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24 LIKELIHOOD

2.4.1 Likelihood-Based Statistical Methods

The general idea of likelihood inference is to fit models to data by entertaining
model-parameter combinations for which the probability of the data is large. Model-
parameter combinations with relatively high probabilities are more plausible than
combinations with low probability. Likelihood methods provide general and versatile

that these methods are, in large samples, statistically efficient (i.e., yield the most
accurate estimates). These properties are approximate in moderate and small sample
sizes, and various studies have shown that likelihood methods generally perform as
well as other available methods, With censored data, “large sample” really means
“large number of failures” and a typical guideline for large is 20 or more, but this
really depends on the problem and the questions to be answered.

Likelihood theory can be extended to more complicated nonregular models and
the basic concepts are similar. Also, much current statistical research is focused on

the development of more refined, but computationally intensive, methods that will
work better for smaller sample sizes.

2.4.2  Specifying the Likelihood Function

The likelihood function is either equal to or approximately proportional to the proba-
bility of the data. This section describes a general method of computing the probability
of a given data set. Then, for a given set of data and specified model, the likelihood
is viewed as a function of the unknown model parameters (where we can use either
the r; values or the pi values in the multinomial model introduced in Section 2.2).
The form of the likelihood function will depend on factors like:

* The assumed probability model.
* The form of available data (censored, interval censored, etc.).

* The question or focus of the study. This includes issues relating to identifiability

of parameters (i.e., the data’s ability or inability to estimate certain features of
a statistical model).

The total likelihood can be written as the joint probability of the data. Assuming
n independent observations, the sample likelihood is

Lip) = L(p;DATA) = CT] Li(p: datay), (2.10)

i=]
where L p; data;) is the probability of the observation i, data; is the data for ob-
servation #, and p is the vector of parameters to be estimated. To estimate p from
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the available DATA, we find the values of p that maximize L(p). In the usufil sit-
uations where the constant term C in (2.10) does not depend on p, one.can 51mply
take C = 1 for purposes of estimating p (see Section 2.4_4' for more mfognangr;
on C). The likelihood in (2.10) can also be writ.ten as a functlf)n of the multl‘n;mxs
cell probabilities 7r. Similarly, if there is a specified parametric form for F(r; 0) the
likelihood can be written as a function of the parameters 6. We use p here because
Chapter 3 illustrates the direct estimation of p.

2.4.3 Contributions to the Likelihood Function

Figure 2.6 illustrates the intervals of uncertainty for exan?ples of lei"t~ce_ns0red,
interval-censored, and right-censored observations. The Iikehhc.x?d conm’b.utlops for
each of these cases, shown in Table 2.2, is simply the probability of failing in the
corresponding interval of uncertainty.

Interval-Censored Observations

If a unit’s failure time is known to have occurred between times #,_, and t,, the
probability of this event is

Li(p) = /Ii foydr = F(t;) — F(t;-). .11

The three middle rows in Table 1.4 are examples of interval-censored observations.

Example 2.9 Likelihood for an Interval Censored Observaﬁon. 'Refer to
Figure 2.6 and Table 2.1. If a unit is still operating at the = 1.0 inspection but a

Left censoring

0.6

Interval censoring

f(t)
0.4

0.2
i

Right censoring

05 1.0 15 20
t

Figure 2.6. Likelihood contributions for different kinds of censoring.
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Table 2.2. Contributions to Likelihood for Life Table Data

Censoring Type Range Likelihood

d; observations b <T =<y [F(t;) — F(r- )%
interval-censored

in ti-yand

£; observations T =y [F(p)&

left-censored at 1,

r; observations T >y [1 = F@)17
right-censored at 1;

failure is found at the ¢+ = 1.5 inspection, then the likelihood (probability) for the
interval-censored observation is m = F(1.5) — F(1.0) = .231. ]

Although most data arising from observation of a continuous-time process can be
thought of as having occurred in intervals similar to (tizy, t;

), the following important
special cases warrant separate consideration.

Left-Censored Observations

Left-censored observations occur in life test applications when a unit has failed at the
time of its first inspection; all that is known is that the unit failed before the inspection
time (e.g., the first row of Table 1.4). In other situations, left-censored observations
arise when the exact value of a response has not been observed and we have, instead,
an upper bound on that response. Consider, for example, a measuring instrument that
lacks the sensitivity needed to measure observations below a known threshold (e.g.,
a noise floor in an ultrasonic measuring system). When the measurement is taken, if
the signal is below the instrument threshold, all that is known is that the measurement
is less than the threshold. If there is an upper bound ¢; for observation i, causing it to
be left-censored, the probability and likelihood contribution of the observation is

Lip) = / f@)dt = Ft) - FO) = F(y), 2.12)
0

Equation (2.7) shows how L; can be written as a function of p. Alternatively, (2.6)
shows how L; can be written as a function of 7. Note that a left-censored observation
can also be considered to be an interval-censored observation between 0 and 7;.

Example 2.10  Likelihood of a Left-Censored Observation. Refer to Fig-
ure 2.6 and Table 2.1. If a failure is found at the first inspection time ¢ = .5,

then the likelihood (probability) for the left-censored observation is F(.5) = .265.
0l

Right-Censored Observations

Right censoring is common in reliability data analysis. For example, the last bin in
Table 1.4 contains all lifetimes greater than 100 days. The observations in this bin
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are right-censored because all that is known about the failure times in this bin is that
they were greater than 100 days. . ‘ ‘ o

%,f there is a lower bound ¢; for the ith failure time, the failure tlme is son}ew.here
in the interval (t;, o). Then the probability and likelihood contribution for this right-
censored observation is

L(p) = /w f@)ydt = F(») = F(t;) = 1 — F(#). (2.13)

Example 2.11 Likelihood of a Right-Censored Observaﬁon. Refer to Fig-
ure 2.6 and Table 2.1. If a unit has not failed by the last ingpecnon att = 2, then the
likelihood (probability) for the right-censored observation is 1 — F(2) = .0388. [J

Total Likelihood . .
The total likelihood, or joint probability of the DATA, for n independent observations
is

n

L(p; DATA) = C [ | Li(p; data)) (2.14)
i=1
m+1 . .
= ¢ [T tFet® F) = Flam)* 11 = FaI™,
i=1
" i i th lin

where n = Zj:f (d i+t L j) and C is a constant depen(aill(ngcon_ le i;m;zw amgt
inspection scheme but not on the parameters p. S(? we can take - = 1. We
to find p so that L(p) is large. The p that maximizes L(p) provides a maximum
likelihood estimate of F(t). For some problems, it will be mor.e coqvemen.t to write
the likelihood and do the optimization in terms of m. As described in Section 2.2.1,
either set of basic parameters can be used.

2.4.4 Form of the Constant Term C

The form of constant term C in (2.10) and (2.14) depends o‘n th.e underlying sam-
pling and censoring mechanisms and is difficult to characterl.ze in ger.leral. For our
multinomial model, assuming inspection data and no losses (i.e., no right-censored
observations before the last interval),

n!

C"_———_"'_’
dl!"'dnz+1!

which is the usual multinomial coefficient. Another impor.tant sp?cial case arises
when we increase the number of intervals, approaching Contlnuqus mspecgon. Then
with an underlying continuous failure-time process (S(? there.: will be no tl.es), all d.,-
values will be either 0 or 1 depending on whether there is a failure or not‘ in interval i.
In this case C reduces to n!, corresponding to the number of permutations of tpe n
order statistics. With Type I single-time censoring at f,, and no more than one failure




40 MODELS, CENSORING, AND LIKELIHOOD FOR FAILURE-TIME DATA

in any of the intervals before Uy C = nl/rpiy!, where rppy = dp+y is the number
of right-censored observations, all of which are beyond t,,.
Because, for most models, C is a constant that does not depend on the model

parameters, it is common practice to take C = 1 and suppress C from likelihood
expressions and computations,

2.4.5 Likelihood Terms for General Reliability Data

Although some reliability data sets are reported in life table form (e.g., Table 1.4),
other data sets report only the times or the intervals in which failures actually occurred
or observations were censored. For such data sets there is an alternative, more general
form for writing the likelihood. This form of the likelihood is commonly used as
input for computer software for analyzing failure-time data. In general, observation
i consists of an interval (ti’“, t;],i = 1,..., n, that contains the failure time T for unit
[ in the sample. The intervals (tF, ;] may overlap and their union may not cover the
entire time line (0, «). In general, th# 1. Assuming that the censoring is at #; the
likelihood for individual observations can be computed as shown in Table 2.3; the
Joint likelihood for the DATA with n independent observations is

L(p; DATA) = [] Li(p; datay).

i=]

Some of the failure times or intervals may appear more than once in a data set.

Then w; is used to denote the frequency (weight or multiplicity) of such identical
observations and

k
L(p; DATA) = [ [L;(p; data))]™. 2.15)
j=1

Chapter 3 shows how to compute the maximum likelihood estimate of F(r) without
having to make any assumption about the underlying distribution of 7. Starting in
Chapter 7 we show how to estimate a small number of unknown parameters from a
more highly structured parametric model for F ().

Table 2.3. Contributiens to the Likelihood for General Failure Time Data

Likelihood of a Single
Type of Observation Characteristic Response L;( p; data;)
Interval-censored th<T =y F(1;) — F(ih)
Left-censored at #; T=sy F(t)
Right-censored at ¢; T >y

L= F(1)
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2.4.6 Other Likelihood Terms

The likelihood contributions used in (2.14) and (2.15) will cover the vast majority
of reliability data analysis problems that arise in practice. There are, howevef, other
kinds of observations and corresponding likelihood contributions that can arise and
these can be handled with only a slight extension of this framework.

Random Censoring in the Intervals . '
Until now, it has been assumed that right censoring occurs at the end of the mspectlon
intervals. If C is a random censoring time, an observation is censqred in.the 1x?terva1
(i1, i} if -y < C = t; and C = T. Similarly, an obsgrvatxon is a failure in 'that
interval if 7,y < T = t; and T = C. To account for right-censored observations
that occur at unknown random points in the intervals, one usually assumes that the
censoring is determined by a random variable C with pdf fq(t) and cdf Fe(r) ?gd
that the failure time T and censoring time C are statistically mdepender;t. (But it is
important to recognize that making such an assumption C.IOCS not make it so!) Then
for continuous T, the joint probability (likelihood) for r; right-censored observations
in (t;—1, ;] and d; failures in (¢;—, t;] is

Prl(T = O) N @G- <T = p)F{P(C=T) N (ti- < C = )]}"

: d ; r
{ / FoN —ch]dx} x { / e "Fr(t)]dt} @16

L;( p; data;)

I

Example 2.12  Battery Failure Data with Multiple Failure Modes. Morgan
(1980) presents data from a study conducted on 68 battery .cells. The purpose of the
test was to determine early causes of failure, to determine which causes reduce. product
life the most, and to estimate failure-time distributions. Each test cell was s.ubjected to
automatic cycling (charging and discharging) at normal operating gondmons. Sqme
survived until the end of the test and others were removed before failure for physical
examination. The original data giving precise times of failure or removal were not
available. Instead, the data in Appendix Table C.6 provide a useful summary. By the
nature of this summary, however, the removals (censoring times) do not occur at the
ends of the intervals (as in the examples in Chapter 1). O

Truncated Data ' o

In some reliability studies, observations may be truncated. Truncation, which is sim-
ilar to but different from censoring, arises when observations are actually obser\fed
only when they take on values in a particular range. For observatxoqs Fhat fall outside
the certain range, the existence is not known (and this is what dls.tmguls.hes trun-
cation from censoring). Equivalently, sampling from a truncated distribution legds
to truncated data. Examples and appropriate likelihood-based methods for handling
truncated data, based on conditional probabilities, will be given in Section 11.6.




