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Propagation of errors
Delta method
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Normal plots for each of the two cases



Examples of approximations of expectation and variance

n = 1

Suppose Y = g(X), where we know E(X) = µ and V ar(X) = σ2.

We want to approximate E(Y ) and V ar(Y ).

Idea: If we know that Y = aX + b for constants a, b, then

E(Y ) = aµ+ b

V ar(Y ) = a2σ2 (1)

We will now approximate Y by Z given by a first order Taylor expansion around
x = µ:

Y = g(X)

Z = g(µ) + g′(µ)(X − µ) ≈ g(X) (2)

This is a good approximation if σ2 is small, since we then know that X will
have a tendency to be near µ.

The approximation of expectation and variance of Y are done by:

E(Y ) ≈ E(Z) = g(µ) + g′(µ)(µ− µ) = g(µ) since E(X) = µ

V ar(Y ) ≈ V ar(Z) = (g′(µ))2σ2 where we applied (1) to (2)

n = 2

Suppose now Y = g(X1, X2), where we know that E(Xi) = µi and V ar(Xi) =
σ2

i .

Idea: If we have Y = a1X1 + a2X2 + b, then

E(Y ) = a1µ1 + a2µ2 + b

V ar(Y ) = a2
1σ

2
1 + a2

2σ
2
2 + 2a1a2Cov(X1, X2) (3)

To approximate E(Y ) and V ar(Y ) we first approximate Y by Z given by a first
order Taylor expansion of g(x1, x2) around (x1, x2) = (µ1, µ2):

Z = g(µ1, µ2) +
∂g(µ1, µ2)

∂µ1
(X1 − µ1) +

∂g(µ1, µ2)
∂µ2

(X2 − µ2) (4)

The approximation of expectation and variance of Y are done by:

E(Y ) ≈ E(Z) = g(µ1, µ2)

V ar(Y ) ≈ V ar(Z) =
(
∂g(µ1, µ2)

∂µ1

)2

σ2
1 +

(
∂g(µ1, µ2)

∂µ2

)2

σ2
2 +

2 · ∂g(µ1, µ2)
∂µ1

· ∂g(µ1, µ2)
∂µ1

· Cov(X1, X2)



where we used (3) applied to (4).

Note that the last term starting by “2·” can be deleted if X1, X2 are indepen-
dent.

Example

Suppose

Y =
X1

X2
= g(X1, X2)

Then

g(µ1, µ2) =
µ1

µ2

∂g(µ1, µ2)
∂µ1

=
1
µ2

∂g(µ1, µ2)
∂µ2

= −µ1

µ2
2

so
Z =

µ1

µ2
+

1
µ2

(X1 − µ1)− µ1

µ2
2

(X2 − µ2)

and
E(Z) =

µ1

µ2

V ar(Z) =
1
µ2

2

σ2
1 +

µ2
1

µ4
2

σ2
2 −

2µ1

µ3
2

Cov(X1, X2) (5)

Numerical examples from slides

In the first example, X1 ∼ N(100, 22), X2 ∼ N(20, 12) are independent.

Then (5) gives:

V ar(
X1

X2
) ≈ 1

202
· 22 +

1002

204
· 12 = 0.0725

(simulated to 0.0712)

In the second example, X1 ∼ N(100, 52), X2 ∼ N(20, 22) are independent.

Then (5) gives:

V ar(
X1

X2
) ≈ 1

202
· 52 +

1002

204
· 22 = 0.3125

(simulated to 0.3264)

Note: The simulations are based on drawing 100 pairs of observations
(X1, X2), and for each pair computing the value of Y = X1/X2. The empirical



variance of the Y , computed from the 100 observations, is then an approxi-
mation of the variance that we want to compute. Note that by increasing the
number 100, the computed empirical variance will converge to the true value of
the variance. This value will probably not be the same as the one we compouted
using the Taylor expansion, which is only an approximation.

In the two numerical examples we can compare the numbers computed from
the Taylor expansion and the ones obtained by simulation (which in theory are
the correct ones, at least if 100 is increased to much larger numbers). It seems
that the Taylor approximation is better in the first numerical examples than in
the second, and this can be explained by the fact that the variances of X1 and
X2 smallest in the first example.


