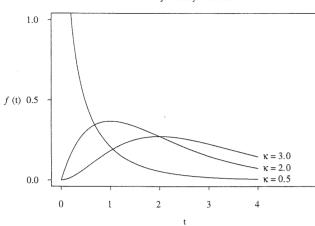
BASIC CONCEPTS AND MODELS



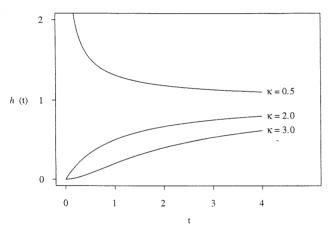


Figure 1.8. Gamma p.d.f.'s and hazard functions for $\lambda = 1$ and k = 0.5, 2.0, and 3.0.

distributed (i.i.d.) exponential random variables have a gamma distribution. Specifically, if T_1, \ldots, T_n are independent, each with p.d.f. (1.3.2), then $T_1 + \cdots + T_n$ has a gamma distribution with parameters λ and k = n.

1.3.6 Log-Location-Scale Models

A parametric location-scale model for a random variable Y on $(-\infty, \infty)$ is a distribution with p.d.f. of the form

$$f(y) = \frac{1}{b} f_0\left(\frac{y-u}{b}\right) \qquad -\infty < y < \infty, \tag{1.3.18}$$

where $u(-\infty < u < \infty)$ and b > 0 are location and scale parameters, and $f_0(z)$ is a specified p.d.f. on $(-\infty, \infty)$. The distribution and survivor functions for Y are $F_0[(y-u)/b]$ and $S_0[(y-u)/b]$, respectively, where

$$F_0(z) = \int_{-\infty}^z f_0(w) \, dw = 1 - S_0(z).$$

The standardized random variable Z = (Y - u)/b clearly has p.d.f. and survivor functions $f_0(z)$ and $S_0(z)$, and (1.3.18) with u = 0, b = 1 is called the standard form of the distribution.

The lifetime distributions introduced in Sections 1.3.2 to 1.3.4 all have the property that $Y = \log T$ has a location-scale distribution: the Weibull, log-normal, and log-logistic distributions for T correspond to extreme value, normal, and logistic distributions for Y. The survivor functions for Z = (Y - u)/b are, respectively,

$$S_0(z) = \exp(-e^z)$$
 extreme value
 $S_0(z) = 1 - \Phi(z)$ normal
 $S_0(z) = (1 + e^z)^{-1}$ logistic.

where $-\infty < z < \infty$ and $\Phi(z)$ is given just before (1.3.11). By the same token, any location-scale model (1.3.18) gives a lifetime distribution through the transformation $T = \exp(Y)$. Note that the survivor function for T can in this case be expressed as

$$Pr(T \ge t) = S_0 \left(\frac{\log t - u}{b} \right)$$
$$= S_0^* \left[\left(\frac{t}{\alpha} \right)^{\beta} \right], \tag{1.3.19}$$

where $\alpha = \exp(u)$, $\beta = b^{-1}$, and $S_0^*(x)$ is a survivor function defined on $(0, \infty)$ by the relationship $S_0^*(x) = S_0(\log x)$.

Families of distributions with three or more parameters can be obtained by generalizing (1.3.18) to let $f_0(z)$, $F_0(z)$, or $S_0(z)$ include one or more "shape" parameters. We mention two such families that are useful because they include common two-parameter lifetime distributions as special cases.

The first model is the generalized log-Burr family, for which the standardized variable (Y - u)/b has survivor function of the form

$$S_0(z;k) = \left(1 + \frac{1}{k}e^z\right)^{-k} - \infty < z < \infty,$$
 (1.3.20)

where k > 0 is a third parameter; it is easily verified that (1.3.20) is a survivor function for all k > 0. The special case k = 1 gives the standard logistic distribution (see (1.3.14)), and the limit as $k \to \infty$ gives the extreme value distribution (see (1.3.9)). The family of lifetime distributions obtained from (1.3.20) is given by (1.3.19) and has

$$Pr(T \ge t) = \left[1 + \frac{1}{k} \left(\frac{t}{\alpha}\right)^{\beta}\right]^{-k}.$$
 (1.3.21)

The log-logistic survivor function is given by k=1, and the Weibull survivor function is given by the limit as $k \to \infty$. Figure 1.9 shows p.d.f.'s for log-Burr distributions (1.3.20) with k=.5, 1, 10, and ∞ . Note that E(Z) and Var(Z) vary with k (see Problem 1.9) so that the distributions in Figure 1.9 do not have identical means and standard deviations.

Since the generalized log-Burr family includes the log-logistic and Weibull distributions, it allows discrimination between them. It is also a flexible model for fitting to data; inference for it is discussed in Chapter 5.

A second extended model is the generalized log-gamma distribution, which includes the Weibull and log-normal distributions as special cases. The model was originally introduced by specifying that $(T/\alpha)^{\beta}$ has a one-parameter gamma distribution (1.3.17) with index parameter k > 0. Equivalently, $W = (Y - u_1)/b_1$, where $Y = \log T$, $u_1 = \log \alpha$ and $b_1 = \beta^{-1}$, has a log-gamma distribution. However, the mean and the variance for the gamma distribution both equal k, and as k increases, the gamma and log-gamma distributions do not have limits. The mean and variance for W are (see Problem 1.10) $E(W) = \psi(k)$ and $Var(W) = \psi'(k)$, where ψ and ψ' are the digamma and trigamma functions (see Appendix B.2). For large k they

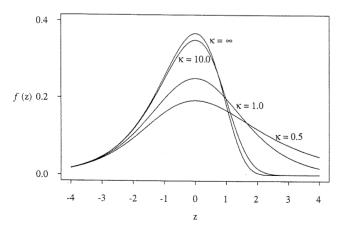


Figure 1.9. P.d.f.'s of log-Burr distributions for $k = .5, 1, 10, \infty$,

behave like $\log k$ and k^{-1} , respectively (see (B9)), and it is therefore convenient and customary to define a transformed log-gamma variate $Z = k^{1/2}(W - \log k)$, which has p.d.f. (see Problem 1.10)

$$f_0(z;k) = \frac{k^{k-1/2}}{\Gamma(k)} \exp(k^{1/2}z - ke^{k^{-1/2}z}) \qquad -\infty < z < \infty.$$
 (1.3.22)

The generalized log-gamma model is then the three-parameter family of distributions for which Z = (Y - u)/b has p.d.f. (1.3.22); the corresponding distribution of $T = \exp(Y)$ is obtained from this, and is called the generalized gamma model. Figure 1.10 shows p.d.f.'s (1.3.22) for k = .5, 1, 10, and ∞ . As for the log-Burr distributions in Figure 1.9, note that E(Z) and Var(Z) vary with k.

For the special case k=1, (1.3.22) becomes the standard extreme value p.d.f. (see (1.3.8)). It can also be shown (see Problem 1.10) that as $k\to\infty$, (1.3.22) converges to the standard normal p.d.f., and thus the generalized gamma model includes the Weibull and log-normal distributions as special cases. The two-parameter gamma distribution (1.3.15) also arises as a special case; in the original (α, β, k) parameterization this corresponds to $\beta=1$, and in the (u,b,k) parameterization with (1.3.22), to $b=k^{-1/2}$. Inference for the generalized gamma and log-gamma distributions is discussed in Chapter 5.

Other extended families may be useful from time to time. For example, one might take Z = (Y - u)/b to have a Student t distribution with k degrees of freedom. Kalbfleisch and Prentice (1980, Sec. 2.2.7) consider a four-parameter model in which Z is a rescaled $\log F$ random variable; it includes the generalized $\log F$ and $\log F$ random variable; it includes the generalized $\log F$ random variable; it includes $\log F$ random variable; it includes $\log F$ random variable $\log F$ rand

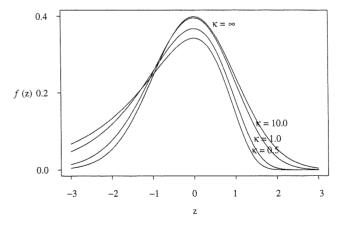


Figure 1.10. P.d.f.'s of log-gamma distributions for $k = .5, 1, 10, \infty$.