UNEQUAL SAMPLE SIZES

Model:

$$y_{ij} = \mu_i + \epsilon_{ij}$$
 for $i = 1, 2, ..., k$; $j = 1, 2, ..., n_i$

(where the sample sizes n_i of each treatment group may vary).

Now let $N = \sum_{i=1}^{k} n_i$ be the total number of observations.

Then

$$\bar{y}_{i} = \frac{1}{n_{i}} \sum_{j=1}^{n_{i}} y_{ij}$$

$$\bar{y}_{i} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} y_{ij}}{N} = \frac{\sum_{i=1}^{k} n_{i} \bar{y}_{i}}{N}$$

where the latter is a weighted average of the y_i .

13

ANOVA decomposition

$$y_{ij} - \bar{y}_{\cdot \cdot} = (y_{ij} - \bar{y}_{i \cdot}) + (\bar{y}_{i \cdot} - \bar{y}_{\cdot \cdot})$$

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{\cdot \cdot})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i \cdot})^2 + \sum_{j=1}^{k} \sum_{j=1}^{n_i} (\bar{y}_{i \cdot} - \bar{y}_{\cdot \cdot})^2$$

or

$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 + \sum_{i=1}^{k} n_i (\bar{y}_{i.} - \bar{y}_{..})^2$$

which is

$$SST = SSE + SSA$$

with degrees of freedom

SST:
$$N-1$$

SSE:
$$\sum_{i=1}^{k} (n_i - 1) = N - k$$

SSA:
$$(N-1) - (N-k) = k-1$$

 $F = \frac{\frac{\text{SSA}}{k-1}}{\frac{\text{SSE}}{N-k}} = \frac{\text{MSA}}{\text{MSE}}$

CHECK THAT SUM OF DOUBLE PRODUCTS IS ZERO

$$2\sum_{i=1}^{k}\sum_{j=1}^{n_{i}}(y_{ij}-\bar{y}_{i\cdot})(\bar{y}_{i\cdot}-\bar{y}_{\cdot\cdot})=2\sum_{i=1}^{k}\left[(\bar{y}_{i\cdot}-\bar{y}_{\cdot\cdot})\sum_{j=1}^{n_{i}}(y_{ij}-\bar{y}_{i\cdot})\right]=0$$

since

$$\sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\cdot}) = \sum_{j=1}^{n_i} y_{ij} - \sum_{j=1}^{n_i} \bar{y}_{i\cdot} = n_i \bar{y}_{i\cdot} - n_i \bar{y}_{i\cdot} = 0$$

15

ESTIMATION OF σ^2

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 = \sum_{i=1}^{k} (n_i - 1)s_i^2$$

where

$$s_i^2 = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i\cdot})^2$$

is usual estimator of σ^2 from the *i*th treatment group.

Now

$$s_p^2 = \frac{\sum_{i=1}^k (n_i - 1)s_i^2}{\sum_{i=1}^k (n_i - 1)} = \frac{\sum_{i=1}^k (n_i - 1)s_i^2}{N - k} = \frac{SSE}{N - k}$$

is the pooled estimator of σ^2 in the case of different sample sizes.

13.9 Randomized Complete Block Designs

TABLE 13.10 k × b Array for the RCB Design

Treatment	Block:	1	2	• • •	j		b	Total	Mean
1		<i>y</i> ₁₁	<i>y</i> ₁₂		y_{1j}		y_{1b}	T_1 .	\overline{y}_{i} .
2		y_{21}	y_{22}	• • •	y _{2j}	• • •	<i>у</i> _{2ь}	T_2 .	\overline{y}_2 .
:		:	:		:		:	:	:
i		y_{i1}	y_{i2}	• • •	y_{ij}		y_{ib}	T_{i} .	\overline{y}_{i}
:		:	:				:		,,
k		y_{k1}	y_{k2}	• • •	y_{kj}	• • •	y_{kb}	T_{k} .	\overline{y}_k .
Total		$T_{.1}$	$T_{.2}$		$T_{\cdot i}$	• • •	$\overline{T_{.b}}$	$\overline{T}_{}$	
Mean		$\overline{y}_{.1}$		•••	$\overline{y}_{,j}^{"}$		$\overline{y}_{.b}$		<u> </u>

17

The sum-of-squares identity may be presented symbolically by the equation

$$SST = SSA + SSB + SSE$$
,

where

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{b} (y_{ij} - \overline{y}_{..})^{2} = \text{total sum of squares},$$

$$SSA = b \sum_{i=1}^{k} (\overline{y}_{i.} - \overline{y}_{..})^{2} = \text{treatment sum of squares},$$

$$SSB = k \sum_{j=1}^{b} (\overline{y}_{.j} - \overline{y}_{..})^{2} = \text{block sum of squares},$$

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{b} (y_{ij} - \overline{y}_{i.} - \overline{y}_{.j} + \overline{y}_{..})^{2} = \text{error sum of squares}.$$

TABLE 13.11 Analysis of Variance for the Randomized Complete Block Design

Source of variation	Sum of squares	Degrees of freedom	Mean square	Computed f
Treatments	SSA	k-1	$s_1^2 = \frac{SSA}{k-1}$	$f_1 = \frac{s_1^2}{s^2}$
Blocks	SSB	<i>b</i> – 1	$s_2^2 = \frac{SSB}{b-1}$	3
Error	<u>SSE</u>	(k-1)(b-1)	$s^2 = \frac{SSE}{(b-1)(k-1)}$	
Total	SST	<i>bk</i> – 1	(b-1)(k-1)	

18

Example 13.6

Four different machines, M_1 , M_2 , M_3 , and M_4 , are being considered for the assembling of a particular product. It is decided that 6 different operators are to be used in a randomized block experiment to compare the machines. The machines are assigned in a random order to each operator. The operation of the machines requires physical dexterity, and it is anticipated that there will be a difference among the operators in the speed with which they operate the machines (Table 13.12). The amount of time (in seconds) were recorded for assembling the product:

TABLE 13.12 Time, in Seconds, to Assemble Product

Machine	Operator:	1	2	3	4	5	6	Total
1		42.5	39.3	39.6	39.9	42.9	43.6	247.8
2		39.8	40.1	40.5	42.3	42.5	43.1	248.3
3		40.2	40.5	41.3	43.4	44.9	45.1	255.4
4		41.3	42.2	43.5	44.2	45.9	42.3	259.4
Total		163.8	162.1	164.9	169.8	176.2	174.1	1010.9

TABLE 13.13 Analysis of Variance for the Data of Table 13.12

Source of variation	Sum of squares	Degrees of freedom	Mean square	$\begin{array}{c} \textbf{Computed} \\ f \end{array}$				
Machines	15.93	3	5.31	3.34				
Operators	42.09	5	8.42					
Error	23.84	<u>15</u>	1.59					
Total	81.86	23						

19

Figure 13.1 Population means for (a) additive results, and (b) interacting effects.

Model with interactions between treatment and block:

$$y_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ij},$$

on which we impose the additional restrictions

$$\sum_{i=1}^k \; (\alpha\beta)_{ij} = \sum_{j=1}^b \; (\alpha\beta)_{ij} = 0.$$

One can now readily verify that

$$E\left[\frac{SSE}{(b-1)(k-1)}\right] = \sigma^2 + \frac{\sum_{i=1}^k \sum_{j=1}^b (\alpha\beta)_{ij}^2}{(b-1)(k-1)}.$$