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Mean square error A U AKX L PLVV(/(AZ\& )

The mean square erro of an estimator (3 is the expectation of the square of
the dxfference 'between [ and the parameter 8. It measures how ‘far away’
the estimator is from the parameter 8 ‘on average’.

2.6.2 CLASSICAL METHODS FOR THE D
ESTIMATORS ETERMINATION OF

One of the ol'dest mgthods of determining estimators is the method of mo-
ments (associated with K. Pearson). It is necessary to give two definitions
for moments to understand this method.

Population moments

The zthi‘population moment of the random variable T, say, is defined to
be .E(T ). ZSO the exp.ectation i is the first population moment and the
variance ¢ is defined in terms of the second population moment

Sample moments .

The ith sample moment for a sample t1,t,, ..., t, of size n is defined to be

T
i = Zt;/n
j=1

(So the first sample moment fi; = ¢, the sample mean.)

With these two definitions it is now possible to oui;line the method
Method of moments .
If there are k£ parameters to be estimated then the first k population mo-
ments are eguated to the corresponding sample moments. The solutions of
t%le k equations give the estimators of the parameters, which will be func-
tions of the sample moments. These estimators will ge’nerally be consistent
and thc?ugh their efficiency is often less than one they may be used assﬁent
approximations from which more efficient estimates may be obtained ®

Ezample 2.6.1
For the ;xponen.tial parametric distribution, given in Subsection 2.3.1, the
expectﬁ value is 1 / A -Equating this expectation to the first sample’mo—
ment, £, so that 1/) = £, the estimator A for \ is given by

S=

bl

]

which is the inverse of the sample mean of the observed failure times.

Using the example of failure tim
. . es for the 20 pressu
in Subsection 1.4.1 the estimate of \ is 1/575.3 -—? 0.00;;; eesels presented

0
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It is often convenient for simplicity to consider only those estimators
which are linear functions of the sample observations.
Best linear unbiased estimators
Among those unbiased estimators which are linear functions of the sam-
ple observations the best linear unbiased estimator is the estimator with

minimum variance.

Ezample 2.6.2
For the binomial parametric distribution, given in Examples 1.6.1 and 1.7.2,

the parameter p is the probability that a system fails. Let X; be

X, = 1, if failure is observed,
i= ) 0, otherwise.

Then for a sample of size n a linear estimator is given by
n
p=2_ o
i=1

where the c; are suitably chosen constants. If this estimator is unbiased
then Z?:l ¢; = 1. The variance is given by pq Z?=1 c? and it can be shown
that this variance is minimized if ¢; = 1/n, for j = 1,...,n Hence the

best linear unbiased estimator is given by
p=X.

This is a point estimator.

Again using the example of failure times for the 20 pressure vessels
presented in Subsection 1.4.1, consider finding the estimate of p, the prob-
ability that the failure time of a pressure vessel is less than 100 hours.

Hence the point estimate is 5/20 = 0.25.

i

m]

Least squares estimators

The least squares estimator of a parameter B is the estimator which
minimizes the sum of the squares of the differences between the obser-
vations of a sample and their expectations, which are a function of the
parameter 3. There are two reasons for using squares of the differences.
Firstly, the square is a function which is non-negative and when minimized
cannot be smaller than zero. Secondly, this will imply that large differences
between an observation and its expectation will be penalized. Usually each
observation is equally weighted, but there are often good reasons for using
different weights, which will then give a weighted least squares estimator.
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Ezample 2.6.3
For the binomial parametric distribution, considered in Example 2.6.2, the
parameter p is the probability that a system fails. Then E(X;) = p and
the least squares estimator of p will minimize

n

Z(Ii -p)

i=1]

Hence, by differentiation by p, the least squares estimator is also found to
be given by

p=2x.

0

As will be shown in Subsection 2.6.3, when likelihood methods are con-
sidered, the least squares estimator is also the maximum likelihood estima-
tor when a random sample is taken from a normal population.

2.6.3 LIKELIHOOD METHODS

The second method of determining estimators which is widely used is the
likelihood method, which was propounded by R.A. Fisher. This method uses
the likelihood function, which is the probability density function (probabil-
ity function) of the joint distribution of the observations of the sample
for a continuous (discrete) random variable, considering this function as
a function of the parameter 3. In the case of a random sample from a
random variable T' with probability density function fr(t;3), say, where
the observations are IID, the likelihood function L(f3) is given by

L(B) =[] fr(ts 8).
i=1

The principle of mazimum likelihood

An estimator is obtained using the principle of mazimum likelihood by
choosing the value of 3 which maximizes the likelihood function L(8). So
for a fixed sample the mazimum likelihood estimator maximizes the prob-
ability of observing that sample over all possible values of the parameter.

If the sample is from a normal population then using the probability
density function given in Subsection 2.3.4 gives a likelihood function which
is the exponential function of minus the sum of squares of the differences
between the observations and their expectations. Hence the maximum
likelihood estimator and the least squares estimator for any parameter used
to model the expectation are equivalent in the case of a normal population.
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Ezample 2.6.4
For the exponential parametric distribution, given in Subsection 2.3.1, the
likelihood function for a sample of size n is

L(A) = A"exp (=X i t;).

i=1

When this likelihood is maximized as a function of A this gives the estimator
A = 1/t, as was obtained in Example 2.6.1, by the method of moments. So
using the example of failure times for the 20 pressure vessels presented in
Subsection 1.4.1 the estimate of A is again 1/575.3 = 0.00174.

(]

The maximization of the likelihood function is often accomplished by
using differential calculus to obtain appropriate equations which can then
be solved. This maximization can often be more easily performed on the
logarithm of the likelihood (log likelihood) function and this will be denoted
by

l(B) = log L(B).

Example 2.6.4 assumed that all the observations were failure times. How-
ever, as was illustrated in Section 2.4 many practical situations result in
the collection of right censored observations. Hence the likelihood function
given above for a complete random sample must be modified by replac-
ing the probability density function by the reliability function for the right
censored observations. Using the log likelihood function and the censoring
indicator d; introduced in Subsection 2.4.1 gives

U(B) = dilog fr(t:;8) + > (1 — d;) log Rr(t:; B).
i=1 i=1

Ezample 2.6.5

Consider again the example of Newton (1991) which was used in Example
2.5.3 to illustrate the estimation of the reliability function for component
failure times by non-parametric methods. Suppose a parametric model
is to be used to model the component failure time distribution in order to
investigate the behaviour of the hazard function. If the Weibull distribution
defined in Subsection 2.3.2 is chosen as a model then the log likelihood
function is given by

[(k,0) =dlogk + (K~ 1) zn:di log(t;) — i(ti/g)" —drlog8,

1=]1 i=1]

o
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for d = "7 , d; failure times and n — d censored times. The partial differ-
entials of this log likelihood function are given by

8l RYEH dx

88— gstl g

oL d N~ e tFlog(t:/6)

5 = K+§dllog(tl)— o —dlog®.

The maximum likelihood estimators are the solutions of the two equations
obtained by equating the two partial derivatives to zero. Then the param-
eter estimator & is the solution of the equation in x given by

S trlog(t) 1 SR dilog(t)

SEtn K d

Hence, by solving the above equation numerically, the shape parameter & is
estimated as £ = 1.662 using the maximum likelihood estimation method
for Example 2.5.3. The scale parameter, or characteristic life, estimator 6

is given by
; Tt
g = i=1 %
(=5

and hence the characteristic life is estimated as § = 619.2. These equations
for the Weibull distribution were first given by Cohen (1965).

As the hazard function of a Weibull distribution is xt*~1/6% and & is
estimated to be greater than unity this analysis leads to the conclusion
that the hazard function is an increasing function of ¢.

O

So far only point estimates have been considered. However, interval
estimators give an interval and a confidence level for that interval which
indicate the precision of the estimator. This is achieved by calculating a
standard error for the estimator, which can be done using large sample
results with the likelihood function. Theoretical results for the maximum
likelihood estimation of the parameters 3 of a model show that in the limit
as the sample size n gets large the distribution of the maximum likelihood
estimators 3 is a normal distribution. If there are r parameters then this
limiting (asymptotic) distribution is a multivariate normal distribution.
The multivariate normal distribution like the univariate normal distribu-
tion defined in Subsection 2.3.4 is defined using the first two population
moments and this is done using a vector of expectations p and a variance
covariance matrix V, which contains the variances in the main diagonal
and the covariances in the off-diagonal entries. (The covariance is defined
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for any pair of random variables as the difference between the expecta-
tion of the product of the two random variables and the product of the
expectations of these two random variables. The covariance is zero for two
independent random variables.)

To obtain the variance covariance matrix for B, minus the expectation
of the second partial derivatives of the log likelihood function is used to
obtain a matrix, Iy, which is known as the Fisher information matrix. Un-
der mild regularity conditions the maximum likelihood estimators 8 will
have a multivariate normal distribution with expectations 8 and variance

" covariance matrix given by I}'l, the inverse of the Fisher information ma-

trix, in the limit as the sample size n increases to infinity. Hence this result
can be used for large sample sizes. In practice sample sizes do not have
to be very large for this result to give a good approximation providing
the proportion of censored observations is small. To use this result it is
necessary to evaluate the expectations of the second derivatives of the log
likelihood function. Fortunately in practice it is usually sufficient to use
the value of the second derivative evaluated at the values observed in the
sample, replacing any unknown parameters by their maximum likelihood
estimates. The matrix I, containing these second derivatives is known as
the observed information matrix. The square roots of the entries in the
main diagonal of I}, the inverse of the observed information matrix, can
then be used to give standard errors of the estimators. Also because the
distribution is multivariate normal then a covariance of zero for any pair
of estimators implies that these estimators are independently distributed.
(Note: This last result is only true because the distributions are normal.
It is not generally true that zero covariance is equivalent to statistical
independence.)

Erxample 2.6.5 (continued)
Continuing the Weibull distribution example the second derivatives of the
log likelihood are

9% k(E+ 1)t dk

2 ~ T ez @

9 Yty kYL thlog(ti/0)  d
860k —  ontl gr+1 "9
821 d S, trlog(ti/6)°

ox2 RZ g~

Hence, on substituting the observed sample values and replacing the param-
eters with their maximum likelihood estimates, the observed information
matrix is

0.000115 -—0.002726
—0.002726 9.038249

T
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Hence, by inverting this matrix, and taking the square roots of the entries
in the main diagonal, the standard errors of # and 6 are 0.3338 and 93.59,
respectively.

With these standard errors it is possible to construct 95% confidence in-
tervals. These are (1.008, 2.317) for  and (435.8, 802.7) for 6, respectively.

=]

2.6.4 BAYESIAN METHODS

The third method of estimation is the Bayesian method due to the followers
of T\ Bayes. This method is philosophically different from the previous two
methods as it considers the parameter § as the realization of a random vari-
able B, say. The distribution of this random variable is known as the prior
distribution. Advocates of Bayesian methods combine the prior distribu-
tion with the sample observations to produce the posterior distribution by
using a procedure which is now referred to as Bayes’ rule.

Bayes’ rule
The probability density function f BIT(ﬁ | T) of the posterior distribution

of 3 obtained from the sample of observations T and the probability density
function fg(fF) of the prior distribution of B is given by

fT|B(T { ﬁ)fB(ﬁ)
fr(T) ’

fB]T(ﬁ i T) =

where

ST = [ fmia(T ] 917 (6)d8.

Bayes’ rule produces a distribution for the parameter 3, not a point
estimator. Thus probability statements can be made about § using the
posterior distribution, usually by constructing Bayesian confidence (cred-
tble) intervals. If a single value is required to give a point estimator then
the mode of the distribution is often used, though the expected value could
be used.

Ezample 2.6.6
A random sample of observations ¢1,1s, ..., t, was obtained from a popula-
tion of failure times with an exponential distribution with parameter A, as
defined in Subsection 2.3.1. A prior distribution for XA is chosen to be the
gamma distribution, as defined in Subsection 2.3.1, with shape parameter
o but with scale parameter a rather than A. This prior distribution will
have a mode equal to (& — 1)/a.
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Applying Bayes’ rule to this problem gives a posterior distribution A
which is also gamma but with shape parameter o + n and scale parameter
a+nt, where ¢ is the sample (arithmetic) mean of the observations. So the
effect of the information from the observations is to change the parameters
of the prior gamma distribution. (However, if no observations are taken
then there is no change from the prior distribution.) If the mode of the
posterior distribution is used to give a single value for A then the value is

a—1-+n
a+nt

This mode takes the value (@ — 1)/a when n = 0 and approaches 1/
when n is large, which is the answer obtained for the estimator of A in both
Examples 2.6.1 and 2.6.4. For the exponential distribution the reciprocal
of A is the expected value. So considering the reciprocals, the analysis
using Bayes’ rule is consistent with the view that as a large amount of
information is obtained from the sample the ‘best’ value for the population
mean (expected value, 1/)) is the sample mean (arithmetic mean of the
sample, t).

Using the example of failure times for the 20 pressure vessels presented
in Subsection 1.4.1 with @ = 2 and a = 400, this gives a mode for the prior
distribution of A equal to 0.0025, which is equivalent to an expectation of
400. The mode of the posterior is equal to 0.00176, which is equivalent to
an expectation of 567.2. Hence the estimate of the expectation obtained by
the use of the prior distribution, corresponding to a low expectation of 400,
is slightly less than 575.3, which is the estimate which would be obtained
from the estimate of A given in Examples 2.6.1 and 2.6.4.

O

2.7 Hypothesis testing and goodness-of-fit tests

Another objective of the reliability study may be to decide, when using a
parametric model with parameters 3, whether the reliability data, which
are the observations collected (in a possibly censored or truncated form)
from a random sample, are consistent with the parameters 3 having the
value By, say. Inference is the science which provides methods for answering
such questions. The classical method is to use the approach of hypothesis
testing due to J. Neyman and E.S. Pearson. However, there is also an
approach based on the use of likelihood. The parameter § will be considered
as a single variable for ease of explanation. The ideas may be generalized
to more variables.

T
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2.7.1 HYPOTHESIS TESTS

The simplest form of the hypothesis test is the situation where there is
a choice between two simple hypotheses or two values of 3, say Gy and
(1. The preferred value of these two, usually denoted by By, is known as
the null hypothesis while the other value, 3y, is known as the alternative
hypothesis. The aim of the test is to decide whether the observed data are
consistent with the null hypothesis (and so should be accepted) or whether
the null hypothesis should be rejected (and hence the alternative hypothesis
be accepted). In performing the test it is possible to make two types of
error, namely rejecting the null hypothesis when it is true (known as a Type
I error) and secondly accepting the null hypothesis when the alternative
hypothesis is true (known as a Type II error). The probability of an error
being made is known as the size. It would be nice to minimize the sizes of
both these errors but in general it is necessary to trade one off against the
other.

The quantity given by one minus the size of the Type Il error is known as
the power of the test. So if there is a choice between two tests which have the
same size of the Type I error (called the significance level of the test) then
the test with the larger power would be chosen as it will have the smaller
size of the Type II error. So power is a criterion for choosing between
tests and ideally the most powerful test would be preferable. Neyman and
Pearson provided a lemma for constructing the most powerful test.

Neyman-Pearson lemma

In testing two simple hypotheses on the basis of a sample of observations
X, say, of size n, say, the test is defined as rejecting the null hypothesis
for one set of observations (known as the critical region) and accepting the
null hypothesis otherwise. The Neyman—Pearson lemma gives a method of
constructing the eritical region for the most powerful test for testing the
null hypothesis against the alternative hypothesis amongst all tests with a
given significance level and sample size.

The simple hypotheses situation is obviously a very idealized situation.
However, it is possible to extend the ideas of hypothesis testing to composite
hypotheses, which are defined by using intervals, rather than single values,
for the values of the parameter 8. The concept of power is extended to the
power function, which is the probability that X belongs to the critical region
(so that the null hypothesis is rejected), given a certain hypothesis is true.
This is a function of the value of the parameter § and so a ‘good’ test would
have low values when § takes values that define the null hypothesis and
high values when 3 takes values that define the alternative hypothesis. The
significance level of the test is defined as the maximum of the significance
levels for tests with a null hypothesis defined by values of 3 which define
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the composite null hypothesis. However, there are difficulties. It may
not be possible to discriminate between two tests (as was done for simple
hypotheses) by deciding that one test is ‘uniformly more powerful’ than
the other.

When using a hypothesis test it is usual to quote the significance level
and this is commonly referred to as the ‘p-value’. It is conventional to
reject the null hypothesis if this p-value is less than 0.05.

Example 2.7.1
Consider carrying out a hypothesis test of a particular value of A = Ag,
say, for the exponential parametric distribution, given in Subsection 2.3.1,
against an alternative hypothesis that A = Ay, where \g > A;. In Example
2.6.4 it was shown that

HfT(ti;)\) =\" exp(—n)\/S\),
i=1

where A = 1/f is the maximum likelihood estimator of A\. The Neyman-
Pearson lemma defines the critical region as

H?:l fr(ti; Xo) _ gexp(*nko/)}) <c
[Tie: fr(ts M) AT exp(=nAi/A)

b

which rearranges to give

~ 77,()\0 - )\1)
* < Log((o/A)"C)

for a suitable value of C. The value of C is determined by the sizfje of the
Type I error, conventionally chosen as 0.05, by using the distribution of.)\.
Under the null that A = )Xo the distribution of 2nAg/A is chi-square with

2n degrees of freedom (x3,)-
Using the example of failure times for the 20 pressure vessels presented

in Subsection 1.4.1, consider testing the null hypothesis Ao = 0.00252. Then,
using the chi-square distribution with 40 degrees of freedom (x%o), the
critical region is defined by

X < 0.00182.

Hence as the estimate of X is 0.00174 the null hypothesis is rejected in

favour of the alternative hypothesis that A < 0.0025.
O

R
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One popular way to test a hypothesis that 8 = [, say, is to use a
Wald test. This simply uses the estimator B of B and its standard error
se(B) and the result that for large sample sizes the ratio (3— Bo)/se(B) will
approximately have a standard normal distribution, which has an expected
value of 0 and a standard deviation of 1. Hence (§ — ﬁo)"’/(se(ﬁ))2 has a
chi-square distribution with 1 degree of freedom (x?). A hypothesis test
based on this statistic is known as a Wald test.

Ezample 2.7.2
Consider carrying out a hypothesis test of a particular value of x = 1 for
the Weibull distribution in Example 2.6.5, against an alternative hypothesis
that k = 1. The null hypothesis is equivalent to assuming the exponential
parametric distribution. The Wald statistic is (1.662 — 1)2/0.3338% = 3.93
with a p-value of 0.047. The conventional interpretation of this result would
be to reject the null hypothesis of x = 1, which is consistent with the fact
that the confidence interval obtained in Example 2.6.5 does not contain the

value 1.
]

2.7.2 LIKELIHOOD RATIO TESTS

In the case of simple hypotheses the Neyman-Pearson lemma leads to con-
sidering the ratio of likelihoods to construct the most powerful test. This
idea can be extended to composite hypotheses by considering the ratio
of the maxima of likelihoods over the respective composite hypotheses.
This procedure produces statistics for tests which are known as likelihood
ratio tests. The procedure often enables a test to be found either easily by
tractable mathematical methods or by numerical methods. The behaviour
of such tests for large sample sizes has been extensively studied and is well
known in many situations.

Example 2.7.3
Consider carrying out a hypothesis test of a particular value of A = A,
say, for the exponential parametric distribution, given in Subsection 2.3.1,
against an alternative hypothesis that A = Aq. In Example 2.6.4 it was
shown that .
L(\) = A exp(—nA/A),

where A = 1/f is the maximum likelihood estimator of A. Hence the log
likelihood function is given by

(A =nlogh— n)\/j\.

Then the test is based on A, the likelihood ratio test statistic, which is
minus twice the difference of the log likelihoods maximized over the null
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hypothesis and the alternative composite hypothesis, respectively. Hence
as [()\) is maximized at A = Ag and A = A, respectively, then

A = =2(1(x) = U(A)) = 2n(log(A/Xo) + Xo/A - 1),

which under the null hypothesis that A = \g has the chi-square distribution
with 1 degree of freedom (x?), for large sample size, n. Choosing the size of
the Type I error, conventionally chosen as 0.05, and using the distribution
of A gives a critical region for rejecting the null hypothesis defined by

2n(log(X/Xo) + Xo/A — 1) > 3.84,

which is equivalent to
A< Cior A>Cy

for suitable values of C; and Cs.

Using the example of failure times for the 20 pressure vessels presented
in Subsection 1.4.1, consider testing the null hypothesis Ag = 0.0025. Then ,\7/
the critical region is defined by

X < 0.00166 or A > 0.00401.

Hence as the estimate of A is 0.00174 the null hypothesis is accepted as
opposed to the alternative hypothesis that A = 0.0025. Note the difference
between the inference obtained in this example and that obtained in Ex-
ample 2.7.1. This is because the alternative hypotheses considered are two
sided as A can be either less than or greater than )\y. In Example 2.7.1 it
was assumed that for the alternative hypothesis A was less than Ag.

O

NATURE OF RELIABILITY DATA 7

Table 1.3. Times to failure (in hours) for pressure vessels

274 285 1.7 20.8 871 363 1311 1661 236 828
458 290 54.9 175 1787 970 0.75 1278 776 126

R m—— J—
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probability that the failure time of a pressure vessel is less than 100 hours,
is equal to 0.5. The Pearson chi-square statistic is given by

2\ (0i - B2
X Z o
where O; is the number observed in category ¢ and E; the respective ex-
pectation. For the pressure vessels example E; = 10 for times less than 100
hours and for times greater than 100 hours. The observed values are 5 and
15, respectively. Hence X* = 5. Under the null hypothesis this statistic
X2 has a chi-square distribution with 1 degree of freedom (x?), for large
sample sizes. Hence the null hypothesis of p = 0.5 would be rejected at the
0.05 level of significance as the critical region corresponds to X? > 3.84.

0

2.8 Discussion

In this chapter the main models used in the analysis of failure data in
reliability studies were introduced. In Section 2.3 the properties of four
important parametric families of distributions, the gamma, Weibull, ex-
treme value, and normal distributions, were described. The first two are
defined for positive values, though the other two are defined for both posi-
tive and negative values of time. This means that though the first two can
be used to model failure times, it is more usual to use the other two (the
extreme value and normal) to model the logarithm of time.

As was demonstrated in the examples in Chapter 1, Section 1.4, data
obtained from reliability studies are often incomplete owing to censoring.
The various ways that these data may be obtained were outlined in Section
2.4. Though parametric models for lifetime distributions are important, the
use of non-parametric methods is beneficial and these were illustrated in
Section 2.5 for right censored data.

In order to use parametric models for lifetime distributions it is neces-
sary to estimate the values of the parameters of the model. A brief account
of the classical, likelihood, and Bayesian methods of estimation was pre-
sented in Section 2.6, though the various merits of the methods were not
discussed, and these methods are illustrated in later chapters in various
examples.

The chapter was concluded in Section 2.7 by a brief account of inferen-
tial methods for performing statistical tests to be able to assess whether a
hypothesized lifetime distribution is consistent with observed failure times.

Ansell & ﬂ/U'/UJ{-”S

3
Analysis of lifetimes with covariates

3.1 Introduction

In many reliability studies as well as the information on the component’s
(or system’s) lifetime there is also available other information about the
component (system) or its environment. Typically there may be infor-
mation on the design of the component or the wear the component has
suffered. Hence instead of just recording a set of lifetimes there may be
associated with each lifetime other variables. These variables are known
as covariates. (The term is often used to cover factors, see Section 3.2, as
well as measurable variables.) This extra information should yield more
understanding about the performance of the component or system. The

- more information used the better the understanding, hopefully.

Recently there has been considerable interest in the analysis of such
data sets in the reliability and related literature. Part of the interest may
be due to the availability of the proportional hazards model, suggested by
Cox (1972, 1975). This has focused interest in relating both variables and
factors to components’ lifetimes. However, the proportional hazards model
is not the only model available and a number of approaches predate it,
such as the use of the accelerated failure time model (Nelson, 1993) and
the Weibull regression model (Smith, 1991). All the models and techniques
discussed in this chapter are regression-type techniques.

Ansell (1987) suggested that there are four main reasons for the analysis
of these types of data within the reliability literature. These are:

(a) to find significant factors (or variables) which affect lifetime;

(b) to remove nuisance variables which distort analysis;

(c) to increase comprehension of the failure model; and

(d) to produce a better prediction of the failure rate.

Examples of each of these uses appear in the reliability literature, see for
example Bendell and Wightman (1985), Ansell and Ansell (1987), Dale
(1983), Drury et al. (1987), and Jardine and Anderson (1984).

In using regression models the aim is to account for the variation in one
variable in terms of other variables or factors. In reliability modelling this

57
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usually means relating the variation in the lifetimes to other variables or
factors. In many regression analyses the lifetimes are assumed to have a
normal distribution. In lifetime studies this is rarely the case; more usually
exponential or Weibull models are used. This will affect the algorithms
used for estimation, though the general approach to, and concerns which
arise from, regression modelling are still applicable in lifetime studies.

For illustration suppose the lifetime, T, of a component is a random
variable which has an exponential distribution, with an expectation which
is possibly related to a set of variables z = (21, 22,...,2x). Then from
Chapter 2, Subsection 2.3.1, the probability density function fr@t) of T is
given by

_ ] Mz B)exp(—A(z; B)t), fort >0,
fT(t)_“{ 0, for t <0,

where A is a function of z and 3, which is a vector of unknown parameters.
It is necessary to decide on the appropriate function A and then it will be
necessary to estimate the parameters 3. Usually log A will be taken to be
a linear function.

Historically least squares estimation was used for regression models,
though it is common to use maximum likelihood estimation. If maximum
likelihood estimation is used then a Newton-Raphson numerical proce-
dure can be applied. Properties of the estimators of the parameters may
be determined by exact methods or by use of the asymptotic theory ap-
proximations, see Chapter 2, Subsection 2.6.3. The maximum likelihood
estimate of 8 will have asymptotically a multivariate normal distribution
with mean 3 and a variance which is given by the reciprocal of the Fisher
information. The appropriateness of these asymptotic results will usually
depend on the sample size but may also depend on other variables such
as total observation time or even some of the parameters of the model,
see Sweeting (1992). Tests on both the parameters and the models can be
constructed using this asymptotic theory. The tests will be discussed in
the relevant sections. It is also possible to consider ‘goodness-of-fit’ of the
models to the data. Some of the tests of the appropriateness of the model
for the data are based on the residuals. A number of residuals can be de-
fined for the lifetime regression models and these are discussed in Sections
3.3, 3.4, and 3.5.

One aspect which differentiates lifetime regression models from other
regression models is censoring or truncation of the data. As stated before
it is not unusual that upwards of 90% of the data will be censored, see
Chapter 1, Subsection 1.4.2. The estimation procedure must be capable of
taking account of this censoring.
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3.2 Data and design

For the type of analyses discussed in this chapter as well as the times of
failures, or times between failures, there will be data on other variables,
usually referred to as covariates or concomitant variables. These extra
data typically describe the construction of the component (or system) or
the condition in which it functions. This is extra information and may
account for the lifetime of the component. There may, of course, be other
factors which affect lifetimes which have not been measured. The covari-
ates may be controllable, in that they can be selected by an experimenter,
or alternatively they may be nuisance factors outside the control of the
experimenter.

Ezample 8.2.1
An experiment may be designed to investigate the best position of a brake
on a wheel. The choice of site for the brake might be controlled by the
experimenter, but the road conditions under which the experiment may
be run might be beyond the control of the experimenter. So one variable
would be the site of the brake and another might be the wetness of the road
surface. The variables can be measures or factors. A measure is a direct
reading, for example a temperature, the amount of wear, etc. A factor is
a variable which is discrete, taking only a limited number of values. For
example, the position of the brake could be a factor.

When modelling the effect of a factor it is common practice to use
dummy variables. For example, if considering the position of the brake
there are two possible sites, A and B, then there are two levels to the
factor. Then if the brake was sited at position A the associated variable
would take the value 0 and if the brake was sited at position B it would
take the value 1.

O

Ezample 3.2.2 :
Suppose there is interest in the tensile strength of steel rods; then the
carbon content might only be recorded as high, medium, or low. The
variable describing the amount of carbon would be a factor with three
levels, so it is possible to use three dummy variables: one for high carbon
content, one for medium carbon content, and one for low carbon content. If
a rod had high carbon content then it would have 1 for the first variable and
0 for the other two. These variables are related, with one out of the three
being 1 whilst the other two are 0. Hence there are a range of alternative
formulations which can be used. Three formulations are given in Table 3.1.

W]

e
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Table 3.1. Three possible formulations for the factor representing the
content of carbon in steel rods considered in Example 3.2.2 *

Carbon content Formulations

Three dummy Two dummy

variables variables

dy da ds dy do dy da
High 100 10 10
Medium 010 01 01
Low 001 -1-1 0 0

Whilst often reliability data come from unplanned situations, there are
some cases when the data do arise from laboratory trials or pre-planned
experiments. There are several advantages of designed experiments; the
two most important are the clarification of the aim of the experiment and
the efficiency of collection of the data that can result from design. Design of
experiments is a large field in statistics and has in the past been primarily
associated with agricultural experiments, though it has been applied suc-
cessfully in many engineering contexts, see Grove and Davis (1992). Cur-
rently the subject is attracting considerable attention through the drive for
quality in production arising out of the quality movements, total quality
management, and statistical process control. In the context of reliability,
however, the subject has not received sufficient attention, though some
authors have addressed this issue recently, see Davis (1991). There are a
number of papers on design where the underlying distribution is assumed
to be Weibull, see Zelen (1959) and Smith (1991).

It should be remembered, though, that unfortunately the majority of
reliability data come from unplanned situations with little control on the
number of variables collected, the regularity of measurement of variables,
and checks on the accuracy of recording. Hence the analyst may encounter
situations where there are a large number of variables to choose from to
explain the variation in the lifetimes of the components. Selecting the vari-
ables to include in an analysis can be an art in itself and will be discussed
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in Section 3.8 of this chapter.

3.3 Weibull regression model

The material covered in this section should enable readers to consider both
the Weibull regression model and other distributional regression models.
The algorithms will, of course, differ for other distributions from those
given in this section but the general principles will still hold.

It is usual for regression models to describe one or more of the distribu-
tion’s parameters in terms of the covariates z. The relationship is usually
linear, though this is not always the case. The Weibull distribution, see
Chapter 2, Subsection 2.3.2, has a reliability function which can be given
by

Rr(t) = exp(—At®), fort > 0,
where A = 1/6 and  is the scale parameter, and & is the shape parameter.
Each of these parameters could be described in terms of the covariates
z, though it is more usual to define either the scale or shape parameter
in terms of z. For example, if the scale parameter was chosen then a
common model would be to have A(z; 3) = exp (6Tz), where the number
of covariates k = r, the number of parameters. Then the reliability function
would be
Rr(t|z;8) = exp(—exp(,@Tz)t"), for t > 0.

The probability density function is given by
frt|z:8) = rexp(B8Tz)t" Lexp (— exp(872)t"), for t > 0.

This model is commonly referred to as the Weibull regression model but
there are alternatives which have been studied, see Smith (1991), where
the shape parameter is dependent also on the covariate.

There are advantages to reparameterizing this model by taking logs,
so that the model takes the form of Gumbel’s extreme value distribution,
see Chapter 2, Subsection 2.3.3. A reason for this is to produce a model
more akin to the normal regression model, but also it allows a more natural
extension of the model and hence greater flexibility. Define Y = logT' so
that the reliability function is given by

Ry (y | z; B) = exp(~ exp(ry + 87 z))

so that T
y Bz
ElogT) = -~ — —
(logT) = —— — =,
where 7 is Euler’s constant. It is usual to estimate the parameters by using

the maximum likelihood approach. Suppose that there are n observations

R
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some of which may be right censored. Using the d; notation introduced in
Chapter 2, Subsection 2.4.1, then the log likelihood [ is given by

Uk, B;y,Z) = D dilog fy(yi,zi;8) + Y _(1 — di)log Ry (vi, 2i; B),
i=1 i=1
where Yy = (yl’y% --'»yn)T; Z= (21,22, ...,Zn), and Z; = (zil, 22y ey zi‘r’)T'
Substituting for fy and Ry gives
Uk Biy,Z) = dlog s+ Y di(kyi + BT 2:) — Y exp(ry: + BT 2i),
i=1 i=1

where 3", d; = d. The equations for the maximum likelihood estimators
of the # and k are

al i
= dizi —
o5, = %

8l d < - T
D P ;diyi - ;yi exp(ry; + B z;) = 0.

n

25 exp(ky; + BT 2:) = 0;
1

i=

i

The second derivatives of the log likelihood are

8% .
W = ——szj exp(Ky; +ﬂTzi),
J i=1
oL Zn:z ziw exp(ky; + B z:)
= - ij Zik i i)s
;B i=1 ’
- ~iz“y-exp(ﬂy' +A72)
8ﬁj6/’€ i 1344 % i)y
0% d <
52 - T }:y? exp(ky: + ﬁTzi)-
i=1

Solutions to these equations for the maximum likelihood estimators
can be obtained using an iterative Newton—-Raphson procedure. However,
Aitkin and Clayton (1980) suggest that convergence is slow for  using such
a procedure. They suggest fitting the Weibull regression model using the
statistical software package GLIM. The procedure consists of iteratively
fitting a Poisson distribution until convergence is reached. The shape pa-
rameter (k) is usually set initially to 1 and is updated by using fitted values
of the Poisson mean, see Aitkin and Clayton (1980) and Roger (1985).
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Table 3.2. Lifetimes (in cycles) of sodium sulphur batteries

Batch 1 164 164 218 230 263 467 538 639 669
917 1148 167841678+ 167841678+

Batch 2 76 82 210 315 385 412 491 504 522
646+ 678 775 884 1131 1446 1824 1827 2248
2385 3077

Note: Lifetimes with + are right censored observations, not failures.

Standard errors may be obtained by use of the second derivatives to
obtain the observed information matrix, I,, as was explained in Chapter
2, Subsection 2.6.3, and this matrix is usually calculated in the standard
statistical software packages. The estimated variance covariance matrix
will be I; ! and the standard errors will be the square roots of the diagonal
elements of this inverted matrix.

Ezxample 53.3.1
Ansell and Ansell (1987) analysed the data given in Table 3.2 in a study
of the performance of sodium sulphur batteries. The data consist of life-
times (in cycles) of two batches of batteries. The covariate vector for the
ith battery is given by z; = (21, 22)7, where z;; = 1 and z;; represents
whether the battery comes from batch 1 or batch 2, so that

I { 0, if battery i is from batch 1,

27 ) 1, if battery ¢ is from batch 2.
Hence 2 represents the difference in performance between batteries from
batch 2 and batch 1.

Fitting the Weibull regression model results in B2 = 0.0156 and R
1.127. Using the observed information matrix the standard error of f2
0.386. Hence a 95% confidence interval for 33 is (—0.740, 0.771).

An obvious test to perform is to see if J2 is non-zero. If it is non-zero

this would imply there is a difference between the two batches of batteries.
The hypotheses are:

i

i

Hy:08: = 0.
Hy:0 # 0.

T
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The log likelihood evaluated under Ho is —49.7347 and under H; is
_49.7339. Hence the likelihood ratio test statistic has a value of 0.0016.
Under the null hypothesis the test statistic has a x? distribution with 1
degree of freedom. Therefore the hypothesis that B2 is zero, which is
equivalent to no difference between the batches, is accepted. There are
alternative tests, see Lawless (1982). Using the estimate ,32 of 3 and its
standard error gives a Wald statistic of 0.0016, almost the same value as the
likelihood ratio test statistic, and hence leads to the same inference. Both
these inferences are consistent with the confidence interval, as it includes
Zero.

]

Examination of the goodness-of-fit and the appropriateness of the as-
sumptions made in fitting the regression model can be based on graphical
approaches using residuals, see Smith (1991). The Cox and Snell general-
ized residuals, see Cox and Snell (1968), are defined as

e; = — log Ry (t; | 23 B),

where Rr(t; | 23 [3) is the reliability function evaluated at t; and 2; with
estimates ﬁ

Cox and Snell (1968) provided a first-order correction to these residuals,
though in many cases these are not used, see Smith (1991). Obviously one
problem that arises is with the residuals for censored observations and
authors generally, see Lawless (1982), suggest using

e; == —IOgRT(ti * Zi;B) + 1.

Cox and Snell residuals should be independent and identically distributed
(IID) random variables with a unit exponential distribution, i.e. with an
expectation of one. From the result given in Chapter 1, Example 1.6.3, the
cumulative hazard function is a linear function with a slope of one. Also
the cumulative hazard function is minus the log of the reliability function.
Hence a plot of minus the log of the estimated reliability function for the
residuals, —log R(ei), against e; should be roughly linear with a slope of
one when the model is adequate. Other graphs can be informative; see
Smith (1991) where plots against covariates and plots of subgroups of data
are considered.

Ezample 3.3.1 (continued)
Using the data in Example 3.3.1 and fitting the Weibull regression model
the generalized residuals have been calculated and are presented in Fig. 3.1.
The plot is of minus the log of the reliability function of the generalized
residuals against the generalized residuals. Since some of the points are
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Fig. 3.1. Plot of the generalized residuals of the Weibull regression model for
the sodium sulphur battery data

far from the line with slope 1 it would seem that the current model is not
necessarily appropriate. Further investigation would be required to clarify
if this was due to the choice of the distribution or the current model.

O

The approach described above is applicable to many distributions,
though, of course, the algorithms for obtaining the estimates will vary.
A special case of the Weibull regression model is the exponential regression
model, when the shape parameter is taken to be 1 (k = 1). This has been
studied by M. Glasser (1967), Cox and Snell (1968), and Lawless (1982).
There are a number of other lifetime regression models which have been
studied: gamma, log-logistic, and lognormal, see Lawless (1982). Many
of these models are covered by the general term location-scale models, or
accelerated failure time models. The general model will be explored in
Section 3.4.

Selection of an appropriate distribution model depends both on the
physical context and on the actual fit achieved. There ought to be good
physical justification for fitting a distribution using the context under study.
Basing the decision about the distribution purely on fit can be very mis-
leading, especially if there are a number of possible covariates to be chosen.
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It is always possible by fitting extra variables to achieve a better fit to a
set of data, though such a fit will have little predictive power.

3.4 Accelerated failure time model

The Weibull regression model discussed in the last section can be regarded
as an example of an accelerated failure time model. Accelerated failure time
models were originally devised to relate the performance of components put
through a severe testing regime to a component’s more usual lifetime. It
was assumed that a variable or factor, such as temperature or number of
cycles, could be used to describe the severity of the testing regime. This
problem has been considered by a number of authors; see Nelson (1993) for
a comprehensive account of this area.

Suppose in a study that the covariate is 2, which can take the values 0
and 1, and that it is assumed that the hazard functions are

/\(tlz=0)=)\g

and
At]z=1) = ¢Ao,

so that ¢ is the relative risk for z =1 versus z = 0.
Then
R(t|z=1)=R(¢t|z=0)

and, in particular,

E(thzl):_j?g,‘fio_x -

So the time for components with z = 1 is passing at a rate ¢ faster than
for the components with z = 0. Hence the name of the model.

The model can be extended as follows. Suppose ¢ is replaced by ¢(z)
with ¢(0) = 1; then

R(t]2) = R(@(2)t | 2 =0),

and hence
At | 2) = o(2)M(2)t | z=0)
and
z=0
b= BTLE=0
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In using the model for analysis a parametric model is specified for ¢(z)
with [ as the parameter, which will be denoted by ¢(z;8). A typical
choice would be

¢(z; B) = exp(Bz).

This choice leads to a linear regression model for log T as exp(82)7" has a
distribution which does not depend on z. Hence log T is given by

logT = po — Bz +¢,

where pg is E(logT | z = 0) and ¢ is a random variable whose distribution
does not depend on the covariate z.

To estimate § there is the need to specify the distribution. If the dis-
tribution of T is lognormal then least squares estimation may be used as
Lo + € has a normal distribution, see Chapter 2, Subsection 2.3.4. If the
distribution of T' is Weibull with a shape parameter &, see Chapter 2, Sub-
section 2.3.2, then x{ug + €) has a standard extreme value distribution, see
Chapter 2, Subsection 2.3.3. Hence, as was stated at the beginning of this
section, an example of the accelerated failure time model is the Weibull re-
gression model studied in Section 3.3. Other such models have been widely
applied in reliability, see Cox (1964), Fiegl and Zelen (1965), Nelson and
Hahn (1972), Kalbfleisch (1974), Farewell and Prentice (1977), and Nelson
(1993). However, they are not regularly applied by reliability engineers
because of the perceived difficulties with estimation because the estimators
vary depending on the distribution. There are a number of GLIM macros
for specific distributions and the general approach of Aitkin and Clayton
(1980) encompasses a number of these distributions. These models can also
be fitted using the statistical software package SAS with PROC LIFEREG.
Plotting techniques, such as using Cox and Snell generalized residuals as
defined for the Weibull regression model, may be used for assessing the
appropriateness of the model.

Example 3.4.1

Elsayed and Chan (1990) presented data collected from tests for the time-
dependent dielectric breakdown of metal-oxide—semiconductor integrated
circuits, which was described in Chapter 1, Subsection 1.4.4, with the data
given in Table 1.6. The data consist of times to failure (in hours) for three
different temperatures (170 °C, 200 °C, and 250 °C). Eisayed and Chan
(1990) suggest a model where the covariate of interest is the inverse of the
absolute temperature. So the covariate vector for the ith circuit is given
by z; = (2i1,2:2)T, where z;; = 1 and z;, represents the inverse absolute
temperature at which the test was performed, and takes the three values
0.001911, 0.002113, and 0.002256. Hence (3, represents the coefficient of
the inverse absolute temperature covariate.
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Fitting the Weibull regression model results in f, = —7132.4 and
& = 0.551. Using the observed information matrix the standard error of g,
is 1222.0. Hence a 95% confidence interval for B, is (—9527.5, —4737.1).
This interval indicates that 3, is non-zero and this would imply there is
a difference in the performance of the circuits at the different tempera-
tures. This can be confirmed by performing a hypothesis test to see if 8
is non-zero. The hypotheses are

H().’ﬁg = 0.
Hy:p =

The log likelihood evaluated under Hy is —148.614 and under H; is
—130.112. Hence the likelihood ratio test statistic has a value of 37.00.
Under the null hypothesis the test statistic has a x? distribution with 1
degree of freedom. Therefore the hypothesis that Gy is zero is not accepted
and this implies there is a difference between the circuits depending on the
temperatures of the tests. Using the estimate 8y of G, and its standard
error gives a Wald statistic of 34.06, almost the same value as the likelihood
ratio test statistic, and hence leads to the same inference.

The generalized residuals are presented in Fig. 3.2. The plot is of minus
the log of the reliability function of the generalized residuals against the
generalized residuals. The points lie closer to a line with slope 1 than
was the case in Fig. 3.1 for Example 3.3.1. So the current model may be
appropriate.

o -

3.5 Proportional hazards model

This model has been widely used in reliability studies by a number of
authors: Bendell and Wightman (1985), Ansell and Ansell (1987), and
Jardine and Anderson (1984). A diversity of uses have been found for the
model.

The model Cox (1972) proposed assumed that the hazard function for
a component could be decomposed into a baseline hazard function and a
function dependent on the covariates. The hazard function at time ¢ with
covariates z, A(t,z) would be expressed as

At | 2) = 9[Ao(t), ¢(2; B)],

where 9 would be an arbitrary function, A¢(t) would be the baseline hazard
function, ¢ would be another arbitrary function of the covariates, z, and
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Fig. 3.2. Plot of the generalized residuals of the Weibull regression model for
the semiconductor integrated circuit data

B the parameters of the function ¢. Cox (1972) suggested that % might
be a multiplicative function and that ¢ should be the exponential with a
linear predictor for the argument. This proportional hazards model has
the advantage of being well defined for most purposes, given that a hazard
function must be non-negative. It yields

At | 2) = Ao(t) exp (B7z).

However, this is only one possible selection for ¢ and ¢. Using the mul-
tiplicative formulation it is usual to define ¢(z; 3) so that ¢(0;8) = 1 so
that ¢(z; B) is the relative risk for a component with covariate z compared
with a component with covariate z = 0. Thus the reliability function is
given by

R(t|2z) = R(t |z = 0)*&H)

where R(t | z = 0), often denoted simply as Ry(t), is the baseline relia-
bility function. Etezardi-Amoli and Ciampi (1987), amongst others, have
considered an alternative additive model.

Cox (1972) considered the case in which the hazard function is a semi-
parametric model; Ao(t) is modelled non-parametrically (or more accurately
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using infinitely many parameters). It is possible to select a specific para-
metric form for Ao(t), which could be a hazard function from one of the
families of distributions discussed in Chapter 2, Section 2.3.

In the case of the semi-parametric model Cox (1975) introduced the
concept of partial likelihood to tackle the problems of statistical inference.
This has been further supported by the work of Andersen and Gill (1982).

In Cox’s approach the partial likelihood function is formed by consider-
ing the components at risk at each of the ng failure times t(}, t2); t(3)> - - - + tno)s
as defined in Chapter 2, Section 2.5. This produces a function which does
not depend on the underlying distribution and can therefore be used to
obtain estimates of 3. The partial likelihood function L(pB) is given by

1Yy exp (B"z)
L = E EweR; exp (ﬁTzw) ’

where R; is the risk set and z; is the observed covariate for the failure
at time ;. This can be maximized directly using the Newton-Raphson
procedure or by use of an E-M algorithm.

Ties often occur in practice in data and adjustments should be made
to the estimation procedure to account for ties. Breslow (1974) and Pfato
(1972) have made suggestions for replacing the partial likelihood function

by

s exp (B Spy)
He= E (S e, exp (87 20))™

where m; is the number of failure times equal to ity anq S_[i] =
(Spijns Spjzs - -+ Spyr) 1s the sum of the covariate vectors z; for this 'txme.
The first differentials of the log of the partial likelihood function [(8)

Bl('B) _ - o my ZweRi Zwj exp(ﬂTZw))
aﬁj - Z (SMJ ZweRi eXp(ﬂTzw)

for j = 1,...,7. These derivatives can be equated to zero and solved to give

estimators 3 of 5.
The second differentials are

PUB) _ <~ | Lwer, PPk exp(B” 2u)
8B;08 = ' > weRs exp(8z.)

(ZweRi Zwj exp(ﬁTzw))(ZweRi Zwk exp(ﬁTzw))
- p)
(ZweRi exp(,@Tzw)>

2 . I
These second derivatives can be evaluated at B to produce minus an 1n-
formation’ matrix, whose inverse can be used to obtain standard errors.

are

1=1
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Ezample 3.5.1
Returning to the sodium sulphur battery data used in Example 3.3.1, put
z = 2y, which was defined in Example 3.3.1 to indicate whether the battery
comes from batch 1 or batch 2. (Note: The variable z; = 1 is not required
as the arbitrary term Ag(t) will contain any arbitrary constant which was
provided in the Weibull regression model in Example 3.3.1 by the parameter
B1.) Then 3 = —0.0888. Using the information matrix, the standard error
of 3 is 0.4034. Hence a 95% confidence interval for § is (—0.879,0.702).

A test can be performed to see if 3 is non-zero. If it is non-zero this
would imply there is a difference between the two batches of batteries. The
hypotheses are

Ho:ﬂ = Q.
H:5 = 0

It is possible to use the partial log likelihood, which when evaluated under
H, is —81.262 and under H; is —81.238. Hence the ‘likelihood’ ratio test
statistic (twice the difference between these partial log likelihoods) has a
value of 0.048. Under the null hypothesis this test statistic can be shown
to have a x? distribution with 1 degree of freedom, in the same way as
for likelihood. Therefore the hypothesis that 3 is zero is accepted and this
implies there is no difference between the batches.

0

An alternative non-parametric approach can be taken in the case when
comparing two distributions to see if they are the same. In the case of two
groups a test of whether 8 = 0 is equivalent to testing whether the two
reliability functions, Ry (¢) for group 1 and Ry(t) for group 1, are the same.
The hypotheses are

H() : Rg(t)
H1 : Rg(t)

Ri(t)
Ry (t)**®_ for 3 not equal to 0.

Suppose t(;,% = 1,...,ng, are the ordered failure times and ry; and 74
are the number at risk at time ty; for group 1 and group 2, respectively,
and let my; be the number of failures of group 1 and let my; be the number
of failures of group 2 at time t};); then a test statistic would be U?/I, where

R
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I i m;(ry — Mmi)riira:
r2(r; — 1) ’

i=1
m; = my; + Moy, and T = Ty + T2 Under the null hypothesis this test
statistic can be shown to have a x? distribution with 1 degree of freedom.
This procedure was originally proposed by Mantel (1966).

Ezample 3.5.2
Returning to Example 3.5.1, a test of whether 3 = 0 is equivalent to testing
whether the reliability functions are the same for both batches of batteries.
Now U = 0.542 and I = 6.052 and hence U?/I = 0.0485. This statistic,
though not identical, is similar to that obtained from the likelihood ratio
in Example 3.5.1, and hence leads to the same conclusion. Therefore the
null hypothesis that 3 is zero is accepted.
0
These examples have used a categorical covariate which indicates differ-
ent groups of observations. The next example uses a continuous covariate.

Ezample 3.5.8
Returning to the semiconductor integrated circuit data used in Example
3.4.1, put z = z, which was defined in Example 3.4.1 as the inverse of the
absolute temperature. (Note: Again the variable z; = 1 is not required
as the arbitrary term Ao(t) will contain any arbitrary constant which was
provided in the Weibull regression model in Example 3.4.1 by the parameter
(31.) Then B — —7315.0. Using the information matrix, the standard error
of B is 1345.0. Hence a 95% confidence interval for A is (—9951.2, —4678.8).

This interval indicates that 3 is non-zero and this would imply there is
a difference in the performance of the circuits at the different temperatures.
This can be confirmed by performing a test to see if § is non-zero. The
hypotheses are

Ho: 8 =
Hllﬁ

Tt is possible to use the partial log likelihood, which when evaluated under
Hp is —190.15 and under H, is —173.50. Hence the ‘likelihood’ ratio test
statistic (twice the difference between these partial log likelihoods) has a
value of 33.31. Under the null hypothesis this test statistic can be shown
to have a x? distribution with 1 degree of freedom, in the same way as
for likelihood. Therefore the hypothesis that 8 is zero is not accepted and
this implies there is a difference between the circuits depending on the
temperatures of the tests.

Using the estimate 3 of B8 and its standard error gives a Wald statistic
of 29.60, almost the same value as the likelihood ratio test statistic, and
hence leads to the same inference.

R R R T

!
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Fig. 3.3. Plot of the baseline reliability function for the proportional hazards
model for the sodium sulphur battery data with 95% confidence limits

So far the estimation of 8 has been considered so that the relative risk
can be estimated.

O

3.5.1 ESTIMATION OF THE BASELINE RELIABILITY FUNCTION

The rfeliability function has to be estimated and the usual approach is
to estimate first the baseline reliability function, Rg{(t). This reliability
function is first described as a product of the « so that

vY'here t(i) are the ordered failure times. Hence the baseline reliability func-
tion is estimated at the failure times of the data. It is possible to derive a
likelihood for the a and to obtain equations for the estimators &, which if
there is only a single failure at [; are given by ’

.7 o T
of)(p(ﬁ Zy) 1— exp(B Z[i]
f =
~T
Zu}eRi exp(lg Zw)

)
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Fig. 3.4. Plot of the baseline reliability function for the proportional hazards
model for the semiconductor integrated circuit data with 95% confidence limits

but otherwise & has to be found by an iterative method. A suggested initial
approximation, see Lawless (1982), is

- T
ZweR,- exp(ﬁ Zw)

which can be used to obtain the estimate of Ro(t) and hence of R(t).

Ezample 3.5.4
The estimate of the baseline reliability function for the data on sodium
sulphur batteries introduced in Example 3.3.1 with the estimate of 3 of
as given in Example 3.5.1 are given in Fig. 3.3 with 95% confidence limits.

Gy = exp

¥

O

Baseline has been defined as the case with covariate z = 0. However,

this is not always a sensible choice of the covariate. This is illustrated in
the next example.

Ezample 3.5.5
For the semiconductor integrated circuit data used in Example 3.4.1,z =2
was defined as the inverse of the absolute temperature. This will only be
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Fig. 3.5. Plot of the generalized residuals of the proportional hazards model
for the sodium sulphur battery data

zero if the temperature is infinitely large. Hence it makes more sense to
take the baseline value to be one of the temperatures used in the tests. The
smallest temperature will be chosen, which corresponds to 0.002256, the
largest value of the inverse absolute temperature. Then the estimate of the
baseline reliability function for the data with the estimate of 3 as given in
Example 3.5.3 are given in Fig. 3.4 with 95% confidence limits.

0O

3.5.2 RESIDUAL PLOTS

Given the estimates of the reliability function it is then possible to obtain
the Cox and Snell generalized residuals which are for an uncensored time

- AT
ei = [~ log Ro(ti)] exp (8 2)
and for a right censored lifetime
- AT
e; = [—log Ro(t:)] exp (8 z;) + 1.

These residuals have approximately a unit exponential distribution, i.e.
with an expectation of one. From the result given in Chapter 1, Example
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Fig. 3.6. Plot of the generalized residuals of the proportional hazards model
for the semiconductor integrated circuit data

1.6.3, the cumulative hazard function is a linear function with a slope of
one. Also the cumulative hazard function is minus the log of the reliability
function. Hence a plot of minus the log of the reliability function of the
residuals against their value should be approximately a straight line with
a slope of one. Any departure from such would be a cause for concern.

Ezample 3.5.6
Using the sodium sulphur battery data from Example 3.3.1 the generalized
residuals have been calculated and a plot of minus the log of their reliability
function against the generalized residuals is given in Fig. 3.5. There seems
to be a better agreement with the straight line than that obtained before
in Fig. 3.1 with the Weibull regression model.

O

Ezample 5.5.7
Using the semiconductor integrated circuit data considered in Example
3.4.1 the generalized residuals have been calculated and a plot of minus the
log of their reliability function against the generalized residuals is given in
Fig. 3.6. There seems be no better agreement with the straight line than
that obtained before in Fig. 3.2 with the Weibull regression model.
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Fig. 3.7. Plot of the Schoenfeld residuals for batch of the proportional hazards
model for the sodium sulphur battery data

Other residuals have been suggested for the Cox model. Schoenfeld
(1982) suggested partial residuals to examine the proportionality assump-
tion made in the Cox model. These are defined for the jth covariate as
follows:

Tij = zij — E(zi; | Ri),

where E(z;; | R;) is given by

EUIGR;' Zwj exp(ﬁTzw)
ZweRi exp(BTzw)

E(zij | Ri) =

These residuals can then be plotted against time, and if the proportional
hazards assumption holds then the residuals should be randomly scattered
about zero, with no time trend.

Ezample 3.5.8
Using the sodium sulphur battery data from Example 3.3.1 and fitting the
proportional hazards model, the Schoenfeld residuals are calculated and
are presented in Fig. 3.7 as a plot of the residuals against the time. A non-
parametric estimate of the regression line, the ‘lowess’ line, see Cleveland

R
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Fig. 3.8. Plot of the Schoenfeld residuals for the inverse of absolute tempera-
ture of the proportional hazards model for the semiconductor integrated circuit
data

(1979), is included on the plot as well as the zero residual line. There seems
to be no significant trend. A test for linear trend can be used. For this
test the statistic is 0.0654, which would be from a x? distribution with 1
degree of freedom if there was no linear trend. Hence there is no evidence
of a linear trend and it is probably safe to accept the proportional hazards
assumption.

0

Ezample 3.5.9

Using the semiconductor integrated circuit data as in Example 3.4.1 and
fitting the proportional hazards model, the Schoenfeld residuals are calcu-
lated and are presented in Fig. 3.8 as a plot of the residuals against the
time. A non-parametric estimate of the regression line, the ‘lowess’ line,
is included on the plot as well as the zero residual line. For the test for
linear trend the statistic is 1.60, which would be from a x? distribution
with 1 degree of freedom if there was no linear trend. Hence there is no
evidence of a linear trend. However, it is not clear whether to accept the
proportional hazards assumption.

O
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Fig. 3.9. Plot of the martingale residuals versus the inverse of the abso-
lute temperature of the null proportional hazards model for the semiconductor
integrated circuit data

A number of statistical software packages facilitate proportional hazards
modelling, including SAS and S-PLUS. There are also GLIM macros for
proportional hazards models, based on work by Whitehead (1980).

Therneau et al. (1990) suggest two alternative residuals, a martingale
residual and a deviance residual. Except in the case of discrete covari-
ates these residuals are far from simple to calculate; however, statistical
software is available for their estimation, for example the SAS procedure
PROC PHREG and S-PLUS functions coxreg and agreg. In the case of
discrete covariates the martingale residuals are a transformation of the Cox
and Snell generalized residuals. The deviance residuals are a transforma-
tion of the martingale residuals to correct for skewness. Therneau et al.
(1990) suggest that the martingale residuals are useful in deciding about
(a) appropriate functional relationships between the covariates and their
survival, (b) proportionality of the hazard functions, and (c) the influence
of observations. They suggest that the deviance residuals are more useful
in identifying the observations which may be outliers.

Example 3.5.10
Using the semiconductor integrated circuit data as in Example 3.4.1 and

RS
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Fig. 3.10. Plot of the deviance residuals versus the standardized score residuals
for the inverse of the absolute temperature of the proportional hazards model for
the semiconductor integrated circuit data

fitting the proportional hazards model, the martingale residuals are calcu-
lated and are presented in Fig. 3.9 as a plot of the residuals against the
covariate, the inverse of the absclute temperature. A non-parametric es-
timate of the regression line, the ‘lowess’ line, is included. There is some
suggestion that a linear fit might not be best and a quadratic function
might be an improvement, but this was found not to be the case.

The deviance residuals are calculated and can be used with the stan-
dardized score residuals to identify outliers. The plot of these residuals
in Fig. 3.10 suggests that there are some outliers with standardized score
residuals which are larger than 0.3.

0

3.6 Non-proportional hazards models

An assumption of the Cox regression model was that the hazards are pro-
portional. This can be interpreted as the distance between the log(— log)
of the reliability functions not varying with time. Cox (1972) suggested a
test for this proportionality by adding an extra covariate of log time to the
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model. In the case of two groups with z; indicating membership of a group
(z; = 0 if the ith individual belongs to group 1, z; = 1 belongs to group 2),
then the hazard functions become

for group 1:Ao(t)

for group 2:Xo(t)t72 exp(B:2:).

If the coefficient of log time is significantly different from zero the re-
liability functions are non-proportional, otherwise they are proportional.
There was concern about the use of such models with time-dependent co-
variates, though this was justified by Andersen and Gill (1982).

Ezample 3.6.1
Using the sodium sulphur battery data in Example 3.3.1 and fitting Cox’s
non-proportional hazards model, §; = 0.0900 with standard error 0.523.
These give a Wald statistic of 0.0296, which is not significantly different
from zero, for a x? distribution with 1 degree of freedom. Hence the null
hypothesis of proportionality of the hazards is accepted, which agrees with
the conclusion made in Example 3.5.8, when using the Schoenfeld residuals.

0

Many authors have extended this use of time-dependent variables in
studies of lifetimes, for example Gore et al. (1984). A number of models
have been proposed for the nature of dependency. Some of the models
can lead to computational difficulties, see Holford (1976) and Anderson
and Senthilselvan (1982). The other obvious problem is selection of an
appropriate model. A plot of log(—log) of the reliability function or a
log hazard plot may reveal some suitable function or the nature of the
problem may suggest some particular structure. Alternatively one might
use the smoothed martingale residuals suggested by Therneau et al. (1990)
plotted against the covariate to seek functional form. The danger is in
producing too complex a model which does not increase insight. When
the variables are quantitative rather than qualitative then the problem is
exacerbated and greater caution is necessary.

When predicting future performance there may be difficulties with time-
dependent covariates. It may then be necessary to resort to simulation.

3.7 Logistic model
Besides the models described so far there are a number of other models

which are either specific to a type of application, such as growth models,
see Chapter 7, or specific to the type of data available. In this section

T ———




