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WEIBULL REGRESSION

Special case of log-location-scale-survival-regression models.

Recall: If T ~ Weibull(#, ) then by definition

R(t) = e (°
a—1
2(t) = “’;a — afoo

InT

1
In§ + &W, where W ~ Gumbel(0, 1)

Weibull regression model for a lifetime T and corresponding covariate
vector Xx:

1 / 1
InT =00+ bix1+ -+ Bxx+—W=06+08x+—W
«a —— «
Iné@ In@

Thus § = ePotBixat+Bixi = 6504_[3')(
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PROPORTIONAL HAZARDS PROPERTY

Thus for Weibull regression for (T, x),
T ~ Weibull(efotArat+8x o),
and hence the hazard rate function is
z(t;x) = o ePotPratFhixy—aga-l
— qe Popa—1 g—afixat—afygt—afix
—_——
20(t)
z0(t) - e
= z0(t) - eB X
= 20(t) - g(x)

1X1+ﬁ2xz+~~~+ﬁk><k; where Bj:_aﬁj

Thus: Hazard rate is product of one factor, z(t), which is a function of t
(and not of x), and one which is function of x (and not of t).

This property is called the Proportional hazards property. Why? (Next
slide).
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PROPORTIONAL HAZARDS PROPERTY (CONT.)

Recall that z(t; x) = zp(t) - g(x). Consider two individuals with covariate
vectors x() and x(?):
z(t:xM)  g(xM)
2(6:x) ~ g(x®)

(%)

Thus )
Ly 8(xY) e
Z(t,x( )) = mZ(t, X( ))

so the hazard rate functions are proportional as functions of t, with
proportionality factor equal to g(x(1))/g(x().

Thus: The Weibull regression model has the proportional hazards property.
BUT no other log-location-scale-survival-regression model has the
property.

(%) is called the relative risk for a “person” with covariate x(1) relative to
a “person” with x(?).
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COX REGRESSION MODEL

Sir David Cox, in his famous paper from 1972 suggested to use the model

z(t; x) _ Zo(t)eﬁ1X1+52X2+'"+ﬂka

Here zp(t) can be any positive function of t (i.e. any nonparametric
hazard rate function). Because the (i, ... 3k are ordinary parameters, the
model is said to be semi-parametric.

Interest is mainly in 81, -, k.

How to interpret (3;7 Suppose an item has covariate vector

x = (x1,---,xk), s0 z(t; x) = zo(t)ePrathret-+Bx  Syppose then that
x; (e.g. temperature) is increased by 1 unit, so
Xnew = X1, , X+ 1,--+  Xk. Then

2(t; Xnew) = 2(t | x) - €7

Thus: e” is the factor with which the hazard is multiplied if we increase
Xi by 1 unit.
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EXAMPLE - SMOKING OR NOT SMOKING

Suppose that the first component, xi, of x is either 0 or 1:

@ x3 = 0 if person is not smoking.

@ x; = 1 if person is smoking.

Then e’ is the effect on hazard rate caused by going from non-smoking
to smoking, called the relative risk for a smoker.

In general: e is called the relative risk of covariate #i.
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ESTIMATION IN COX MODEL

Data: (Y;,6;,X;), i=1,...,n
Model: z(t;x) = zo(t)efB X
Let T(1) < T(2) < -+ < T(,) be the observed failure times.

| ] IR } 5
0 Ty Ty T
Atrisk R, Atrisk: Ry Atrisk: Ry
Failing: No.(; Failing: No. ¢, Failing No. &
Need to know
@ who are at risk at time T(;)? Denote these R; C {1,2,...,n}

e who fails at T(j? Say, this is individual /; € R;.
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COX' PARTIAL LIKELIHOOD FOR 3

I { } csses } S
0 Ty To) To)
Atrisk: R, Atrisk: R, Atrisk: R
Failing: No. ¢, Failing: No. ¢, Failing No. &

Cox noted that since zy(t) is completely unknown, the lengths of times
between failures are not relevant for estimation of 3.

Cox’ partial likelihood is essentially the likelihood of the observed
ORI %
L(B)=P(Li=t1,Lo =100, -, L = ¥k)

where L; is the number of the indiviudaul that fails at time T;).

Cox computed this as a product of the relevant probabilities at each failure

time.
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COX' PARTIAL LIKELIHOOD

At Ty there is a competition between all individuals in R;, so we need to
find in general, when t is one of T(y),..., T(,),

P(¢; fails at t | a unit in R; fails at t)
P(¢; fails at t) N P(¢; fails in (t, t + h))
P(a unit in R; fails at t) ~ P(a unit in R; fails in (t,t + h))
zo(t)e’g ¥ . h B eB *t;

DicR; zo(t)eB % - h YieR; &P x

SO

@) = ——~

/
=12 iR, e xi

which is Cox’ partial likelihood.
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ESTIMATION OF B

The log partial likelihood is /(3) = In L(3). The maximum partial
likelihood estimate of 3 is found by solving

a1(B) .
=0;i=1,---,k
B
giving B = (Bl,ﬁg, e ,Bk), and in the same way as for parametric
regression models,
VarBAl

17Y(3) = COV(/B:ﬁAz) Var s

VarﬁAk
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TIES? USE THE PETO-BRESLOW PARTIAL LIKELIHOOD

Assume d; units fail at T;). Peto-Breslow’s partial likelihood:

L(B) = ;
J'l_[l (ZieRj e'B Xi)(#

where s; is sum of x; for the units that fail at T;).

Essentially, we use Cox’ partial likelihood by making an ordinary product
for each failed unit, but we let all units that fail at the same time have the
same risk set.
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A SIMPLE EXAMPLE

Model: z(t;x) = zo(t)e®* (a single covariate, x).
Data: n=7,r=3

iy xi| 9
1 5112 | 0
2| 10]10] 1 i [ Ty R |
3| 40| 3|0 1| 10 {2,3,4,5,6,7} | 2
4| 80| 5|0 2 | 120 (56,7} | 5
50120 3] 1 3 | 400 6,7} | 6
6 | 400 411
7 | 600 110
10 3 4
1(s) = o S

el08 | €38 1 58 1 €38 1 40 1 e 38 t 4P 1 e e4F  ef

Bo Lindqvist Slides 12 TMAA4275 LIFETIME ANALYSIS 12 /27



SIMPLE EXAMPLE: COX" PARTIAL LIKELIHOOD

Bo Lindqvist

0251 _{/ﬁ \

021 / N
0.15
I
o1 |
|

nos/

0

=

Maximum likelihood estimate: 3 = 0.765.
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SIMPLE EXAMPLE: COX"' LOG PARTIAL LIKELIHOOD

s TN
/ N
-2
-254
]
-3/
II
)
|
II
i
-35
0 0's 1 15 2 2’5 K] 35
b

Maximum likelihood estimate: 3 = 0.765.
95% likelihood confidence interval: (0.1, 3.2).
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LIKELIHOOD CONFIDENCE INTERVALS AND TESTING

Likelihood theory holds for the partial likelihood

W(B) = 2(1(B) — I(B)) =~ x2 if B is true value.

Thus we can construct the “1.92 Confidence Interval” (see previous slide),

A~

i.e. finding the set {5 : I(5)) > I(5) — 1.92}.

We can also test, e.g., Hp : B8 = 0 versus Hj : 5 % 0 by using that then

W =2(I(8) - 1(0)) ~ xi

under the null hypothesis, and reject Hy if this becomes too big (larger
than 3.84 for 5% significance level).

In example: W =2(—1.35 — (—3.45)) =2-2.10 = 4.2, so we reject Hp at
5% level. We could also conclude this from the confidence interval, since 0
is not in the confidence interval (0.1, 3.2).
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WEIBULL REGRESSION WITH SIMPLE EXAMPLE

Distribution: Weibull

Relationship with accelerating variable(s): Linear

Regression Table

Standard 55,0% Normal CI
Predictor Coef Erroxr zZ P Lowexr Upper
Intercept 7,58636 0,548225 13,84 0,000 &,51185 8,66087
x -0,468235 0,0842830 -5,56 0,000 -0,633427 -0,303044
Shape 2,05563 0,8721e° 0,894543 4,721e7

Log-Likelihood = -17,450

4 c1 Cc2 c3 c4 C5 Cé Cc7 cs
Y X d
1 5 12 0
2 10 10 1
3 40 3 0
4 80 5 0
5 120 3 1
6 400 4 1
7 600 1 0
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COMPARISON COX VS.WEIBULL

Estimated model, Weibull: In T = 7.586 — 0.468x + (1/2.056) W
Estimated model, Cox: z(t; x) = Zo(t)eo‘765x

Recall from earlier slide:

Beox = —Clweib * Bueib
In the example we estimate the right hand side by
—2.056 - (—0.468) = 0.96 while the left hand side is estimated by 0.765.

This seems to be OK, given that there are very few failures, and given the
following fact:

The Cox-estimate for 3 does not use the observed times, while the Weibull
estimates use them (a lot).
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USE OF COX REGRESSION TO COMPARE TWO GROUPS
Example from book by Ansell and Phillips

Table 3.2. Lifetimes (in cycles) of sodium sulphur batteries

Batch 1 164 164 218 230 263 467 538 6389 669
917 1148 16781678+ 1678416784

Batch 2 76 82 210 315 385 412 491 504 522
6464+ 678 770 884 1131 1446 1824 1827 2248
2385 3077

Note: Lifetimes with + are right censored observations, not failures.
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BATTERY DATA

There are altogether n = 15 + 20 = 35 observations.
Let x = 0 for Batch 1, x = 1 for Batch 2.

Now x is a discrete covariate (categorical). The Cox model is
z(t; x) = zo(t)e?, so:

e for Batch 1: z(t;0) = z(t)
o for Batch 2 : z(t;1) = zy(t)e”

Cox’ partial likelihood is easy to write down here (but note tied failures at
time 164, so Peto-Breslow should be used at that time). For the other
times, the contribution at T(j) is

e’8 Xt _ 1 if failure in Batch 1, € if failure in Batch 2
Z.GR oB'xi  Fat risk in Batch 1+ e - #at risk in Batch 2
ieR;

and Cox’ likelihood is the product of these!
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RESULTS - BATTERY DATA

Maximum partial likelihood estimate: B = —0.0888
(solved 242} = 0, where / is Cox’ log partial likelihood)

Further, computation of Var(ﬁA) (=1"(B))~1, and taking the square root
3) = 0.4034.

gives the standard error SD(

So the standard 95% confidence interval for 3 is —0.0888 == 1.96 - 0.4034
= (—0.879,0.702).

Totest Hy: B =0 versus H; : B #0

use W(0) = 2(/(5) — 1(0)) = x3 under Ho

= 2(—81.238 — (—81.262)) = 0.048 so do not reject at any reasonable
significance level!

Note that we could also use the logrank test to test these hypotheses, or
look at KM-plots (next slide).
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COMPARISON OF BATCHES BY KAPLAN-MEIER PLOT

Nonparametric Survival Plot for C1
Kaplan-Meier Method - 85,0% CI
Censoring Column in C2

Probability

0 1000 2000 3000
Time to Failure
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

e Hazard: z(t;x;) = zo(t)eﬂ Xi

o Cumulative hazard: Z(t;x;) = Zo(t)elB Xi
(do the integration!)
@ Survival/reliability function:

/

P(T; > t) = R(t;x;) = e Z(tX) = e‘ZO(t)eﬁ 5

Of practical interest: "Estimate the survival probability for a patient or
machine”.

To estimate this: Substitute 3 for B3, but still we need to estimate Zo(t).
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

/

Recall: Z(T;,x;) ~ expon(1), i.e. Zo(T,-)e'B Xi ~ expon(1)
Then recall that T ~ expon(A\) = aT ~ expon(A/a). But then

/
Zo(T;) ~ expon( eB X ), since
Aifor simplicity

Zo(T;) = e P . Z(T;)eP % ~ expon(—L—) = expon(ef )
N——— e—ﬁ X

expon(1)

Bo Lindqvist Slides 12 TMAA4275 LIFETIME ANALYSIS 23 /27



ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

: i e —
0 T(l:l T(Z) T(I”\l
: : s —
0 Z(Try) Z(Tj) Z(T;)
6 R, 6, R, & R,

Zo(Ti) ~ eXPOH(e'BIX") = expon()\;), so

Zo(T(1y) = minimum of Zo(T;) for i € Ry ~ expon(d_;cp Ai) =
expon(zieRl eﬁ/x,)’ and

Zo(T(2)) — 2o(T(1y) ~ expon(Dicg, Ai) = expon(_cp, e,le,-)
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

: : PR—— —
0 Ty Ty T
: : e —
0 Z(Toy) Z(Tsy) Z(T,)
6 R 6, R, & R

It follows that E(Zo(T(1))) =
_ 1 1
E(ZO(T(z))) T Dier Ai + Dicry i
and so on, so that in general
E(Zo(T(m)) = 2201y ﬁ =y, ——
! J /3 X;
ZieRj e

1
ZiERl Ai

Bo Lindqvist Slides 12 TMAA4275 LIFETIME ANALYSIS 25 /27



THE BRESLOW ESTIMATOR

B- Y —L

N
THSt Yicr, e X,
This is similar to Nelson-Aalen estimator.

Indeed, if there are no covariates, then 8 = 0 and we get ZTj<t #@-1
which is the Nelson-Aalen estimator.

We can use the Breslow estimator to estimate Ry(t) = e~2(t),
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A KM-TYPE ESTIMATOR FOR Ry(t)

Bx B
R = I (1- =)

N
JiTyst Yier, €0 %
Note that for 3 = 0 we get the ordinary KM estimator:

Rot) = 1] (1_#1/?,-)

j:T(j)St
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