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CENSORED AND TRUNCATED DATA

@ An observation is right censored at y:
Unit is in our data, we know T > y.
Contribution to L: P(T > y) = R(y).

@ An observation is left censored at y:
Unit is in our data, we know T < y.
Contribution to L: P(T <y) = F(y).

@ An observation is right truncated at y:
Unit is in our data only if T < y. We wouldn't know about this unit
if T>y.
Contribution to L of observed failure at t:
ATIP(t < T < t+A|T <y) =~ f(t)/F(y).
@ An observation is left truncated at y:
Unit is in our data only if T > y. We wouldn’t know about this unit
if T<y.
Contribution to L of observed failure at t:
ATIP(t< T <t+A|T >y)=f(t)/R(y).
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EXAMPLES OF LEFT TRUNCATION

@ Ultrasonic inspection of material. Signal amplitude only trusted when
above limit y. Condition for being in the data setis T > y.

o Life data with pretest screening. Electronic component is burn-in
tested for 1000 hours. Only the ones that passed this test are
observed later. The number of components failing at burn-in is
unknown. Condition for being in the data set is T > 1000.

@ In a medical study it may happen that subjects with a lifetime less
than some threshold may not be observed at all. This is an example
of left truncation. This is different from left censoring, since for a
left censored observation, we know that the subject exists, but for a
truncated case, we may be completely unaware of the subject.

For example, in a follow-up health survey, a person who enters at age
y and dies at age T = t, will be treated as a left-truncated
observation since he/she was in our data only because T > y. The
contribution to the likelihood is hence f(t)/R(y).
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EXAMPLES OF RIGHT TRUNCATION

o Casting for automobile engine mounts. Pore size distribution below
10 microns only are recorded (other units are immediately discarded).
Condition for being in the data set is T < 10 microns.

@ In a study, one included individuals with AIDS diagnosis before July 1,
1986, and known date of HIV-infection (due to blood-transfusion).
Let T = time from HIV-infection to AIDS diagnosis for an individual.
Then the condition for being in the data set is that T < y where y is
time from HIV-infection of the individual until July 1, 1986.
Contribution to the likelihood is hence f(t)/F(y) for an individual
with T = t. (Kalbfleisch and Lawless, 1989)

T
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ANALYSIS OF LIFETIMES WITH COVARIATES

- SURVIVAL REGRESSION

Until now: Typically, n units observed, potential lifetimes
Ti,..., Tyiid. ~ R(t)
and we have right censored data:
(vi,0i); i=1,---,n
where y; is observation time and ¢; is censoring status for ith unit.

Often there exist more information which may help explain the lifetime -
called covariates or explanatory variables.

This means that data are (y;, d;, x;), where x; gives the values of one or
more covariates/explanatory variables.
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EXAMPLE: COMPUTER PROGRAM
- EXECUTION TIME vs SYSTEM LOAD

Computer data: 17 observations of the pair (T, x) (no censorings), where
T is time to complete a computationally intensive task, x is information
on load from the Unix uptime command.

Goal: Make predictions needed for scheduling subsequent steps in a
multi-step computational process.

Seconds (T) Load (x) | Seconds (T) Load (x)
123 2,74 110 ,60
704 5,47 213 2,10
184 2,13 284 3,10
113 1,00 317 5,86
94 ,32 142 1,18
76 31 127 57
78 51 96 1,10
98 29 111 1,89
240 .96
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COVARIATES/EXPLANATORY VARIABLES IN RELIABILITY

Useful covariates explain/predict why some units fail quickly and some
units survive a long time:

@ Continuous variables like stress, temperature, voltage, and pressure.

@ Discrete variables like number of hardening treatments or number of
simultaneous users of a system.

@ Categorical variables like manufacturer, design, and location.
Regression model relates failure time distribution to covariates

X = (Xq,...,Xk):
P(T <t)=F(t) = F(t;x)
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WHY REGRESSION MODELS IN RELIABILITY?

@ Want to find factors which explain the reliability of an item
o Want to exclude factors which do not influence the reliability
@ Obtain new knowledge about failure mechanisms

o Make better predictions for reliability of an item

Bo Lindqvist Slides 11 TMAA4275 LIFETIME ANALYSIS 9 /43



EXPLANATORY VARIABLES IN MEDICAL RESEARCH

A typical medical example would include explanatory variables, often called
prognostic factors or covariates, such as

@ treatment assignment (e.g., control (placebo) or treatment by new
medicine)
@ patient characteristics such as
e age at start of study
gender

o
e presence of other diseases at start of study
e blood measurements
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PLOT OF COMPUTER DATA - (x;, T;)
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PLOT OF COMPUTER DATA - (x;,In T;)
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COMPUTER DATA - MINITAB
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REGRESSION MODELING - COMPUTER DATA

First analysis of computer data:
Simple linear regression - well known from basic statistics courses:
T = Bo + fix+ E, where E ~ N(0,0) (error)

ie. T ~ N(ﬁo + B1x, (T)
Plots suggest that it's better to take log of the data as response:

InT =05+ pix+E, E~ N(0,o0)

and we can, after taking log of all the lifetimes, use ordinary simple
regression “as in basic course”. Now

InT ~ N(/BO +/81X7G)

which means that
T ~ lognormal(5y + f1x,0)
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MINITAB ANALYSIS - LOGNORMAL

MINITAB does this for us in Relibility -> Survival -> Regression.

Can choose lognormal, Weibull, log-logistic etc.

Regression with Life Data: T versus x

Response Variabhle: T

Censering Information Count
Uncensored value 17

Estimation Method: Maximum Likelihood
Distribution: Lognormal base e

Regression Table

Standard 95 0% Normal CI
Pradictor Ceef Error Z P Lower Upper
Intercept 4,4936 0,1112 40,39 0,000 4 2756 4,7116
® 0,25%075 0,04535 5,33 0,000 0,20069 0,38080
Scale 0,31247 0,05359 0,22327 0,43730

Log-Likelihood = -BS 498
Anderzon-Darling (adjusted) Goodness-of-Fit

Standardized Residuals = 0,8356; Cox-Snell Residuals = 0, 8170
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ESTIMATED MODEL - LOGNORMAL

In T = 4.4936 -+ 0.20075 x + 0.31247 Z,  Z ~ N(0,1)

~

Bo = 4.4936: "Intercept”
£1 = 0.29075: "x"
6 = 0.3147: " Scale”
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MINITAB SURVIVAL REGRESSION

We could have done the above analysis by ordinary linear regression using
In T as response, since there was no censoring.

But MINITAB survival regression does more:

@ can have other distributions than the normal

@ can have censored observations

Bo Lindqvist Slides 11 TMAA4275 LIFETIME ANALYSIS 17 / 43



PARAMETRIC SURVIVAL REGRESSION: MODEL

Model: For an observation unit with covariate value x (which we for
simplicity first assumes is one-dimensional), the lifetime T can be

represented as
InT =pBo+ Bix+oU

where U ~ N(0, 1) for lognormal, or has another standard distribution for
other families.

Recall for log-logation-scale families:
InT=p+oU

The new feature is hence that u depends on x. Thus the data are no
longer identically distributed.
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PARAMETRIC SURVIVAL REGRESSION: RIGHT CENSORED DATA

Data:
(}/1, 51)X1)a (y27 527X2)7 B (yna 6n; Xn)

Here (y;, 0;) are, as before, the observed time and censoring status for
unit i. Now in addition we have information on a covariate value x; for

each unit.

Model:

e InT; =0+ fixi+oU;;i=1,---,n, where xi,--- , X, are the
covariates, and Uy, -, U, are i.i.d., e.g., N(0,1), Gumbel(0, 1),
Logistic(0, 1), etc.

@ There may also be right censoring, so we observe only
Y; = min(T;, C;), where C; is a censoring time.

The extension from earlier implies estimation of 8y, (81,0 instead of earlier

W, o.
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LIKELIHOOD FUNCTION FOR REGRESSION DATA

We need the density and survival function of an observation (T, x):

w before

—N—
Int —(Bo + ﬁlx))i
o ot

f(t; /80751a U) = 1/}(

u before

—
(Bo + B1x)

o

Int —
R(t, ﬁ07/8170-) — 1 - W(
So likelihood is

)

L(Bo,ﬂl,o') :H 7HZ}(|0gyi - Bo _/lei)i_ H (1_w(|ogy,- — 50 — 51Xi))

g gy
i:d;=1 Yiisi=o

This is maximized w.r.t parameters, 5o, 51, o (MINITAB does it!)
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OBSERVED INFORMATION AND STANDARD ERRORS

_0%(Bo,fr,o)  (Bo,BL,o)  0%(Bo.p,0)

B2 28180861 , 0Bodc
3 By 6) = . _0%(Bo,f1,0) _ 9°U(Bo,P1,0)
o e e
0,01,0
B 002

inserted the estimated parameters. Further,
VarBo
~ ~ ~ _1 —— A
I(BO?ﬂlvo_) - : Var/Bl

Varo

where as usual the entries outside the diagonal are estimated covariances.
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ESTIMATES FOR LOGNORMAL MODEL FOR COMPUTER DATA

Recall from MINITAB output that maximum likelihood estimates for
lognormal model are:

(Bo, B1,6) = (4.49,0.290,0.312)

The inverse observed information matrix turns out to be

0.012  —0.0037 0
—0.0037  0.0021 0
0 0 0.0029

Thus SE for 31 is

—

SD(B;) = v/0.0021 = 0.046

and a standard confidence interval for 51 is hence
0.29 +1.96 - 0.046 = [0.20,0.38]

in accordance with the MINITAB output from earlier slide.
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PARMETRIC MULTIPLE SURVIVAL REGRESSION

In general we may have more than one covariate.

m
In T = o+ Bix1 + -+ Brxk +oU
= Bo+Bx+0oU
p1 x1
B2 X2
where B=1.1; x=| .
B Xk
With data from n units:
(Viy 07y X1is - -+ 5 Xki) or (vi, 0i,%;) for i =1,2, ..., n. Lifetimes satisfy:

InT; = Bo + Bixai + -+ + Buxii + o Uj

= fo + B'x; + o U;
where Uy, U, ..., U, are i.i.d ~ W. We can extend the observed
information matrix to (Bg,- - . 0k, 0
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MODEL CHECKING WITH PROBABILTY PLOTS

Recall model:
InT; = Bo + B xi +oU

which implies
In T; — Bo — B'x;
o
Recall also that Uy, Us, -, U, are i.i.d ~ W, and define standardized
residuals (S-Residuals in MINITAB) by

U=

U:in*ﬁ:O*Bxi

1
g

where Y; are the observed times, either T; or C;.

Now the U; should behave like a right censored set from the standard
distribution, N(0,1), Gumbel(0,1), Logistic(0,1) etc.

MINITAB plots the U; in the ordinary probability plot for these
distributions (“Probability Plot for SResids”)
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STANDARD RESIDUALS: LOGNORMAL MODEL FOR

COMPUTER DATA
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COX-SNELL RESIDUALS

Recall: If T has survival function R(t) and cumulative hazard Z(t), then
Z(T)=—=InR(T) ~ expon(1)
Application here: Since In T; = 5y + B/x,' + o U;, we have

RTi(t):l_w(mt—ﬁg—ﬁxi)

and hence

i=—InRr(T;)=—In [1 - \U(In Ti _io = X'.)} ~ expon(1)

Cox-Snell residuals are now defined as
. nY;—fo— B xi
V= —tn [1-w(> b ﬁx’)]
ag

=—1In [1 — W (standardized residuals)}

which should behave as a set of right-censored observations from expon(1)

if the model is correctly specitfied.
26 / 43
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COX-SNELL RESIDUALS IN MINITAB

Recall definition:

~

= —In [1—\1;('”’/’_@0_&,’(")}

= —In [1 — \U(standardized residuals)}

@ MINITAB puts the Cox-Snell residuals V; into the usual exponential
probability plot.( “CSResids").

@ Cox-Snell residuals are always exponentially distributed, while
standardized residuals are distributed as the corresponding W of the

log-location-scale family.
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COX-SNELL RESIDUALS: LOGNORMAL MODEL FOR

COMPUTER DATA

Probability Plot for CSResids Comp Data Lognormal
Expanertial - 95% CI
Complete Data - ML Estimates
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SPECIAL CASE: WEIBULL REGRESSION

Recall:

N A/
InY; — Bo — B x;

g

\A/,-:—In[l—\ll( )}:—ln[l_w(gi)}

where the U,- are the standardized residuals.
For the Weibull-distribution we have W(u) = G(u) =1 — e, so
—In(1 = G(u)) =In(e™¢") = &

Thus Cox-Snell residuals are

A

V, = eU,- — eStandardlzed residual

(Not so nice connection between SResid og CSResid for lognormal, e.g.)
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EXAMPLE: SUPERALLOY DATA (Nelson, 1990)

Row Pseudo- k-Cycles Status (1=failed, O=censored)
stress
s Y
80,3 211,629
80,6 200,027
80,8 57,923
84,3 155,000
85,2 13,949
85,6 112,968
85,8 152,680
86,4 156,725
86,7 138,114
10 87,2 56,723
11 87,3 121,075
12 89,7 122,372
13 91,3 112,002
14 99,8 43,331
15 100,1 12,076
16  100,5 13,181
17 113,0 18,067
18 114,8 21,300
19  116,4 15,616

DATA DESCRIPTION:

Low-Cycle Fatigue Life of Nickel-Base
Superalloy Specimens

(in units of thousands of cycles

to failure).

Data from Nelson (1990):

SUPER ALLOY DATA

WD WN -

PR RRPPRPRPRPPRrERERPRPPRPPRPPRPPRPORRPRPORPRPORRLRORREQO

21 118,4 8,489
22 118,6 12,434
23 120,4 9,750
24 142,56 11,865
25 144,65 6,705
26  145,9 5,733
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SUPERALLOY DATA, PLOT (s,Y)
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SUPERALLOY DATA, PLOT (Ins,InY)
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SUPERALLOY DATA, MODEL 1

T = thousands of cycles to failure
s = pseudo-stress
x = Ins = log pseudo-stress.

Model 1: In T = By + S1x + oW, where W is standard Gumbel.
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SUPERALLOY DATA, MODEL 1 - MINITAB

Model 1: In T = By + fix + o W,

Censoring Information Count
Uncensored value 22
Right censored walue 4

Censoring value: C =0

Estimation Method: Maximum Likelihood
Distribution: Weibull

Regression Table

Standard 95,0% Normal CI
Predictor Coef Error zZ P Lower Upper
Intercept 31,432 2,008 15,65 0,000 27,496 35,368
x -5,9600 0,4329 -13,77 0,000 -6,8085 -5,1116
Shape 2,2105 0,389%4 1,5651 3,1221
Log-Likelihood = -97,155
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SUPERALLOY DATA, MODEL 2 - MINITAB

Model 2: In T = By + fix + Box® + oW,

Censoring Information Count
Uncensored value 22
Right censored value 4

Censoring value: C = 0

Estimation Method: Maximum Likelihood
Distribution: Weibull

Regression Table

Standard 95,0% Normal CI
Predictor Coef Error 4 P Lower Upper
Intercept 217,61 62,13 3,50 0,000 95,83 339,39
x -85,52 26,55 -3,22 0,001 -137,55 -33,49
x¥*x 8,483 2,831 3,00 0,003 2,934 14,032
Shape 2,6685 0,4777 1,8789 3,7900
Log-Likelihood = -93,382
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SUPERALLOY DATA, ANALYSIS

Model 2 is an example of polynomial survival regression:

X2
N ~=
InT =80+ 17 x +62 x> +oW

Recall values of log likelihoods:

@ Model with x only:
-97.155

e Model with x and x?2:
-03.382

Thus 2(difference of log-likelihoods) = 7.546 (significant at ov = 0.006)
Model 1: In T = 31.432 — 5.96Ins + 55t = W

Model 2: In T = 217.61 — 85.52Ins + 8.483(In 5)? + 5¢bee W

W ~ Gumbel(0, 1)
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PERCENTILES IN SURVIVAL REGRESSION

Recall that for log-location-scale families:
Int, = p+ oV (p)
Thus, for an individual with covariate vector x,
Intp(x) = Bo + B'x+ oV1(p)
so for Weibull regression:
Inty(x) = fo+ B'x + é In(—In(1 — p))

MINITAB computes these for given values of p and x
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SUPERALLOY DATA, PERCENTILES

Regression with Life Data: Y versus x

Response Variable: Y

Table of Percentiles

Standard 95,0% Normal CI

Percent s x Percentile Error Lower Upper
10 80 4,3820 133,3747 34,0579 80,8565 220,0048
10 100 4,6052 16,7928 3,4263 11,2577 25,0494
10 120 4,7875 5,7830 1,2364 3,8034 8,7929
10 140 4,9416 3,6458 0,8760 2,2766 5,8386
50 80 4,3820 270,1879 56,0580 179,9121 405,7621
50 100 4,6052 34,0186 4,3027 26,5494 43,5891
50 120 4,7875 11,7151 1,5950 8,9713 15,2980
50 140 4,9416 7,3856 1,2828 5,2547 10,3807
90 80 4,3820 423,6933 90,4646 278,8097 643,8659
90 100 4,6052 53,3461 6,8162 41,5281 68,5272
S0 120 4,7875 18,3709 2,4567 14,1351 23,8760
90 140 4,9416 11,5817 1,9813 8,2824 16,1952
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SUPERALLOY DATA, COMPUTATION OF PERCENTILES

Example: p=0.90, s =80, x = Ins = 4.3820, x?> =
4.38202, In(—In(1 —0.90)) = 0.8340

Then
~ 2 1
tp(x) _  217.61-8552:4.3820+8.483-4.3820°+ 5 55- -0.8340
_  6.0638
430.02

(MINITAB gives 423.6933, probably rounding errors?)
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SUPERALLOY DATA, PLOT OF PERCENTILES

(From Meeker and Escobar)

Log-Quadratic Weibull Regression Model with
Constant (5 =1/0) Fit to the Fatigue Data
log[tp(x)] = fix) + bk (p)d, @ = log(pseudo-stress)
o= 30 + 31;1: + 32:132

Thousands of Cycles

T T T T T
&0 80 100 120 160
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SUPERALLOY DATA, STANDARDIZED RESIDUALS

Probability Plot for SResids of Y
Smallest Extreme Value - 95% CI
Censaring Column in C - ML Estimates
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SUPERALLOY DATA, COX-SNELL RESIDUALS

Probability Plot for CSResids of Y
Expanential - 95% CI
Censoring Calumn in C - ML Estimates
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SUPERALLOY DATA, COX-SNELL VS. MEDIAN RESPONSE

CS Residual
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Scatterplot of CS residual vs. estimated median response
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The CS residuals should ideally be equally distributed for varying values of
median response. Perhaps OK?
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