5.2.8. Approksimasion av

$$
E\left[g\left(X_{1}, \ldots, X_{n}\right)\right] \text { og } \operatorname{Var}\left[g\left(X_{1}, \ldots, X_{n}\right)\right]
$$

La ($\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$) være en stokastisk vektor, og sett

$$
\mathrm{E}\left(\mathrm{X}_{\mathrm{j}}\right)=\mu_{\mathrm{j}}, \quad \operatorname{Var}\left(\mathrm{X}_{\mathrm{j}}\right)=\sigma_{\mathrm{j}}^{2}, \quad \mathrm{j}=1, \ldots, \mathrm{n}
$$

Betrakt funksjonen $\mathrm{y}=\mathrm{g}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ som antas ha kontinuerlige partiellderiverte til og med 2. orden i en omegn om (μ_{1}, \ldots, μ_{n}). Hvis samtlige σ_{j}^{2} er tilstrekkelig små, vil med stor sannsynlighet hver enkelt X_{j} ligge nær μ_{j} slik at ledd av formen $\mathrm{c}_{\mathrm{jk}}\left(\mathrm{X}_{\mathrm{j}}-\mu_{\mathrm{j}}\right)\left(\mathrm{X}_{\mathrm{k}}-\mu_{\mathrm{k}}\right)$ blir relativt små. I så fall vil en sannsynligvis ikke giøre sả stor feil om en erstatter

$$
\begin{equation*}
\mathrm{Y}=\mathrm{g}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \tag{5.96}
\end{equation*}
$$

med

$$
\begin{equation*}
\mathrm{Z}=\mathrm{g}\left(\mu_{1}, \ldots, \mu_{\mathrm{n}}\right)+\sum_{\mathrm{j}=1}^{\mathrm{n}} \frac{\partial \mathrm{~g}\left(\mu_{1}, \ldots, \mu_{\mathrm{n}}\right)}{\partial \mu_{\mathrm{j}}}\left(\mathrm{X}_{\mathrm{j}}-\mu_{\mathrm{j}}\right) \tag{5.97}
\end{equation*}
$$

(En utvikler altså $\mathrm{g}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ i Taylorrekke omkring punktet $\left(\mu_{1}, \ldots, \mu_{\mathrm{n}}\right)$ og tar bare med førstegradsleddene.)

Propagation of errors Delta method

Ved ả utnytte dette får en følgende formler som kan nyttes ved approksimativ beregning av forventningsverdi og varians for en funksjon $g\left(X_{1}, \ldots, X_{n}\right)$, som tilfredsstiller betingelsene ovenfor:

$$
\begin{align*}
& \mathrm{E}\left[\mathrm{~g}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right] \approx \mathrm{g}\left(\mu_{1}, \ldots, \mu_{\mathrm{n}}\right) \tag{5.98}\\
& \operatorname{Var}\left[\mathrm{g}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)\right] \approx \sum_{\mathrm{j}}\left(\frac{\partial \mathrm{~g}\left(\mu_{1}, \ldots, \mu_{\mathrm{n}}\right)}{\partial \mu_{\mathrm{j}}}\right)^{2} \sigma_{\mathrm{j}}^{2}+\sum_{\mathrm{j}<\mathrm{k}} \sum_{\mathrm{j}} \frac{\partial \mathrm{~g}}{\partial \mu_{\mathrm{j}}} \frac{\partial \mathrm{~g}}{\partial \mu_{\mathrm{k}}} \operatorname{Cov}\left(\mathrm{X}_{\mathrm{j}}, \mathrm{X}_{\mathrm{k}}\right) \tag{5.99}
\end{align*}
$$

Øving 5.11. La ($\mu_{1}, \mu_{2}, \mu_{3}$) representere fysikalske størrelser som skal måles. På grunn av varierende forsøksbetingelser, målefeil o.l., oppfattes måleresultatene som realisasjoner av en stokastisk vektor ($\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}$) der

$$
\mathrm{E}\left(\mathrm{X}_{\mathrm{j}}\right)=\mu_{\mathrm{j}}, \quad \operatorname{Var}\left(\mathrm{X}_{\mathrm{j}}\right)=\sigma_{\mathrm{j}}^{2} \quad \text { og } \quad \operatorname{Cov}\left(\mathrm{X}_{\mathrm{j}}, \mathrm{X}_{\mathrm{k}}\right)=\rho_{\mathrm{jk}} \sigma_{\mathrm{j}} \sigma_{\mathrm{k}} ; \quad \mathrm{j}, \mathrm{k}=1,2,3
$$

Finn et approksimativt uttrykk for forventningsverdi og varians av funksjonen

$$
\mathrm{Y}=\mathrm{kX} \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}
$$

der k er en konstant.

Approksimasjon til forventing og varians for funksjonar av tilfeldige

 variable.Nedanfor er det synt simuleringsberekningar for estimering av forventing og varians til variabelen $\mathrm{V}=\mathrm{X} / \mathrm{Y}$ der $\mathrm{X} \sim \mathrm{N}(100,4)$ og $\mathrm{Y} \sim \mathrm{N}(20,1)$. Resultata er basert på 100 simuleringar frå kvar av fordelingane.

$$
\begin{aligned}
& \hat{\mu}_{v}=5.0202 \\
& \hat{\sigma}_{v}^{2}=0.0712
\end{aligned}
$$

Deretter har ein auka variansen til X til 25 og variansen til Y til 4. Det gav følgjande resultat:

$$
\begin{aligned}
& \mu_{V}=4.9822 \\
& \hat{\sigma}_{V}^{2}=0.3264
\end{aligned}
$$

Normal plots for each of the two cases

