided confidence interval with coverage

(1 — @) for a parameter « is given by

[q;/2’ qf—a/2]
where ¢, is the a-bootstrap quantile in the distribution of 6*.

Experience: Often good, but often too low coverage, i.e the true o
for the interval is lower than the specified value.

Note: Better bootstrap confidence intervals exist and often have
better coverage accuracy — at the price of being somewhat more

difficult to implement

AR(1) model: A model based approach

1. Use a standard method to estimate «

2. Define the estimated innovations & = X; — &X;_1 for
t =2,...,n and let € be the mean of these.

3. Recenter & to have mean zero by defining é; = & — €.

4. Resample n + 1 values from the set {é3,...,€,} with

replacement to yield pseudo innovations {€j, ..., €5}
5. Generate pseudo data as Xj = ¢; and X = &X{_; + € for
t=1,...,n

6. From each bootstrap sample compute &*

Bootstrapping dependent data

Critical requirement: Boostrapped quantities are iid.

Consider a first-order stationary autoregressive process, the AR(1)
model:

Xi = aXi—1+ €
where |o| < 1 and €; are iid with mean zero and constant variance.

Here, a method akin to bootstrapping the residuals for linear

regression can be applied.

AR(1) model: A model based approach

Issue: Pseudo-data series is not stationary.

Remedy: Sample larger number of pseudo innovations and generate
data series earlier, i.e. X for k much less than zero. The first

portion of the data can be discarded as burn-in.



Block bootstrap

An alternative bootstrap procedure for time series data is to draw

blocks from the observed series.

e Issue: We cannot simply sample from the individual
observations, as this would destroy the correlation that we try

to capture.
e |dea: Block data to preserve covariance structure within each
block, even though structure is lost between blocks.
Here, we consider
e Non-moving blocks bootstrap

e Moving blocks bootstrap

Non-moving blocks bootstrap (Il)

e Split x1,...,x, into b non-overlapping blocks of length /,
where ideally n = /- b.

e Sample Bf,..., B independently from {Bi, ..., B} with
replacement. Concatenate these blocks to form a pseudo
dataset X* = (Bj,...,B}).

e Replicate this process B times and estimate for each bootstrap
sample QAf

e Approximate the distribution of § by the distribution of these

B pseudo values.

Non-moving blocks bootstrap

[llustration and example:

See blackboard

Moving blocks bootstrap

[llustration:

See blackboard

e Idea: With moving blocks bootstrap, choose block size / large
enough so that observations more than / units apart will be

nearly independent.

e Advantage: Less model dependent than residuals approach.
However, choice of block size / can be quite important, and

effective methods to choose / are still laking.



Permutation test

(related to idea of bootstrapping.)

Consider a medical experiment where rats are randomly assigned to
treatment and control groups. Under the null hypothesis the

outcome measured does not depend on the group assignment.

Idea: Shuffling the labels randomly among rates will not change the

joint null distribution of the data.

Permutation test: Example

The simple model for independent data from two sources:

yi~F, i=1....,m
zi~Fy, j=1,...,n

X:(yaz):(yla"'aymazla---azn)

The permutation method for hypothesis testing is based on
resampling under the null hypothesis Hy : F;1 = F,, by permuting
the order of the original data to generate B Bootstrap samples x*
valid given that the null hypothesis is true.

The p-value for a test based on a test quantity T(x) can be
estimated as #{ T(x*) > T(x)}/B. Hy is rejected if the p-value is
smaller than a given threshold (typically 0.05 or 0.01)

Recall: P-value

e Let t; denote the original test statistic, e.g. difference of group
mean outcomes, and ty, ..., tg the test statistics computed

from the datasets resulting from B permutations of labels.

e Under the null hypothesis t,,..., tg are from the same

distribution that yielded t; = We can compare them.

We can use the P-value:

P-value is the probability of obtaining a test statistic at
least as extreme as the one that was actually observed,

assuming that the null hypothesis is true.

Permutation test: Example

1. We test the hypothesis
Ho :FL=F against Hi: R ?é Fs

using the test quantity T = |y — Z|, by means of the
permutation method to compute an estimate of the p-value for
the test.

2. The test only tests for differences that can be detected by the

test quantity. Consider an alternative test quantity
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Permutation test: R-code

see demo-permTest.R



