TMA4295 Stastistical inference

Saturday 17 December 2011 9:00-13:00

Solutions

(Corrected 20 December 2011)

Problem 1

a) The likelihood function is given by $L(\lambda)=\lambda^{\sum x_{i}} e^{-n \lambda} / \Pi x_{i}!, \ln L(\lambda)=\sum x_{i} \ln \lambda-n \lambda+$ $\ln \Pi x_{i}!, \quad \partial \ln L(\lambda) / \partial \lambda=\sum x_{i} / \lambda-n, \partial^{2} \ln L(\lambda) / \partial \lambda^{2}=-\sum x_{i} / \lambda^{2}<0$, so that the MLE $\hat{\lambda}$ of λ is given by $\sum X_{i} / \hat{\lambda}-n=0, \hat{\lambda}=\sum X_{i} / n=\bar{X}$, and by the invariance property the MLE of $e^{-\lambda}$ is $\hat{\theta}=e^{-\bar{X}}$.
b) $\ln f(x)=x \ln \lambda-\lambda-\ln x!, \quad \partial \ln f(x) / \partial \lambda=x / \lambda-1, \quad \partial^{2} f(x) / \partial \lambda^{2}=-x / \lambda^{2}$, so the Cramér-Rao bound of an unbiased estimator of $e^{-\lambda}$ is $\left(d e^{-\lambda} / d \lambda\right)^{2} /\left(-n E \partial^{2} f\left(X_{i}\right) / \partial \lambda^{2}\right)=$ $e^{-2 \lambda} /\left(n \lambda / \lambda^{2}\right)=\lambda e^{-2 \lambda} / n$.
c) $\sum U_{i_{\tilde{N}}}$ has the binomial $\left(n, e^{-\lambda}\right)$ distribution, and by the central limit theorem $\sqrt{n}\left(\tilde{\theta}-e^{-\lambda}\right) \rightarrow N\left(0, e^{-\lambda}\left(1-e^{-\lambda}\right)\right)$ in distribution. By asymptotic efficiency of MLEs $\sqrt{n}\left(\hat{\theta}-e^{-\lambda}\right) \rightarrow N\left(0, \lambda e^{-2 \lambda}\right)$ (the same result would have been obtained by applying the central limit theorem to \bar{X} and then the Delta method to $\hat{\theta}=e^{-\bar{X}}$). Then the ARE of $\tilde{\theta}$ with respect to $\hat{\theta}$ is $\lambda e^{-2 \lambda} /\left(e^{-\lambda}\left(1-e^{-\lambda}\right)\right)=\lambda /\left(e^{\lambda}-1\right)$. The preferable estimator is $\hat{\theta}$, since the ARE is near one only for λ near zero (the limit when $\lambda \rightarrow 0^{+}$is 1 by L'Hôpital's rule) and always less than one ($e^{\lambda}-1>\lambda$ because $e^{\lambda}-1-\lambda$ is an increasing function for $\lambda>0$) and has limit 0 when $\lambda \rightarrow \infty$.
d) $f(x)=1 / x!\cdot e^{-\lambda} \cdot e^{(\ln \lambda) x}$, showing that f is an exponential family and identifying $\sum X_{i}$ as a complete sufficient statistic for λ. Since U_{1} is an unbiased estimator of $e^{-\lambda}$, $\theta^{*}=E\left(U_{1} \mid \sum X_{i}\right)$ also has expected value $e^{-\lambda}$ and is a function of a complete sufficient statistic for λ, and is thus the UMVUE. To find that function explicitely, we first compute

$$
\begin{gathered}
E\left(U_{1} \mid \sum_{i=1}^{n} X_{i}=m\right)=P\left(U_{1}=1 \mid \sum_{i=1}^{n} X_{i}=m\right)=\frac{P\left(U_{1}=1, \sum_{i=1}^{n} X_{i}=m\right)}{P\left(\sum_{i=1}^{n} X_{i}=m\right)} \\
=\frac{P\left(X_{1}=0, \sum_{i=2}^{n} X_{i}=m\right)}{P\left(\sum_{i=1}^{n} X_{i}=m\right)}=\frac{P\left(X_{1}=0\right) P\left(\sum_{i=2}^{n} X_{i}=m\right)}{P\left(\sum_{i=1}^{n} X_{i}=m\right)} \\
=\frac{e^{-\lambda} \cdot((n-1) \lambda)^{m} e^{-(n-1) \lambda} / m!}{(n \lambda)^{m} e^{-n \lambda} / m!}=\left(\frac{n-1}{n}\right)^{m}=\left(1-\frac{1}{n}\right)^{m},
\end{gathered}
$$

where we have used the fact that $\sum_{i=1}^{n} X_{i}$ and $\sum_{i=2}^{n} X_{i}$ have the Poisson distribution with parameter $n \lambda$ and $(n-1) \lambda$, respectively. So the UMVUE is $\theta^{*}=(1-1 / n)^{\sum X_{i}}=$ $(1-1 / n)^{n \bar{X}}$. Note that $\lim _{n \rightarrow \infty}(1-1 / n)^{n}=e^{-1}$, so that $\theta^{*} \rightarrow \hat{\theta}$ as $n \rightarrow \infty$.
e) Since $n \bar{X}=\sum X_{i}$ is Poisson distributed with parameter $n \lambda$, it has mgf given by $M(t)=$ $E e^{n t \bar{X}}=e^{n \lambda\left(e^{t}-1\right)}$. So $E \hat{\theta}=E e^{-\bar{X}}=M(-1 / n)=e^{-\lambda n\left(1-e^{-1 / n}\right)}$, and $E \hat{\theta}^{2}=E e^{-2 \bar{X}}=$ $M(-2 / n)=e^{-\lambda n\left(1-e^{-2 / n}\right)}$, giving $\operatorname{Var} \hat{\theta}=E \hat{\theta}^{2}-(E \hat{\theta})^{2}=e^{-\lambda n\left(1-e^{-2 / n}\right)}-e^{-2 \lambda n\left(1-e^{-1 / n}\right)}$. We already know that $E \theta^{*}=e^{-\lambda}$, and $E \theta^{* 2}=E(1-1 / n)^{2 n \bar{X}}=E e^{2 n \bar{X} \ln (1-1 / n)}=$ $M(2 \ln (1-1 / n))=e^{n \lambda\left((1-1 / n)^{2}-1\right)}=e^{-\lambda(2-1 / n)}$, so that $\operatorname{Var} \theta^{*}=E \theta^{* 2}-\left(E \theta^{*}\right)^{2}=$ $e^{-2 \lambda}\left(e^{\lambda} / n-1\right)$. For $n=20$ and $\lambda=1, ~ \operatorname{Var} \hat{\theta}=0.006926$ and $\operatorname{Var} \theta^{*}=0.006939$. Since θ^{*} is the unbiased estimator having lowest variance, and $\operatorname{Var} \hat{\theta}<\operatorname{Var} \theta^{*}, \hat{\theta}$ is not unbiased.

Problem 2

a) The cdf of $2 \theta X_{1}^{2}$ is given by $P\left(2 \theta X_{1}^{2} \leq y\right)=P\left(X_{1} \leq \sqrt{y /(2 \theta)}\right)$, so the pdf of $2 \theta X_{1}^{2}$ is given by

$$
\begin{aligned}
\frac{d}{d y} P\left(2 \theta X_{1}^{2} \leq y\right)=\frac{d}{d y} P\left(X_{1}\right. & \left.\leq \sqrt{\frac{y}{2 \theta}}\right) \\
& =f\left(\sqrt{\frac{y}{2 \theta}}\right) \frac{d}{d y} \sqrt{\frac{y}{2 \theta}}=2 \theta \sqrt{\frac{y}{2 \theta}} e^{-y / 2} \frac{1}{2 \sqrt{y}} \frac{1}{\sqrt{2 \theta}}=\frac{1}{2} e^{-y / 2}
\end{aligned}
$$

for $y>0$, the pdf of the chi-squared distribution with 2 degrees of freedom.
b) Since each $2 \theta X_{i}^{2}$ has the chi-squared distribution with 2 degrees of freedom and the X_{i} and hence the $2 \theta X_{i}^{2}$ are independent, $2 \theta \sum X_{i}^{2}$ has the chi-squared distribution with
$2 n$ degrees of freedom. Then $1-\alpha=P\left(\chi_{2 n, 1-\alpha / 2}^{2} \leq 2 \theta \sum X_{i}^{2} \leq \chi_{2 n, \alpha / 2}^{2}\right)$. Solving the inequalities with respect to θ yields

$$
P\left(\frac{\chi_{2 n, 1-\alpha / 2}^{2}}{2 \sum X_{i}^{2}} \leq \theta \leq \frac{\chi_{2 n, \alpha / 2}^{2}}{2 \sum X_{i}^{2}}\right)=1-\alpha .
$$

c) θ_{0} not lying in the above confidence interval is indicative of H_{1}. Thus, rejecting H_{0} when $\theta_{0} \sum X_{i}^{2}<\frac{1}{2} \chi_{2 n, 1-\alpha / 2}^{2}=37.11$ or $\theta_{0} \sum X_{i}^{2}>\frac{1}{2} \chi_{2 n, \alpha / 2}^{2}=64.78$ has probability α if H_{0} is true, and is a size α test.
d) Each $2 \theta X_{i}^{2}$ has expected value 2 and standard deviation 2 . By the central limit theorem, $\sqrt{n}\left(2 \theta \sum X_{i}^{2} / n-2\right) / 2=\sqrt{n}\left(\theta \sum X_{i}^{2} / n-1\right) \rightarrow N(0,1)$ in distribution. So rejecting when $\sqrt{n}\left(\theta_{0} \sum X_{i}^{2} / n-1\right)<-z_{\alpha / 2}$ or $\sqrt{n}\left(\theta_{0} \sum X_{i}^{2} / n-1\right)>z_{\alpha / 2}$, that is, when $\theta_{0} \sum X_{i}^{2}<$ $n-z_{\alpha / 2} \sqrt{n}=36.14$ or $\theta_{0} \sum X_{i}^{2}>n+z_{\alpha / 2} \sqrt{n}=63.86$, is an approximate size α test.
e) The likelihood function is given by $L(\theta)=2^{n} \theta^{n}\left(\prod x_{i}\right) e^{-\theta \sum x_{i}^{2}}, \ln L(\theta)=n \ln 2+n \ln \theta+$ $\ln \Pi x_{i}-\theta \sum x_{i}^{2}, \quad \partial \ln L(\theta) / \partial \theta=n / \theta-\sum x_{i}^{2}$, so the likelihood is maximal at $n / \sum x_{i}^{2}$. Let $\lambda=L\left(\theta_{0}\right) / L\left(n / \sum X_{i}^{2}\right)$ be the LRT. Then $-2 \ln \lambda=\ln L\left(\theta_{0}\right)-\ln L\left(n / \sum X_{i}^{2}\right)=$ $-2\left(n \ln \theta_{0}-\theta_{0} \sum X_{i}^{2}-n \ln \left(n / \sum X_{i}^{2}\right)+n\right)=2 n\left(\ln n-\ln \left(\theta_{0} \sum X_{i}^{2}\right)-1\right)+2 \theta_{0} \sum X_{i}^{2} \rightarrow \chi_{1}^{2}$ in distribution if H_{0} is true. To get an approximate size α test, H_{0} should be rejected if $-2 \ln \lambda>\chi_{1, \alpha}^{2}$, that is, if $\theta_{0} \sum X_{i}^{2}-n \ln \left(\theta_{0} \sum X_{i}^{2}\right)>\frac{1}{2} \chi_{1, \alpha}^{2}-n(\ln n-1)$. With the given numbers, this becomes $\theta_{0} \sum X_{i}^{2}-50 \ln \left(\theta_{0} \sum X_{i}^{2}\right)>-143.7$. The function given by $g(t)=t-50 \ln t$ is decreasing for $0<t<50$ and increasing for $t>50$, and the points where $g(t)=-143.7$ is given by the problem. We can conclude that H_{0} is rejected if $\theta_{0} \sum X_{i}^{2}<37.39$ or $\theta_{0} \sum X_{i}^{2}>65.17$

