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We saw in Example 6.3.2 that this model was invariant. Furiwermore, since g.(X,...,
X,) is a random sample from a n(u + ¢, a?) population, the transformation g; is
T, 00) = (4 ¢,0%). Noting how the transformation g affects the parameter, the
corresponding transformation of the action is §.(a) = a + ¢. To verify that this is the
correct transformation, note that

L, 00),8) = (p — a) = (+ ¢ — (@ + O = LG, 0°), la)).

‘Thus Definition 10.6.1 is verified and this problem is invariant under this group.

Any estimator that satisfies T(z| +¢,...,Zn + &) = T{z),...,Ty)+c, forall ¢
and for all (z,,...,zy). is an invariant estimator. To verify Definition 10.6.2 we note
that

T(g.(x)) = T(zy +c,...,%x + )
=T(x1,.--+Zn)+ ¢
= §AT(x)).

Estimators that are invariant in this problem include the sample mean and the sample
median. I

Example 10.6.2: Let X,,..., X, be a random sample from a n(g, a?) population.
Consider estimating o using squared error loss. Use the scale group G = {g.(x):
0 < ¢ < oo} where

gelzy, ... yEn) = (€T, ... +CEy ).

Then g.(X|,...,X5) is a random sample from a n{cy, cZo?) population. Thus the
model is invariant under this group and Fi(u, 0%) = (cpt, 2o?). If this problem were
invariant under this group, then there would be a g such that

(02 — a)? = L((p, %), @) = LG, %), §cl@)) = (Po? = G(a))’.

This is true only if §.(a) = o? + 62 —a or §.(a) = ?o? — o + a. But according
to Definition 10.6.1, §.(a) can depend only on g, and a, not o2. Thus this is not an
invariant decision problem. I

Example 10.6.3: Let X;,..., X,, be a random sample from a n(, a?) population.
Consider testing Ho: p < 0 versus Hy: p > 0 using 0-I loss. This problem is
invariant under the scale transformation group defined in Example 10.6.2. Notice that
according to the general decision theoretic definition of invariance, we need check
only that the whole model is invariant under the group. We do not need to check that
each subset of distributions, Hy and H\, is invariant as was required in Definition
8.2.4. The hypothesis testing invariance we discussed in Chapler 8 is a special case
of the general notion of invariance we are now discussing.
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Recall that i, _.,02) = (cp, Po?). Since ¢ > 0, if (i, 0%) € By, that is, u <0,
then e, o) € Og and if (u,0?) € O then Fo(u,0?) € ©. Thus action a,,i = 0
or 1, is correct or incorrect for (u,a?) and Fo(u, o) simultaneously. This suggests
that the only transformation of the sample space needed is the identity transformation,
gla;) = a;,t = 0 or 1. Unlike in the previous point estimation examples, here § does
not depend on which g, € G we are considering. To verify that this § is correct and
Definition 10.6.1 is satisfied, note that if g < 0 then ¢yt < 0 so that

Li(t,0%), 00) = 0 = L(Galps, %), ap) = L(Ga(p, 02), §(ao))
and

L, 0%, a)) = 1 = L(G(p, 07),a1) = L(Ge(p, %), §lay)).

Similar equalities hold if 2 > 0. Thus the conditions of Definition 10.6.1 are satisfied
and the decision problem is invariant.

Let ¢(x) be the test function for a test. Since § is just the identity transformation,
Definition 10.6.2 says that a test is invariant if

$go(x)) = F((x)) = P(x).

This matches Definition 8.2.3. Thus the tests considered in Example 8.2.6, tests that
depend on the sample only through the statistic X/1/S%/n, are invariant decision
rules. But there are other hypothesis testing problems in which tests thal are invariant
according to Definition 10.6.2 are not invariant according to Definition 8.2.4. (See
Exercise 10.38.) Thus the type of invariance introduced in this section provides a more
general concept of invariance for hypothesis lesting problems than that considered in
Chapter 8. I

10.7 Stein’s Paradox

In this section we will consider a special multivariate estimation problem, one that
has some rather counterintuitive features. The problem to be considered is that of
estimating several normal means simultaneously and is actually a special case of the
statistical problem considered in Chapter 11. An excellent introduction to Stein's
paradox is given in Efron and Momis (1977).

Let X; ~ n(#;,1),i = I,...,p, where p > 3. (This restriction will be ad-
dressed later.) Assume X),..., X, are mutually independent. Notice that the X;s
are not iid. They come from normal populations with possibly different means, but
the problems will be tied together in that there will be one loss function for the
p problems. Formally, we want to estimate 8 = (f,,...,6,), using an estimator
8(X) = (61(X),...,0,(X)). The loss function is

P
(10.7.1) L#,8(X) =D (8: — (X

i=l
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This loss function is the sum of squared error loss functions, biit there is one important
point to see. Each & can be a function of (Xy,...,X,), so all of the data can be
used in estimating each mean. Since the X;s are independent, we might think that
restricting 4; just to be a function of X; would be enough. However, the X;s are tied
together in the loss function, and we will see that this matters.

The situation described here is not too farfetched and can be used as a model for a
number of situations. For example, suppose a company needs to estimate average crop
yield 6; based on data X; for a number of different crops in different places. Although
each estimation problem is separate, they all affect the company. So it is reasonable
for the loss function to tie them together. Realize that good estimation overall takes
precedence over doing well in any particular problem. The results obtained in the
simple model considered here have been obtained in much more generality; see Berger
{1985) or Lehmann (1983) for some generalizations.

Using Exercise 10.30, we will now show that the estimator X = (Xi,.--, Xp)is
minimax. (In more generality, the sample mean is minimax in the combined problem.
See Exercise 10.39.) An estimator 8(X) = (§(X hoo s 85(X)) of the parameter
@ =(8,...,8,), using the loss function (10.7.1), has risk function

»
(10.7.2) R(6,6) = Eq (Z @i - 6.—()0)2) :

i=I

Furthermore, if 7(8) is a prior on 8, then the Bayes risk of an estimator is
o0 o0

(10.7.3) B(r,§) = / - f R(8,5)m(6)d8, - - - dé,,.
(=] — OG0

Suppose now that we take a prior that is a product of independent priors, that is,

r
w0 = [[ =6, 76 a n0, %) pdfr.
i=}
For estimating 8; with loss (8; — 5;(X))*, the Bayes rule against m;, 87, is
2

(X)) = 65(X) = ——— X,
(10.7.4) 6100 = 61X = = Xi,

with Bayes risk

r2

2410

B(Whé;’r(xr)) =

(These types of caiculations are used in Section 10.4.3 and Exercise 10.8.) Since the
priors are independent, it follows (see Exercise 10.10) that

(XY = (5T(X1),..., 6X(X,))
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is Bayes against the prior 7() = P mi(8;) using the loss (10.7.1). The Bayes
risk is
P ’1'2
B(r,6"(X)) = ; T
2

,
T2 41

=pr

—p, aSTZ——'OO,

= R(#, X,

and hence, by Exercise 10.30, X is minimax.

Even though X is minimax, X is not unique minimax and, since the risk of
X is constant at the minimax value, any other minimax estimator will be better than
X. Unlike the one-dimensional problem where X is admissible, it is not admissible
in higher dimenstons (three or more).

This was established by Stein (1955) who showed that, if the dimension of the
problem was at least three, then there exists a better procedure. (It was shown in
Stein (1955) and James and Stein (1961) that the sample mean is admissible in one
and two dimensions.) More importantly, in James and Stein (1961), a better estimator
was exhibited. That seemingly nonintuitive estimator (but also see Exercise 10.40) is
given by 6%(X) = (67(X), ..., 63(X)), where

(10.7.5) §(X) = (I - -’%{5) X;.
i= 1

The original proof that % dominates X is quite long and cumbersome, relying
on representations of noncentral chi squared distributions. A more elegant and useful
proof, however, was given by Stein using his Lemma (Stein, 1973, 1981). This
use of Stein’s Lemma, or more accurately, employment of integration by parts, was
discovered independently by Berger (1975), who also used it to establish minimaxity
of a class of estimators.

Recall Stein's Lemma, given in Chapter 4. If X ~ n(#, 6), then

E(g(X)X — 8)) = o’E¢'(X),

provided the expectations exist. Using this identity, computation of the risk of &5 is
refatively easy. We have

P
R(8,6%) = Ey [Z (6; — 6§(X))2} (definition of risk)

=|

IJ
= Z Eg[0: ~ 6§(X)]2 {(property of expectation)
i
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of estimator

i=| F=1""3
= > Eg|(d; — X3+ X
i=1 ;"=l XJ2 ]
L -2
(10.7.6) z Es(0; — X; )2 +2 ZE@ ((9; Xi)—}:,—"—x,—zxi)
i=1 i=1 j=1"j

+ZEg( sz)z.

The first expectation in (10.7.6) is equal to p, since it is the risk of X, and simple
manipulation will show that the third expectation is equal to (p — Z)ZEg(l /250 XD).
For the middle term we use Stein’s Lemma: !

ZE,;((O XZ ) ~(p- 2)259(6)(2)& )

Differentiating and gathering terms gives

X; X2 2X?
—(p- Z)ZEG(BXZ ) —(p- 2)259(w)

i=|
- 2 !
=—(p-2)Es -W

Putting this all together, we have the risk of the Stein estimator (0 be

1 1
R(3,65)=p—2(p—2)zEg(———-—) +(p—-2)E (___._
X X
1
=p-0-2Es | =3
( ?=|X§)
<p=R(0|X).

Thus the risk of 6% is smaller than the risk of X and X is inadmissible. The above

inequality is valid as long as the expectauon exists, and the expectation exists as long
asp>3. Ifp=1or2 Eg(1/3}_ X} =

(expand the square) k
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The esti__.or 6% is one of a family of estimators defined by

(10.7.7) 5(X) = (1-—p"-5) X, i=1,...,p.
L XJ

Any such estimator with 0 < ¢ < 2(p — 2) is better than X, but the choicec =p -2
is optimal (sce Exercise 10.41). These estimators, however, can also be uniformly
improved upon in a simple way (Efron and Morris, 1973) by using a positive-part
estimator,

+
(10.7.8) sroo-[1-L222 ) x, i=1..p
3 IX:

where we define the notation (z)* = max(0, ). Hence the coordinates of the positive-
part estimator cannot have a different sign from the coordinates of X. Also, the
positive-part estimator alleviates the strange behavior of the Stein estimator near zero.
(Note that as X — 0,85 — —o0 or +oo. Although this behavior does not adversely
affect the risk, it would make an experimenter uncomfortable if a small X were
observed) The risk functions of X, 6%, and 6%, which depend on @ only through

P_, 62, are shown in Figure 10.7.1. Notice that the biggest risk improvement is ob-
tained near & = 0, because these estimators all shrink X toward the point (0,0,...,0).
There is nothing magic about zero, however, and these estimators can shrink toward

any point.

Risk of X

0 2 4 6 8 10
Norm of §

FIGURE 10.7.1 Risk functions for Stein-lype estimators

Interestingly, even though &% is a very good estimator (Efron and Morris, 1973),
the results of Brown (1971), which generalized the work of Sacks (1963), show
that &% is inadmissible. Thus, there are estimators that uniformly dominate §+.
Even though admissible estimators for this problem have been found (Strawderman,
1971; Berger, 1976), no one has found an estimator that dominates 6. Although,
practically speaking, 6% cannot be improved upon by very much, finding an estimator
that dominates it would be a theoretical achievement.
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Finally, we note that the Stein Paradox carries over i set estimation in that,
in three or more dimensions, the usual confidence set for a vector of normal means
is inadmissible. There exist confidence sets centered at Stein-type estimators that
have the same volume and higher coverage probability, or smaller volume and the
same confidence coefficient. Brown (1966) and Joshi (1967) independently proved
the existence of a dominating procedure for p > 3, and Joshi (1969) later proved the
admissibility of the usual confidence set if p = 1 or 2. Hwang and Casella (1982)
first exhibited a dominating set and Caselta and Hwang (1983, 1987) explored the set
estimation problem further.

EXERCISES

10.1 Let X have an(f, 1) distribution, and consider testing Hy: @ > 8 versus H: @ < 6. Use
the loss function (10.2.5) and investigate the three tests that reject Hy if X < —z, + 6
for o =.1,.3, and .5,
a. For b = ¢ =1, praph and compare their risk functions.
b. For b= 3,¢ = 1, graph and compare their risk functions.
c. Graph and compare the power functions of the three tests to the risk functions in parts
(a) and (b),

10.2 Consider testing Hy: p < % versus Hy: p > % where X ~ binomial(5, p) using 0-1 loss.
Graph and compare the risk functions for the following two tests. Test I rejects Hy if
X =0o0r1. Test Il rejects Hy if X =4 or 5.

10.3 Consider the binomial estimation problem in Example 10.4.1 for n = 10. Graph and
compare the risk functions for these two estimators, §(z) = % and 6'(z) = z/10.

10.4 Show that the log of the likelihood function for estimating o, based on observing
5% ~ ¢2x2 /v, can be written in the form

2 2 5t s
log L{c*|s*) = K.EE - Kﬂog; + Ky,

where K, K3, and K are constants, not dependent on o2, Relate the above log likelihood
to the loss function discussed in Example 10.2.3. See Anderson (1984a) for a discussion
of this relationship.

10.5 Let X ~ n(g,6?),0° known. For each ¢ > (. define an interval estimator for u by
C(z) = {z — co, T + co) and consider the loss in (10.2.7).
a. Show that the risk function, R(u, (), is given by

R{p,C)=b(2co)- P(—c < Z <¢).

b. Using the Fundamental Theorem of Calculus, show that

d 2 2,
— R, G = g - —m—p— 2
de U €) Vix

and, hence, the derivative is an increasing function of ¢ for ¢ > 0.
¢. Show that if be > I/v2w, the derivative is positive for all ¢ > 0 and, hence,
R(p, C) is minimized at ¢ = 0. That is, the best interval estimator is the point estimator

Ciz) = [z, z).
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d. Show wit if ba € 1//2n, the ¢ that minimizes the risk is ¢ = \/—2log(bo/2r).
Hence, if & is chosen so that ¢ = z,;, for some . then the interval estimator that
minimizes the risk is just the usval ~a confidence interval.

10.6 Let X ~ n{g,o?), but now consider o unknown. For each ¢ > 0, define an interval
estimator for u by C(zx) = |x — s, x + cs], where 5? is an estimator of ¢? independent
of X, v8%/a? ~ x2 (for example, the usual sample variance). Consider a modification
of the loss in (10.2.7),

b
Li{p, 01, C) = ;Len(C) - Ic(p).
a. Show that the risk function, R{{, 5}, C), is given by
Ri(p,6),CY = b(2eM) - 2P(T < o) - 1],

where T ~ ¢, and M = ES/o.
b. If & < 1/v/2m, show that the ¢ that minimizes the risk satisfies

) 1 RN Y
T (v+cz)

¢. Reconcile this problem with the known o? case. Show that as v — oo, the solution
here converges to the solution in the known o? problem. (Be careful of the rescaling
done to the loss function.)

10,7 The decision theoretic approach to set estimation can be quite useful (Exercise 10.34) but
it can also give some unsctiling results, showing the need for thoughtful implementation.
Consider again the case of X ~ n{j, o?),a? unknown, and suppose that we have an
interval estimator for u by Cfzx) = [z — cs, T + cs]. where s is an estimator of o?
independent of X, vS2/a? ~ x?. This is, of course, the usual ¢ interval, one of the great
statistical procedures that has withstood the test of time. Consider the loss

Ll(p, 0),C) = bLen{C) — Ic(p),

similar to that used in Exercise 10.6, but without scaling the length. Construct another
procedure C' as

' = [t—cs,z+c3] Ts<K

e ifs>K '
where K is a positive constant. Notice that C* does exactly the wrong thing. When s
is big and there is a lot of uncertainty, we would want the interval to be wide. But C”
is empty! Show that we can find a value of K so that

R((p, @), C") < R({t,0),C),  for every (i, 0),

with strict inequality for some (j1,0).

108 Let X,,..., X, bc a randem sample from a n(d,o”) population, o? known, Consider
estimating # using squared error loss. Let m(@) be a n{g, 72} prior distribution on # and
let 6™ be the Bayes estimator of 8. Verify the following formulas for the risk function
and Bayes risk.
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For p = %, L(%,ao) = L(%,m) = 0. Consider the group {91,9:} from Example

6.3.1 that has only two clements,
gx)=n—-2x and @(x)=rz.

a. Show that this testing problem is invariant under this group if and only if the constants
from the loss function satisfy ¢ = ¢y. What are g, g2, &. and §;? Why was the
modification of the loss for p = } necessary?
b. Explain why the conditions of Definition 8.2.4 are not satisfied.
c. Suppose n is odd. Let ¢) = ¢y = |. Show that a test ¢ is invariant for this problem
if and only if, for every  =0,...,n, ¢ takes the opposite actions at z and n — z.
d. Show that no invariant test exists if n is even. (Hinr: The point z = n/2 creates
problems.)
e. Explain why the invariant tests in part (¢) do not satisfy Definition 8.2.3.

10.39 a. Adapt the argument of Section 10.7, and the result of Exercise 10.30, to show that if
we observe

X ~n(di, %), i=1,...,p, j=1,...,n o? known,

all independent, and we compuie X = %EJ X, then the estimator X = Xyyons 7,,}
is minimax.
b. Independently of part (a), show that if we observe X;; ~ n(d;,01,i=1,...,p, and
j = 1,...,n, then, by sufficiency, we can reduce the problem to that considered in
Section 10.7, that of n = 1. Hence, the estimator X = {71, e ,7,,) is minimax.
10.40 The form of the Stein estimator of (10.7.5) can be justified somewhat by an empirical
Bayes argument, given in Efron and Morris (1972). Such an argument was probably
known by Stein, although he makes no mention of it. The empirical Bayes explanation
is quite useful, especially in data analysis (see Efron and Morris, 1973, 1975: or Casella,
1985). Let X; ~n(8;,1),i=1,...,p. and &; be iid n(0, 7%).
a. Show that the X s, marginally, are iid n(0, 7> + 1), hence, 3 X7/(r? + 1) ~ xf,.
b. Using the marginal distribution, show that E(I1 — ((p — 2)/E?=|X )}
r2/(r* + 1) if p > 3. Thus, the ith component of the Stein estimator,

S(X) = (1 — ((p— " X)X,
X ===/ _ XX,

is an empirical Bayes version of the ith component of the Bayes estimator §7(X) =
(Pt + X,
10.41 Consider the class of Stein estimators given by (10.7.7),

6(X) = (I - p—clx;j) Xe, i=L..,p 0<c<2p-D.
i=
Let Xi"‘ﬂ(ei,l),i: l----,P-

a. Using sum of squared emors loss, find an expression for the risk of 6(X) =
(51'(X),---.6,‘;(X))-
b. Show that for any constant ¢ satisfying 0 < ¢ < 2(p — 2), 8%(X) is better than X,
c. Compute the risk of §5(X) at @ = 0 and find the value of ¢ that minimizes this risk.
d. Show that the value of ¢ = p — 2 minimizes the risk within the class of estimatots
{85(X):0<c<2p—2)}.

10.42 Suppose we observe X;; ~ n{f;,0%),0? known, i = I,...,p,7 = 1,...,n, all indepen-
dent, and we form the Stein estimator

—— _— 2 —
6‘S(X)=(I—(p‘t"3)—t'?/2n))xn i=l.'“,p;

=1
where X, = 37 X;; and X =(X\,...,X,). Show that §5(X) is minimax.
10.43 For X; ~ n(f;, 1),% = 1,...,p, consider the class of Stein estimators that shrink toward
an arbitrary point,

6§<X.a°)=9?+(| - )(X.--e?), i=1,..,p

where 6° = (6),...,8%) is constant and 0 < ¢ < 2(p - 2).

a. Show that under sum of squared emors loss, 5°(X, 8*) dominates X for any value of
a".

b. Show that the tisk of 55(X, 8% at @ = @° is the same as the ordinary Stein estimator
(10.7.5)at 8 =0,

Miscellanea

Game Theory

A topic closely related to decision theory is game theory, a formal mathematical study of games
in which two or more players compete. The simplest type of game is a 1wo-person zero-sum
game. Player 1 picks a strategy @ € A. Player Ii picks a strategy 6 € ©. Then Player I pays
Player 11 an amount L(9, a), where negative values of L(#,a) comespond to paymenis from
Player 11 1o Player 1 and positive values of L(0, a) correspond to payments from Player 1 to
Player II.

Player | may pain some information about what strategy Player Il will use by observing
a random variable X whose distribution depends on Player II's strategy . Player I can use this
information to decide what strategy e to use. From the notation we have used, the similarity
between these elements of a game and the corresponding elements in a decision problem is
evident, Minimax strategies make good sense in a game since there is an intelligent opponent.
If Player [l always knows what strategy Player I will use, then Player II can choose @ to
maximize Player I's expected losses. Player 1, knowing that Player 11 will do this, should use
a minimax strategy. Such a strategy will minimize Player I's maximum expected loss, the loss
Player I knows he will incur if Player Il plays in the way we have described.

As mentioned in Section 5, in statistical problems Nature is not considered to be an
adversary and the minimaxity critetion is not so compeiling. A classic treatment of game
theory and decision theory is given by Blackwell and Girshick (1954), including the famous
theorem by von Neumann on the existence of minimax strategies. A later reference is Thomas

(1984).

The Hunt-Stein Theorent

The Hunt=Stein Theorem is one of the great items of statistical folklore, as the original paper
by Hunt and Stein was never published. However, the theorem due to them is quite real
and represents one of the deepest results in mathematical statistics. The most readable (for
statisticians) article about this theorem is by Bondar and Milnes (1981), with one of the most
general developments given by Kiefer (1957). Lehmann (1986) discusses this theorem in the

testing context.



