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Figure 1.8. Gamma p.d.f’s and hazard functions for A = 1 and k = 0.5, 2.0, and 3.0.

distributed (i.i.d.) exponential random variables have a gamma distribution. Specifi-
cally, if 71, ..., T, are independent, each with p.d.f. (1.3.2), then Ty + - - - + T}, has
a gamma distribution with parameters A and k = n.

1.3.6 Log-Location-Scale Models

A parametric location-scale model for a random variable Y on (—o0, 00) is a distri-
bution with p.d.f. of the form
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f(y)=éfo <y;u) -0 <Yy < 00, (1.3.18)

where u(—00 < u < oo) and b > 0 are location and scale parameters, and fo(2)
is a specified p.d.f. on (—o0, 00). The distribution and survivor functions for Y are

Fol(y — u)/b] and So[(y — u)/b], respectively, where

Z
Fo(2) = / Sow)ydw =1— 5(2).

The standardized random variable Z = (Y — u)/b clearly has p.d.f. and survivor
functions fy(z) and Sp(z), and (1.3.18) with u = 0, b = 1 is called the standard form
of the distribution.

The lifetime distributions introduced in Sections 1.3.2 to 1.3.4 all have the prop-
erty that Y = logT has a location-scale distribution: the Weibull, log-normal, and
log-logistic distributions for T' correspond to extreme value, normal, and logistic
distributions for Y. The survivor functions for Z = (¥ — u)/b are, respectively,

So(2) = exp(—e®) extreme value
So(z) =1~ @(2) normal
So(z) =1+ logistic,

where —oo0 < z < 00 and ®(z) is given just before (1.3.11). By the same token, any
location-scale model (1.3.18) gives a lifetime distribution through the transformation
T = exp(Y). Note that the survivor function for T can in this case be expressed as

PrHT >1) =S (logtT_”>

3 t ﬂ
=St <;> } (13.19)

where o = exp(u), f = b1 and Sa‘ (x) is a survivor function defined on (0, co) by
the relationship S5 (x) = Sp(log x).

Families of distributions with three or more parameters can be obtained by gener-
alizing (1.3.18) tolet fo(z), Fo(z), or So(z) include one or more “shape” parameters.
We mention two such families that are useful because they include common two-
parameter lifetime distributions as special cases.

The first model is the generalized log-Burr family, for which the standardized
variable (Y — u)/b has survivor function of the form

1 —k
Solz; k) = (1 + Ee‘) —00 < 7 < 00, (1.3.20)
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where k > O is a third parameter; it is easily verified that (1.3.20) is a survivor func-
tion for all £ > 0. The special case k = 1 gives the standard logistic distribution (see
(1.3.14)), and the limit as k — o0 gives the extreme value distribution (see (1.3.9)).
The family of lifetime distributions obtained from (1.3.20) is given by (1.3.19) and

has
1 /7\*? _k
Pr{T>=)=|1+ % (;) . (1.3.21)

The log-logistic survivor function is given by k = 1, and the Weibull survivor func-
tion is given by the limit as k — co. Figure 1.9 shows p.d.fs for log-Burr distribu-
tions (1.3.20) with k = .5, 1, 10, and co. Note that E(Z) and Var(Z) vary with &
(see Problem 1.9) so that the distributions in Figure 1.9 do not have identical means
and standard deviations.

Since the generalized log-Burr family includes the log-logistic and Weibul} distri-
butions, it allows discrimination between them. It is also a flexible model for fitting
to data; inference for it is discussed in Chapter 5.

A second extended model is the generalized log-gamma distribution, which
includes the Weibull and log-normal distributions as special cases. The model was
originally introduced by specifying that (T /a)? has a one-parameter gamma distri-
bution (1.3.17) with index parameter k > 0. Equivalently, W = (Y — u1)/by, where
Y =logT,u; = loga and by = B! hasa log-gamma distribution. However, the
mean and the variance for the gamma distribution both equal k, and as & increases,
the gamma and log-gamma distributions do not have limits. The mean and variance
for W are (see Problem 1.10) E(W) = v (k) and Var(W) = Y’ (k), where ¥ and
¥’ are the digamma and trigamma functions (see Appendix B.2). For large & they
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Figure 1.9. P.d.f’s of log-Burr distributions for k = .5, 1, 10, co.
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behave like logk and k1, respectively (see (B9)), and it is therefore convenient and
customary to define a transformed log-gamma variate Z = k/2(W — log k), which
has p.d.f. (see Problem 1.10)

k—-1/2

) exp(k?z — ket ) — 0 <z < 00 (1.3.22)

folz k) =

The generalized log-gamma model is then the three-parameter family of distributions
for which Z = (Y — u)/b has p.d.f. (1.3.22); the corresponding distribution of 7' =
exp(Y) is obtained from this, and is called the generalized gamma model. Figure 1.10
shows p.d.f’s (1.3.22) for k = .5, 1, 10, and co. As for the log-Burr distributions in
Figure 1.9, note that E(Z) and Var(Z) vary with k.

For the special case k = 1, (1.3.22) becomes the standard extreme value p.d.f.
(see (1.3.8)). It can also be shown (see Problem 1.10) that as k —> co, (1.3.22) con-
verges to the standard normal p.d.f., and thus the generalized gamma model includes
the Weibull and log-normal distributions as special cases. The two-parameter gamma
distribution (1.3.15) also arises as a special case; in the original («, B, k) parameteri-
zation this corresponds to 8 = 1, and in the (u, b, k) parameterization with (1.3.22),
to b = k~1/2, Inference for the generalized gamma and log-gamma distributions is
discussed in Chapter 5.

Other extended families may be useful from time to time. For example, one might
take Z = (Y — u)/b to have a Student ¢ distribution with k degrees of freedom.
Kalbfleisch and Prentice (1980, Sec. 2.2.7) consider a four-parameter model in which
Z is a rescaled log F random variable; it includes the generalized log-Burr and log-
gamma families as special cases.
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Figure 1.10. P.d.f’s of log-gamma distributions for k = .5, 1, 10, co.
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