
TMA4275 LIFETIME ANALYSIS
Slides 12: Weibull regression; Cox regression

Bo Lindqvist
Department of Mathematical Sciences

Norwegian University of Science and Technology
Trondheim

http://www.math.ntnu.no/∼bo/
bo@math.ntnu.no

NTNU, Spring 2014

Bo Lindqvist Slides 12 ()TMA4275 LIFETIME ANALYSIS 1 / 27



WEIBULL REGRESSION

Special case of log-location-scale-survival-regression models.

Recall : If T ∼Weibull(θ, α) then by definition

R(t) = e−(
t
θ
)α

z(t) =
αtα−1

θα
= αθ−αtα−1

lnT = ln θ +
1

α
W , where W ∼ Gumbel(0, 1)

Weibull regression model for a lifetime T and corresponding covariate
vector x:

lnT = β0 + β1x1 + · · ·+ βkxk︸ ︷︷ ︸
ln θ

+
1

α
W = β0 + β

′
x︸ ︷︷ ︸

ln θ

+
1

α
W

Thus θ = eβ0+β1x1+···+βkxk ≡ eβ0+β
′
X
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PROPORTIONAL HAZARDS PROPERTY

Thus for Weibull regression for (T , x),

T ∼Weibull(eβ0+β1x1+···+βkxk , α),

and hence the hazard rate function is

z(t; x) = α(eβ0+β1x1+···+βkxk )−αtα−1

= αe−αβ0tα−1︸ ︷︷ ︸
z0(t)

·e−αβ1x1+−αβ2x2···+−αβkxk

= z0(t) · e β̃1x1+β̃2x2+···+β̃kxk ; where β̃j = −αβj

= z0(t) · e
˜β
′
x

= z0(t) · g(x)

Thus: Hazard rate is product of one factor, z0(t), which is a function of t
(and not of x), and one which is function of x (and not of t).
This property is called the Proportional hazards property. Why? (Next
slide).
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PROPORTIONAL HAZARDS PROPERTY (CONT.)

Recall that z(t; x) = z0(t) · g(x). Consider two individuals with covariate
vectors x(1) and x(2):

z(t; x(1))

z(t; x(2))
=

g(x(1))

g(x(2))
(?)

Thus

z(t; x(1)) =
g(x(1))

g(x(2))
z(t; x(2))

so the hazard rate functions are proportional as functions of t, with
proportionality factor equal to g(x(1))/g(x(2)).

Thus: The Weibull regression model has the proportional hazards property.
BUT no other log-location-scale-survival-regression model has the
property.

(?) is called the relative risk for a “person” with covariate x(1) relative to
a “person” with x(2).
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COX REGRESSION MODEL

Sir David Cox, in his famous paper from 1972 suggested to use the model

z(t; x) = z0(t)eβ1x1+β2x2+···+βkxk

Here z0(t) can be any positive function of t (i.e. any nonparametric
hazard rate function). Because the β1, . . . βk are ordinary parameters, the
model is said to be semi-parametric.

Interest is mainly in β1, · · · , βk .

How to interpret βi? Suppose an item has covariate vector
x = (x1, · · · , xk), so z(t; x) = z0(t)eβ1x1+β2x2+···+βkxk . Suppose then that
xi (e.g. temperature) is increased by 1 unit, so
xnew = x1, · · · , xi + 1, · · · , xk . Then

z(t; xnew) = z(t | x) · eβi

Thus: eβi is the factor with which the hazard is multiplied if we increase
Xi by 1 unit.
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EXAMPLE - SMOKING OR NOT SMOKING

Suppose that the first component, x1, of x is either 0 or 1:

x1 = 0 if person is not smoking.

x1 = 1 if person is smoking.

Then eβ1 is the effect on hazard rate caused by going from non-smoking
to smoking, called the relative risk for a smoker.

In general: eβi is called the relative risk of covariate #i .
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ESTIMATION IN COX MODEL

Data: (Yi , δi ,Xi ), i = 1, . . . , n

Model: z(t; x) = z0(t)eβ
′
X

Let T(1) < T(2) < · · · < T(r) be the observed failure times.

Need to know

who are at risk at time T(i)? Denote these Ri ⊆ {1, 2, . . . , n}
who fails at T(i)? Say, this is individual `i ∈ Ri .
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COX’ PARTIAL LIKELIHOOD FOR β

Cox noted that since z0(t) is completely unknown, the lengths of times
between failures are not relevant for estimation of β.

Cox’ partial likelihood is essentially the likelihood of the observed
`1, · · · , `k :

L(β) = P(L1 = `1, L2 = `2, · · · , Lk = `k)

where Li is the number of the indiviudaul that fails at time T(i).

Cox computed this as a product of the relevant probabilities at each failure
time.
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COX’ PARTIAL LIKELIHOOD

At T(j) there is a competition between all individuals in Rj , so we need to
find in general, when t is one of T(1), . . . ,T(r),

P(`j fails at t | a unit in Rj fails at t)

=
P(`j fails at t)

P(a unit in Rj fails at t)
≈

P(`j fails in (t, t + h))

P(a unit in Rj fails in (t, t + h))

≈ z0(t)e
β′x`j · h∑

i∈Rj
z0(t)eβ

′
xi · h

=
e
β′x`j∑

i∈Rj
eβ
′
xi

so

L(β) =
r∏

j=1

e
β
′
x`j∑

i∈Rj
eβ
′
xi

which is Cox’ partial likelihood.
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ESTIMATION OF β

The log partial likelihood is l(β) = ln L(β). The maximum partial
likelihood estimate of β is found by solving

∂l(β)

∂βi
= 0; i = 1, · · · , k

giving β̂ = (β̂1, β̂2, . . . , β̂k), and in the same way as for parametric
regression models,

I−1(β̂) =


V̂ar β̂1 · ·
̂cov(β̂1, β̂2) V̂ar β̂2 ·
· · ·
· · V̂ar β̂k


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TIES? USE THE PETO-BRESLOW PARTIAL LIKELIHOOD

Assume dj units fail at T(j). Peto-Breslow’s partial likelihood:

L(β) =
r∏

j=1

eβ
′
sj(∑

i∈Rj
eβ
′
xi
)dj

where sj is sum of x` for the units that fail at T(j).

Essentially, we use Cox’ partial likelihood by making an ordinary product
for each failed unit, but we let all units that fail at the same time have the
same risk set.
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A SIMPLE EXAMPLE

Model : z(t; x) = z0(t)eβx (a single covariate, x).
Data: n = 7, r = 3

i yi xi δi
1 5 12 0
2 10 10 1
3 40 3 0
4 80 5 0
5 120 3 1
6 400 4 1
7 600 1 0

j T(j) Rj `j
1 10 {2, 3, 4, 5, 6, 7} 2
2 120 {5, 6, 7} 5
3 400 {6, 7} 6

L(β) =
e10β

e10β + e3β + e5β + e3β + e4β + eβ
· e3β

e3β + e4β + eβ
· e4β

e4β + eβ
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SIMPLE EXAMPLE: COX’ PARTIAL LIKELIHOOD

Maximum likelihood estimate: β̂ = 0.765.
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SIMPLE EXAMPLE: COX’ LOG PARTIAL LIKELIHOOD

Maximum likelihood estimate: β̂ = 0.765.
95% likelihood confidence interval: (0.1, 3.2).
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LIKELIHOOD CONFIDENCE INTERVALS AND TESTING

Likelihood theory holds for the partial likelihood

W (β) = 2(l(β̂)− l(β)) ≈ χ2
1 if β is true value.

Thus we can construct the “1.92 Confidence Interval” (see previous slide),
i.e. finding the set {β : l(β)) ≥ l(β̂)− 1.92}.

We can also test, e.g., H0 : β = 0 versus H1 : β 6= 0 by using that then

W = 2(l(β̂)− l(0)) ∼ χ2
1

under the null hypothesis, and reject H0 if this becomes too big (larger
than 3.84 for 5% significance level).

In example: W = 2(−1.35− (−3.45)) = 2 · 2.10 = 4.2, so we reject H0 at
5% level. We could also conclude this from the confidence interval, since 0
is not in the confidence interval (0.1, 3.2).
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WEIBULL REGRESSION WITH SIMPLE EXAMPLE
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COMPARISON COX VS.WEIBULL

Estimated model, Weibull: lnT = 7.586− 0.468x + (1/2.056)W

Estimated model, Cox: z(t; x) = z0(t)e0.765x

Recall from earlier slide:

βcox = −αweib · βweib

In the example we estimate the right hand side by
−2.056 · (−0.468) = 0.96 while the left hand side is estimated by 0.765.

This seems to be OK, given that there are very few failures, and given the
following fact:

The Cox-estimate for β does not use the observed times, while the Weibull
estimates use them (a lot).
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USE OF COX REGRESSION TO COMPARE TWO GROUPS

Example from book by Ansell and Phillips
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BATTERY DATA

There are altogether n = 15 + 20 = 35 observations.

Let x = 0 for Batch 1, x = 1 for Batch 2.

Now x is a discrete covariate (categorical). The Cox model is
z(t; x) = z0(t)eβx , so:

for Batch 1: z(t; 0) = z0(t)

for Batch 2 : z(t; 1) = z0(t)eβ

Cox’ partial likelihood is easy to write down here (but note tied failures at
time 164, so Peto-Breslow should be used at that time). For the other
times, the contribution at T (j) is

e
β
′
x`j∑

i∈Rj
eβ
′xi

=
1 if failure in Batch 1, eβ if failure in Batch 2

#at risk in Batch 1 + eβ ·#at risk in Batch 2

and Cox’ likelihood is the product of these!
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RESULTS - BATTERY DATA

Maximum partial likelihood estimate: β̂ = −0.0888
(solved ∂l(β)

∂β = 0, where l is Cox’ log partial likelihood)

Further, computation of V̂ar(β̂) = (−l ′′(β̂))−1, and taking the square root

gives the standard error ŜD(β̂) = 0.4034.

So the standard 95% confidence interval for β is −0.0888± 1.96 · 0.4034
= (−0.879, 0.702).

To test H0 : β = 0 versus H1 : β 6= 0
use W (0) = 2(l(β̂)− l(0)) ≈ χ2

1 under H0

= 2(−81.238− (−81.262)) = 0.048 so do not reject at any reasonable
significance level!

Note that we could also use the logrank test to test these hypotheses, or
look at KM-plots (next slide).
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COMPARISON OF BATCHES BY KAPLAN-MEIER PLOT
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

Hazard: z(t; xi ) = z0(t)eβ
′
xi

Cumulative hazard: Z (t; xi ) = Z0(t)eβ
′
xi

(do the integration!)

Survival/reliability function:

P(Ti > t) = R(t; xi ) = e−Z(t;xi ) = e−Z0(t)e
β
′
xi

Of practical interest: “Estimate the survival probability for a patient or
machine”.

To estimate this: Substitute β̂ for β, but still we need to estimate Z0(t).
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

Recall: Z (Ti , xi ) ∼ expon(1), i.e. Z0(Ti )e
β
′
xi ∼ expon(1)

Then recall that T ∼ expon(λ) =⇒ aT ∼ expon(λ/a). But then

Z0(Ti ) ∼ expon( eβ
′
Xi︸ ︷︷ ︸

λi for simplicity

), since

Z0(Ti ) = e−β
′
xi · Z0(Ti )e

β
′
xi︸ ︷︷ ︸

expon(1)

∼ expon( 1

e−β
′
xi

) = expon(eβ
′
xi )
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

Z0(Ti ) ∼ expon(eβ
′
xi ) ≡ expon(λi ), so

Z0(T(1)) = minimum of Z0(Ti ) for i ∈ R1 ∼ expon(
∑

i∈R1
λi ) =

expon(
∑

i∈R1
eβ
′
Xi ), and

Z0(T(2))− Z0(T(1)) ∼ expon(
∑

i∈R2
λi ) = expon(

∑
i∈R2

eβ
′
Xi )
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

It follows that E (Z0(T(1))) = 1∑
i∈R1

λi

E (Z0(T(2))) = 1∑
i∈R1

λi
+ 1∑

i∈R2
λi

and so on, so that in general
E (Z0(T(m))) =

∑m
j=1

1∑
i∈Rj

λi
=
∑m

j=1
1∑

i∈Rj
e

ˆβ
′
xi
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THE BRESLOW ESTIMATOR

Ẑ0(t) =
∑
T(j)≤t

1∑
i∈Rj

e
ˆβ
′
Xi

This is similar to Nelson-Aalen estimator.

Indeed, if there are no covariates, then β = 0 and we get
∑

Tj≤t
1

#Rj
,

which is the Nelson-Aalen estimator.

We can use the Breslow estimator to estimate R̂0(t) = e−Ẑ0(t).
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A KM-TYPE ESTIMATOR FOR R0(t)

R̂0(t) =
∏

j :T(j)≤t

(
1− e

ˆβ
′
xlj∑

i∈Rj
e
ˆβ
′
xi

)e− ˆβ
′
xlj

Note that for β = 0 we get the ordinary KM estimator:

R̂0(t) =
∏

j :T(j)≤t

(
1− 1

#Ri

)
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