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CENSORING

Lifetime data typically include censored data, meaning that:

some lifetimes are known to have occurred only within certain
intervals.

The remaining lifetimes are known exactly.

Categories of censoring:

right censoring

left censoring

interval censoring

Bo Lindqvist Slides 5 ()TMA4275 LIFETIME ANALYSIS 2 / 22



RIGHT CENSORING

Right censoring is the most common way of censoring. Different subtypes
of right censoring can be considered. A common way of presenting
right-censored data is as follows:

n units are observed, with potential i.i.d. lifetimes T1,T2, · · · ,Tn. For
each i , we observe a time Yi which is either the true lifetime Ti , or a
censoring time Ci < Ti , in which case the true lifetime is “to the right” of
the observed time Ci .

The observation from a unit is the pair (Yi , δi ) where the censoring
indicator δi is defined by

δi =

{
1 if Yi = Ti

0 if Yi = Ci , in which case it is known that Ti > Yi
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TYPE I CENSORING

n units put on test at time t = 0. Experiment stopped at time t = t0.
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GENERALIZED TYPE I CENSORING

Individuals enter the study at different times, and the terminal point of the
study is predetermined.

,
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TYPE II CENSORING

In Type II (right) censoring, the study continues until the failure of the
first r individuals, where r is some predetermined integer (r < n).

Usual application: Testing of equipment life, where all items are put on
test at the same time, and the test is terminated when r of the n items
have failed.

Advantage: It could take a very long time for all items to fail. Also, the
statistical treatment of Type II censored data is simpler because the joint
distribution of the order statistics is available.
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Type III CENSORING

This is a mix of Type I and Type II censoring. Choose both an end time t0
as for Type I censoring and an r < n as for Type II censoring. Stop the
experiment at time t0 or at the rth failure, whatever comes first.
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RANDOM CENSORING (TYPE IV CENSORING)

For each unit we define

Ti to be the potential lifetime
Ci to be the potential censoring time

where

Ti , Ci are independent random variables.

Then we observe the pair (Yi , δi ), where

Yi = min(Ti ,Ci )

δi =

{
1 if Ti ≤ Ci

0 if Ti > Ci

Example of use: Cancer treatment, with Ti being the time of death due to
this cancer; while Ci is the time of death of another cause, or an accident,
or migration, etc.
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INDEPENDENT CENSORING

Consider a situation where n individuals are followed from time t = 0. The
ith individual is followed until Yi = min(Ti ,Ci ), i.e. until either failure
(death) or censoring at time Ci .

The ith individual is said to be at risk at time t if t < Yi .

A sensoring scheme is said to satisfy the property of independent
censoring if, at any time t, the individuals that are at risk are
representative for the distribution of T in the sense that their probaility of
failing in a small time interval (t, t + h) is (in the limit as h tends to 0) is
z(t)h.

For example this would not be the case if individuals are censored because
they are supposed to fail very soon. (By considering them as censored
instead of failed could lead to a more optimistic lifetime estimate than the
correct one).

The censoring types we have considered so far all satisfy this independent
censoring property.
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NONPARAMETRIC ESTIMATION OF R(t)

We are interested in estimating the distribution of the lifetime T of some
equipment or the time to some given event in a medical context.

We have indicated how parametric models like exponential and Weibull
can be fitted to data.

Now we shall instead see how in particular R(t) can be estimated without
making parametric assumptions.

Thus, instead of having to restrict to estimation of one or two parameters,
we now have an infinite number of possible functions R(t) to choose from.
(Essentially, the only restriction is that it is decreasing, starts in 1 and
converges to 0 as t →∞.)
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NONPARAMETRIC ESTIMATION FOR NON-CENSORED DATA

In this case our observations are the exact failure times T1, . . . ,Tn,
assumed to be i.i.d. observations of a lifetime T .

Hence we can estimate R(t) = P(T > t) for a given t > 0 by the relative
proportion of lifetimes that exceed t:

R̂(t) =
number of Ti > t

n

This is called the empirical survivial function.

If we order the observations as T(1) < T(2) < · · · < T(n), then R̂(t) starts
at 1 for t = 0 and makes a downward jump of 1/n at T(1), a new
downward jump of 1/n at T(2), and so on until it jumps from 1/n to 0 at
T(n).
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EMPIRICAL SURVIVAL PLOT FOR BALL BEARING DATA
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CENSORED DATA: KAPLAN-MEIER ESTIMATOR FOR R(t)

Consider n individuals, where the ith individual has potential lifetime Ti

and potential censoring time Ci . We observe the pair (Yi , δi ), where

Yi = min(Ti ,Ci )

δi =

{
1 if Ti ≤ Ci

0 if Ti > Ci

Assume:

T1,T2, · · · ,Tn are independent and identically distributed with
common reliability function R(t).

The censoring mechanism satisfies the property of independent
censoring.

The estimator is constructed in the following.
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MAIN IDEA OF CONSTRUCTION

Assume first that time is measured on a discrete scale
u0 = 0 ≤ u1 ≤ u2 ≤ · · · , so that all Ti ,Ci ,Yi are among these.
Now suppose t = um and we want to compute (estimate) R(t).

R(t) = P(T > t)

= P(T > um)

= P(T > um ∩ T > um−1 ∩ · · · ∩ T > u2 ∩ T > u1 ∩ T > u0)

= P(T > u0) · P(T > u1 | T > u0) · P(T > u2 | T > u1)

· · ·P(T > ur | T > ur−1) · · ·P(T > um | T > um−1)

Idea: Estimate each factor P(T > ur | T > ur−1), from data (Yi , δi );
i = 1, · · · , n.
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CONSTRUCTION OF ESTIMATOR

Define:

nr = number at risk at time ur = number that can fail at ur ; counted
immediately before ur .

dr = number failing at ur (those with Y = ur , δ = 1)

cr = number censored at ur (those with Y = ur , δ = 0); assumed to
be censored right after ur , and by convention after all failures at ur

(in practice in the interval following ur )
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CONSTRUCTION OF ESTIMATOR

n0 = n

n1 = n0 − d0 − c0

· · ·
· · ·
nr = nr−1 − dr−1 − cr−1

Then estimate,

P(T > ur | T > ur−1) = 1− P(T = ur | T > ur−1) = 1− dr

nr
=

nr − dr

nr

& P(T > u0) = 1− P(T = u0 = 1− d0

n0
=

n0 − d0

n0
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THE FINAL KM-ESTIMATOR

It follows that R(t) = P(T > t) can be estimated by

R̂(t) =
n0 − d0

n0
.
n1 − d1

n1
· · · nr − dr

nr
· · · nm − dm

nm

Note that these factors are 1, whenever dr = 0. Thus

R̂(t) =
∏

all ur≤t
with dr≥1

nr − dr

nr

In practice we have continous time. But this can be approximated by
making the grid u1 < u2 < · · · finer and finer.

Thus in general the KM-estimator is given by:

If T(1) < T(2) < · · · , are the times with at least one failure, and ni , di are,
respectively, the number at risk and the number of failures at T(i), then

R̂(t) =
∏

i :T(i)≤t

ni − di

ni
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GREENWOOD’S FORMULA FOR VARIANCE OF THE

KM-ESTIMATOR

̂Var(R̂(t)) =
(
R̂(t)

)2 · ∑
T(i)≤t

di

ni (ni − di )

It can shown that for large n, R̂(t) is approximately normally distributed,

R̂(t) ≈ N(R(t), ̂SD(R̂(t)))

Thus an approximate 95% confidence interval can be obtained for each t
by

P
(
R̂(t)− 1.96 · ̂SD(R̂(t)) ≤ R(t) ≤ R̂(t) + 1.96 · ̂SD(R̂(t))

)
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HOW DOES MINITAB COMPUTE THE ESTIMATE FOR MTTF?

Recall thet MTTF =
∫∞
0 R(t)dt. Hence it seems natural to estimate

MTTF by M̂TTF =
∫∞
0 R̂(t)dt.

But - recall that

R̂(t) =
∏

T(i)≤t

ni − di

ni

If largest observed time is a failure time: the last factor is 0, so∫∞
0 R̂(t)dt is a finite number.

If largest observed time is censored: the last factor is ni−di
ni

> 0. So

the estimate R̂(t) is constant and positive from this time on, making∫∞
0 R̂(t)dt =∞.

But - MINITAB uses the common convention:

M̂TTF =

∫ largest observed time

0
R̂(t)dt

.
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KM-ESTIMATOR FOR CENSORED DATA
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KM-PLOT FOR THE CENSORED DATA
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KM-PLOT FOR THE CENSORED DATA
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