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4:1.8. Suppose we have observations Z on the variance component model in
which

Zi;=pu+ a; + w, j=1....,mi=1,...,9,

where {a;} are unobserved independent N(0, o) random variables which
are independent of {u;;} which are independent N(0, ¢2) random vari-
ables, and p is an unknown parameter. Find the exact distribution of
t,/m =34 (Z; — Z)*/g, where Z, = m™ ' 37, Z,;, and then show that
it is a consistent estimator of 7,/m = ¢2 + ¢2/m when g — oo with m fixed,
but not when m — oo with g fixed. What happens when m, g — c0?

Interpret the results.

42 MULTIPARAMETER PROBLEMS

“ In Section 4.1, we treated the pressure vessel failure time data as though the
‘observations were actually generated by the exponential model (4.1). As we
~noted in Section 1.2.2, the gamma model is often used to explore the

_appropriateness of the exponential model. That is, we treat the data as a
 realization of Z generated by the model

{f(y,?L K) = H ml(fly;)" Yexp (—Ay), ;> 0: 4 > 0} (4.12)

.- and explore whether the nonexponentiality parameter « is close to 1.

o 421 Maximum Likelihood Estimation Under the Gamma Model

. The log-likelihood under the gamma model is

£(A, k) cc nlog (A) + x Zn: log (z;) — Zn: Az; — nlog {'(i)}
=1

i=1
' which is maximized at (4, k) satisfying
K H
/1 121
0=nlog () + ) log(z) — ny(x),
i=1

- Where Y/(x) = 0 log {I'(x)}/0x is the digamma function. Using the first equation
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to eliminate 2 from the second, we obtain after some manipulation

a
Il
&

and

O0=nt! i log (z;) — log (2) — (k) + log (x). (4.13)

i=1

Noting that the right-hand side of (4.13) is continuous in ¥ > 0, that
n~' Y log(z) ~log (2) < 0
i=1

by Jensen’s inequality (see 1 in the Appendix), and that (k) — log (x) < 0,

W) — log (k) — 0 as K — o0

— —00 as k — 0,

we see that (4.13) always has at least one solution. Since the derivative of the
right-hand side of (4.13) is

) + L <0,
K

(4.13) has precisely one solution and there is a unique (1, #) which maximizes
the likelihood.

To find the maximum likelihood estimates (ﬁ,, ), we need to solve (4.13) for
x and then set 4 = /2. Greenwood and Durand (1960) suggested an approxi-
mation to the solution of this equation: let y = {n=1 3°%_, log (z;) — log ()| and
then set

0.5000876 + 0.1648852y — 0.0544274y?
Yy

8.898919 + 9.059950y -+ 0.9775373y2
Y(17.79728 + 11.968477y + y2)

0<y<05772

05772 <y < 17.

We find that y = 1.072 so we should use the second approximation. Solving
the equations for our data, we find that (4, ) = (0.001, 0. 579). The right-hand
side of the estimating equation (4.13) evaluated at this value equals 0.0002.
The next step is to find an approximation to the sampling distribution of
the maximum likelihood estimator (A k). This is complicated by the fact that
these estimators are only implicitly defined. However, we can obtain an
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asymptotic expansion for (4, ®) and then approximate the asymptotic distri-
pution of the terms in this expansion. The approach we use is much more
transparent if, instead of restricting attention to the maximum likelihood
estimators under the gamma model, we work with a general class of estimators
and a general model.

4.2.2 Estimating Equations

Suppose that we treat the data as a realization of Z generated by the model
F = {f(Y; 0) = [T F(y;; 6): Beﬂ}. (4.14)
i=1

Consider the class of estimators of § which are solutions 8 of a general estimating
equation of the form

iizll n(Z,, 6) = 0. (4.15)

We call 3°1_, n(Z;, 6) an estimating function (Edgeworth, 1908-9; Godambe,
1960; 1991) and 8 a maximum likelihood type or M-estimator (Huber, 1964).
Maximum likelihood estimators # for the model & correspond fo setting
n(x, 6) = 0 log {f(x; 6)}/06 but we obtain a useful generalization of maximum
likelihood estimation if we allow flexibility in the choice of n in (4.15).
If the expected value of the estimating function is 0 under & so

f " e 0)f(z8) dz =0,

-0

we say that the estimating equation is unbiased for 8 under &#. Unbiasedness
of the estimating function implies that when the estimating equation procedure
is applied to the population represented by %, the estimator is the parameter
we are trying to estimate. This property is called Fisher consistency.

More formally, define a function 8(-) from the set of all distribution functions
to the parameter space Q as a solution of the equation

r n(z, 8) dF(z) = 0, (4.16)

— o0

where F is an arbitrary distribution function. Replacing F in (4.16) by the
empirical distribution function F, (Section 1.5.2) produces (4.15) so we can write
= 6(F,). Let F, denote the distribution which generated Z so that Fy(x) = F(x; 6,)
for some 6, (called the true parameter value) whenever F, e &. Solving (4.16)
at F, produces 8(F,) and 8 is Fisher consistent for 8, if 0(F,) = 0,.
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The formalization in terms of the function 8(-) is useful because it tells ug
that & is estimating 6(F,) when Z,, ... , Z, are independent and identically
distributed random variables with common distribution function (F, ¢ # ).

Fisher consistency is not the same as consistency defined in Section 4.1.6 but
it is closely related because F, is consistent for F, and, when 6(*) is continuoys
at Fy, it follows that 8 is consistent for 0(F;). We will show in Section 4.2.4 that,
under further conditions, 8(F,) is the asymptotic mean of §.

We derive the properties of M-estimators in Sections 4.2.4-4.2.6, specialize
the results to maximum likelihood estimators in Sections 4.2.7-4.2.10, and then

apply them to make inferences about the parameters in the gamma model (4.12)
in Section 4.2.11.

423 Establishing Convergence for Random Vectors

In multiparameter problems, we have to establish approximations to the
sampling distribution of a vector estimator. Although the calculations become
more complicated, the manipulation of vectors raises no substantive difficulties.
The techniques we use are very similar to those we would use in the case p=1
and the results include p = 1 as a special case.

A simple extension of the central limit theorem can be established using the
Cramer-Wold device.

Theorem 4.4 (Cramer and Wold, 1936) The random p-vector X, converges

in distribution to X if and only if for each fixed p-vector a, a*X, converges in
distribution to a*X,

For our purposes we require only the multivariate version of the Lindeberg—Levy

central limit theorem which is readily established from Corollary 4.1 and
Theorem 4.4.

Theorem 4.5 et Z,, ..., Z, be independent and identically distributed random
p-vectors with mean p-vector p avd p x p variance matrix X. Then

n~H2 Y (Z;— w) BNL(0,%) as n— oo,
i=1

where N, denotes the p-dimensional multivariate Gaussian distribution.

Convergence in probability is even easier to extend to the multiparameter case

because a vector or matrix converges in probability if and only ifits components
do so.

424 The Approximate Sampling Distribution of an M-Estimator

The basic procedure for approximating the sampling distribution of an
M-estimator is to expand the estimating equation (4.15) in a Taylor series

T T T T T T e e
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(see 2 in the Appendix) about the point 6(F;) to produce an expansion in
increasing powers of 6 — 8(F,) which is of the form

0=n"" ¥ 0y =" 3 2, O0F) +n ! 3 020N~ 6(F) + -,

where #'(z, £) denotes the matrix with (i, j)th component anz, £)/0t;. We then
invert this expansion to obtain an expansion for § — 8(F,) in increasing powers

-1 ]

of n i=1 1(Z;, 8(F,)) which is typically of order n~'/2 in probability and can
be used to obtain approximations to the sampling distribution of § — O(F,).

The procedure is particularly straightforward if we are only interested in the
leading term. In this case, we have the expansion

n''2(6 — 6(F,)) = “{n“‘ Z 7'(Z,, 9*)}-}”2 Z nZ;, 0(F)), (4.17)
i=1 i=1

| where 0* is between 6 and 8(F,) in the sense that |6* — 0(F,)| < |6 — 0(F,)|.

Provided Z,,..., Z, are independent and identically distributed random
variables, n=Y2 3", n(Z;, 8(F,)) is a sum of independent and identically
distributed random variables. If in addition

EFon(Za Q(FO)) = Oa
and

EriZ, F)N(Z, 8(F,))T = Ap(8(Fy)) < o0,

it follows from the central limit theorem that
n~M2 % (Zi, 6(Fy)) BN, Ar,(6(F,))). (4.18)
i=1
Next, write

Y (20 =0Tt Y n(Z, 0F) + 0t Y {1(Zs, 8%) — 12, 0(F))).
i=1 i=1 i=1

(4.19)

The first term is the mean of independent and identically distributed random

variables so, provided —Ep n'(Z, 0(F,)) = By (8(F,)) < oo, the weak law of large
numbers ensures that

WY (2o ) = ~ Be((BCFs) + o,(1). (420

i=1

i.
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Also, provided § = 0(Fo) + 0,(1) and #'(y, t) is continuous at ¢ = 0(F,) uniformly
in y, we can show that

w3 0 0 — 1 0 = 0,01 @

Finally, if B (8(F,)) is nonsingular, we can apply Theorem 4.2 to 4.17)-(4.21)
to obtain

nV2(0 — 8(Fy)) = By (6(Fy))~'n~ 112 iz MZis O(Fy) + 0,(1)

from which it follows that
nU2(0 — 8(Fy)) BN(O, Bry(6(Fy) ™ Ay (0(Fy)) By (6(F,) ),

where M~T = (M YT,
Collecting all the conditions, we have proved the following result.

Theorem 4.6 LetZ,,...,Z, be independent and identically distributed random
variables with common distribution function F,. Suppose that

L. O(F,) is an interior point of the parameter space Q and an isolated root of
the equation Ex5(Z,, 6) = 0,

2. 9'(y, 1) is continuous at t = B(F,) uniformly in y,
3. Erti(Zs, O(Fo))1(Z;, 6(F,))T = Apy(8(Fy)) < o0
and
4. Ern'(Z,, O(F,)) = Br,(8(Fp)) < oo and nonsingular.

Then if 0 = 6(Fy) + 0,(1) and n~ /2 Xl m(Z, 0) = 0,(1),
O = BUD) = — BeyOR) ™ 3z, ) + 0,01

which implies that
2§ — 6(F,)) 3 N(O, Bro(0(Fo)) ™ Aro(B(Fo))Bpy(B(Fo) ™ ™).

The last two (unnumbered) conditions ensure that § is a consistent estimator
which satisfies the estimating equations. Condition 1 ensures that 8(F,) is not
on the boundary of Q so that a Gaussian approximation to the sampling
distribution is plausible (see Moran, 1971). Condition 2 justifies the Taylor
series expansion of the estimating equations and ensures that the remainder
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vanishes. Conditions 3 and 4 justify the application of the weak law of large
numbers to the denominator and then the central limit theorem to the
numerator in the rearranged Taylor expansion expressing n'/(§ — 8(F,)) as the
ratio of two terms.

A more general version of Theorem 4.6 has been given by Huber (1967),

4.2.5 Approximate Standard Errors for Estimating M-Estimators

Theorem 4.6 establishes that the asymptotic variance of an M-estimator 0 is

VeolB(Fo)) = n™ " Byo(0(Fo)) ™ * A, (B(Fo)) Bro(6(Fy)) .
A natural estimator of ¥ (8(F,)) is

V@) = n=1B)*AB)B©O)T, (4.22)

where

n

A@O) =171 Y. 4(Z; On(Z; 0 and BO =n"' Y w(Zs 6).
i i=1

i=1

The estimator (4.22) is consistent for Vg, (6(F,)) under the conditions of Theorem
4.6 so {diag P(6)}'/2 gives approximate standard errors for 8.

4.2.6 Solving Estimating Equations

The Newton-Raphson method described in Section 2.7.7 as an algorithm for
obtaining the maximum likelihood estimates can be applied to solve the more
general (4.15). The algorithm is based on a linear expansion of the estimating
function in (4.15) instead of a quadratic expansion of the log-likelihood function
but the end result is the same.

We can modify the Newton—Raphson method by replacing the normalized
Hessian matrix n™* 32/, #'(Z;, 0;,) by the estimate — Br;0,,)(Om) of its limit
under the model &#. At least when the estimating function is the derivative of
the log-likelihood, the resulting algorithm is known as Fisher's method of
scoring. As we saw in Section 4.2.1, the form of # may suggest additional
alternative algorithms.

|
i
]
.
i

e

i A5 i | = o

P L AT b s

4.2.7 Why Maximum Likelihood Estimates the True Parameter

| Suppose that the model & = {f(y; 0) = [T"=, f(3:; ) 6eQ} holds so that
| Fye Z. Let 8, denote the true parameter value which identifies the distribution
in the model which actually generated the data so F, denotes the distribution

W
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with density f(y; 6,). By Jensen’s inequality (see 1 in the Appendix)

£Z;9) 7(Z;9)
Bro log {f(Z; 905} <log Er, {f(Z;To)}

= log {f Sy 0) dy}
support {f(; o)}

Il the densities in # have the same support and the densities in the model are
distinct in the sense that f(y; 6,) # f(y; ) whenever 0 % B,

f(Z,9)
Eg, log {f(T;Qo)} <0 (4.23)

and 8, maximizes Eg log {f(Z; 6)}.
Since Eg, log { f(Z;; 6)} is maximized at § = @, the true value 8, satisfies the

equation
8Ey, log f(Z; 6)|

= 0.
00 |9=00

If we can interchange the order of expectation (ie, integration) and differen-
tiation we have that

dlog f(Z;6)

Erm(Z, 6,) = EFo 20 =
=89

so the estimating equation is unbiased for 6, when % holds and 8 is Fisher
consistent for 8,

4.2.8 The Approximate Sampling Distribution of Maximum
Likelihood Estimators

A simplification to Theorem 4.6 is often available for maximum likelihood
estimators. If we can interchange the order of integration and differentiation
twice,

BFO(GO) = *EFOW'(Z, 8o)
_ _Jaz log f(x, 8,)
- 0, 967

B j[ I 8f(600) 1 3f(x,0)3f(x, 6,7
f(x, 8,) 98, 393 fix, 90)2 90, a6,

f(x, 80) dx

:I f(x, 8;) dx
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4 __ f 7T 00) J 0log /(% 00)} 21og {/( 60)}" 01 4.

' 690 690 690 660

; i az ;

:. = —aao ae-g ff(x: 90) dx + EFO’?(Z’ 90)’1(2: 90)

= Ar(6o).

The common value of Ap(8) = Bg(6) is denoted by I(f) and is the Fisher
information matrix defined in Section 2.3.2.

Specializing the statement of Theorem 4.6, we have the following result.

Corollary 4.6 Let Z,,..., Z, be observations on a model

7 = {f(y; 0) = T 0 030 n}

which satisfies

1. 8 is an interior point of the parameter space Q

2. the support of f(-,6) does not depend on 6 and Sy 00) # f(y; 0) for
bo #0

3. n(x, 0) = dlog { f(x, 6)}/00 and the second derivative of f (x, 8) with respect
to 8 is finite for each x in the support of f(x,6) and continuous at 0o
uniformly in x

4. the integral | f(x, 8) dx can be differentiated twice under the integral sign
5. the Fisher information

16 = J " 2log f(x,0)0log S50 o

—e a0 06
Is finite and nonsingular at § = @,,.

Then if § = 0y + 0,(1) and n~ Y2 31_, (Z,, 0) = 0,(1),
W20 — ) = —1(80) 112 Y 1(Z,, 86) + 0,(1)
i=1

which implies that

n*2(8 — 8,) B N(O, I(8,)~ V).
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4.2.9 Approximate Standard Errors for Maximum Likelihood Estimators

To use Corollary 4.6 to make inferences about 6o, we need to construct an
estimator of the Fisher information matrix I(8,). We could use the estimator
V(0) defined in (4.22) but, under the assumed model, we usually use the observed
information

no 42 R
F=—n1 ¥ d longZ,,B)
i=1 aB o=6
or the expected information
2
1) = “—{Ee B__lo_g];(Z,_G)} ]
06° o=§

These estimators are generally different except in the case of distributions in
the exponential family (Section 1.3.1) for which they are identical. In particular,
they are identical for the gamma model (4.12). Both of these estimators are
consistent for 1(6,) under the conditions of Corollary 4.6 so either estimator can
be used to make approximate inferences about 0. Both estimators require 8
but £ is typically simpler to obtain than 1(6) because it does not require the
expectation of the second derivative matrix.

Using the observed Fisher information, an approximate 100(1 — )% con-
fidence interval for 8,; is given by

[8, — n VXS Y2011 — o/2), 8, + nTIAAIN2P 1L — wf2)], (4.24)

where #1! denotes the (1, 1)th element of .# ~*. Confidence intervals for the
other components of 8, are easily obtained.

4.2.10 Consistency of Maximum Likelihood Estimators

To apply Corollary 4.6, we still have to show that § is a consistent estimator
of 8. This is surprisingly difficult to do and requires rather technical conditions.

Since we are trying to maximize the log-likelihood Yi=1log {f(Z, B} to
estimate 6, we can base a consistency proof on the likelihood function. This has
been done very elegantly by Wald (1949) who first proved consistency for the
case that the parameter space ) contains only a finite number of points and
then extended the result to more general sets Q satisfying compactness
conditions which enable them to be approximated by finite sets.

An alternative approach due to Cramer (1946, pp. 500-4) is to show that a
root of the likelihood equation is consistent. The difficulty with this approach
is that if the equtions have multiple roots, it is impossible to tell which of these
are consistent. This difficulty can be overcome by specifying an algorithm for
choosing a single root and then showing that this root is consistent.

R L T

i

e
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4211 Maximum Likelihood Inference Under the Gamma Model

Technical arguments can be used to show that distributions in the exponential
family satisfy the conditions of Corollary 4.6; see for example Lehmann

(1959/1991, pp. 57-60; 1983, pp. 438-42), For our problem with the gamma
model (4.12), 6 = (4, x)" and

T

= n(x, ) = (; — x, log (1) + log (x) - w(:c)) :

It follows that

1(6) = —Ey'(Z, 6)

e _ ( /A2 _,1—1)

L C\=2T g

and inverting this matrix, we obtain

E A2 Yik) AT

e 10~ = -"——( - )

B () — T\ A7Y xfA?
Solving the estimating equations for our data, we find that § = (0.001, 0.579)
and

(f)"l _ (1.58 x 1077 408 x 10-5)

b 20/ \408x107% 0023

' An approximate 95% confidence interval for « is obtained from (4.24) as

(0.27, 0.88).

- This interval does not contain x = 1 so provides evidence against the adoption
' of an exponential model for the pressure vessel failure data.
B The fact that « is a non-negative parameter suggests that we should consider

'+ alog-normal approximation to the sampling distribution of 2. From Theorem
- 43, we obtain

1
Var (log ()} ~ K(:c_l,b'(—rc) — 1-)

which produces the standard error 0.265 and hence the 95%, confidence interval

(0.34,0.97).

“. di -
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Although both approximations lead to similar conclusions in this case, we
may still seek to investigate which scale provides the better approximation,
Ideally, we would like to compare the approximations to the exact results byt
we do not know the exact distribution of & Nonetheless, we can make some
progress through a computer simulation (see Section 3.10). We can generate
1000 data sets of size # = 20 from a gamma distribution with A = 0.001 and
ko = 0.5, compute a nominal 95% confidence interval for x from each data set
using the two approximations, and then compare the estimated coverage
probabilities of the intervals (the proportion of intervals containing the actual
value of k) and the distributions of the lengths of the intervals.

Using the Gaussian approximation to the binomial distribution to set
confidence intervals for the actual coverage probabilities (see Section 3.7.2),
we find that the approximation on the raw scale produces nominal 95%
confidence intervals for x, which have an estimated coverage probability of
097 + 1.96\/ 0.97 x 0.03/1000 = 0.97 4- 0.01 whereas that on the log scale
produces nominal 959 confidence intervals for i, which have an estimated
coverage probability of 0.92 + 1.96\/ 0.92 x 0.08/1000 = 0.92 + 0.01. The distri-
butions of the lengths of the confidence intervals are shown in Figure 4.3. Using
the Gaussian approximation to the distribution of the mean lengths, we see

1.5 20

1.0

Lognormal Approximation

0.5 1.0 15 20
Gaussian Approximation

Figure 4.3. A gg-plot of the lengths of simulated 95% confidence intervals using the Gaussian and
lognormal approximations to the sampling distribution of the maximum likelihood estimator of
the gamma shape parameter x under the (0, 5, 0.001) model.
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that the approximation on the raw scale produces nominal 95% confidence
intervals for x, with mean length 0.60 + 1.96 x 0.006 = 0.60 + 0.01 whereas
that on the log scale produces nominal 957, confidence intervals for x, with
mean length 0.63 + 1.96 x 0.007 = 0.63 3 0.01. There is not a great difference
between the results produced by the two methods but the confidence intervals
produced on the raw scale have slightly better coverage and are typically slightly
shorter than those produced on the log scale. More detailed comparisons can
be made by extending the range of n, 1, ¥, and nominal levels considered.

PROBLEMS
4.2.1. Suppose that we have observations Z on the multivariate Student ¢ model
o2

2 1

n _ 2){v+n)y2
7'60'2 u[Zr _‘i) 1 + (y: nu) }
(me’) (2 i; 2v

-9'7={f(y;#,a)=

-—oo_<_y,~goo:uelR’,0'>0},

where v > 0 is known. Use the representation Z, = y + o Y,/h''?, where
Y, are independent standard Gaussian random variables which are
independent of & ~ ¥2/v to find the sampling distribution of the maximum
likelihood estimator & of y as n — co. Show that &2 is inconsistent by
showing that it converges in probability to the random variable o2/A.

4.2.2. Suppose that we observe Z on the model
F = {f(z; )= [10z"'exp(—z%),z,>0: 0> 0}.
i=1

The maximum likelihood estimator of 8 cannot be written down explicitly.
Nonetheless, show that the likelihood equations have a unique root which
equals the maximum likelihood estimator. (Hint: show that the likelihood
equation is a continuous function of 4, takes positive and negative values
and crosses the zero axis once.) Find the asymptotic sampling distribution
of the maximum likelihood estimator and show how to use it to set an
approximate 100(1 — «)% confidence interval for 8.

4.2.3. Pareto’s distribution is sometimes used to represent the distribution of
incomes over a population. Suppose that we observe Z on the Pareto
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model

={f(y;l)= n %,yi>/‘t: rc,ﬂ,>0}.
. y.

i=1 I

Suppose initially that A is known. Obtain the maximum likelihood
estimator ® of x. Find the asymptotic distribution of # and hence of
the maximum likelihood estimator of the median A2!/*. Construct a
100(1 — )%, large sample confidence interval for the median income in
the population.

In the context of Problem 4.2.3, suppose now that both x and 1 are
unknown Obtain the maximum likelihood estimators of x and A. Show
that 1—1=0 ,(n™1). Hence or otherwise show that the asymptotic
distribution of the maximum likelihood estimator of the median when 1
is unknown is the same as when A is known. (Malik, 1970, has obtained
the exact distribution theory for this problem.)

We noted in Section 1.3.2 that the Weibull model is often used in place of
the gamma model to explore the applicability of the exponential model.
In the Weibull model we treat the data as a realization of Z generated by

= {f(y, Ay =TT eAAy )~ exp {—(Ay) % yi > 0: 4> 0}-
i=1
Show that the log-likelihood is maximized at (J, k) satisfying

1
{1’! 1 n 12}1]u

H K
i=1Z;

1 " 1K X
0=_ + n—l z log (Zi) - 21-1 Zj 108 (Zz)
K i=1
and show that there is a unique (1, %)} which maximizes the likelihood.
Write down an approximation to the sampling distribution of the
maximum likelihood estimator.

Fit the Weibull model of Problem 4.2.5 to the pressure vessel failure time
data presented in Table 1.2 and use it to make inferences about x and
then the median of the failure time distribution. Carry out a simulation
to explore the quality of the Gausian approximation and the repeated
sampling properties of the inferences about « at the estimated parameter
values.
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- 4.2.7. Suppose that the conditions of Theorem 4.6 hold and that 8% — 0(F,) =

0,(n~'/?). Show that the one-step estimator

6=0%- {il n'(Z;, 9*)}_

1 n
i

;1 n(Zia 0*)

is asymptotically equivalent to a root of the estimating equations (4.15).

43 THE CHOICE OF INFERENCE PROCEDURE

 We showed in Sections 4.2.6-4.2.11 that maximizing the likelihood for the

gamma model (4.12) is a reasonable method of estimating the parameters of

~ the model. However, the implementation of the procedure requires us to solve

an implicit equation and to approximate the sampling distribution of the
implicitly defined estimator so other approaches may be simpler to implement.

4.3.1 Method of Moments Estimation for the Gamma Model

If we compute the sample moments m, =n~! Yi=1 Z}, k= 1,2, their expectations
under the gamma model (4.12), which are Em, = x/A and Em, = k(1 + x)/A%,

- and then solve the system of equations

m1=

1

Ra(l + K1)

2= 2 »
A

: ~ we obtain the explicit method of moments estimators (Section 3.1.1)

a _f_nl
m
m
b o—_m
m 2
m; —mj

of 4 and x.

43.2 The Sampling Distribution of the Method of Moments Estimators

We can apply Theorem 4.6 with 6 = (1, x)T and

1(y, 0) = (y — x/A, y* — (1 + 1)/A)"




