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CENSORED AND TRUNCATED DATA

An observation is right censored at y :
Unit is in our data, we know T > y .
Contribution to L: P(T > y) = R(y).

An observation is left censored at y :
Unit is in our data, we know T < y .
Contribution to L: P(T < y) = F (y).

An observation is right truncated at y :
Unit is in our data only if T ≤ y . We wouldn’t know about this unit
if T > y .
Contribution to L of observed failure at t:
∆−1P(t ≤ T ≤ t + ∆|T ≤ y) ≈ f (t)/F (y).

An observation is left truncated at y :
Unit is in our data only if T ≥ y . We wouldn’t know about this unit
if T < y .
Contribution to L of observed failure at t:
∆−1P(t ≤ T ≤ t + ∆|T ≥ y) ≈ f (t)/R(y).
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EXAMPLES OF LEFT TRUNCATION

Ultrasonic inspection of material. Signal amplitude only trusted when
above limit y . Condition for being in the data set is T > y .

Life data with pretest screening. Electronic component is burn-in
tested for 1000 hours. Only the ones that passed this test are
observed later. The number of components failing at burn-in is
unknown. Condition for being in the data set is T > 1000.

In a medical study it may happen that subjects with a lifetime less
than some threshold may not be observed at all. This is an example
of left truncation. This is different from left censoring, since for a
left censored observation, we know that the subject exists, but for a
truncated case, we may be completely unaware of the subject.

For example, in a follow-up health survey, a person who enters at age
y and dies at age T = t, will be treated as a left-truncated
observation since he/she was in our data only because T ≥ y . The
contribution to the likelihood is hence f (t)/R(y).
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EXAMPLES OF RIGHT TRUNCATION

Casting for automobile engine mounts. Pore size distribution below
10 microns only are recorded (other units are immediately discarded).
Condition for being in the data set is T < 10 microns.
In a study, one included individuals with AIDS diagnosis before July 1,
1986, and known date of HIV-infection (due to blood-transfusion).
Let T = time from HIV-infection to AIDS diagnosis for an individual.
Then the condition for being in the data set is that T ≤ y where y is
time from HIV-infection of the individual until July 1, 1986.
Contribution to the likelihood is hence f (t)/F (y) for an individual
with T = t. (Kalbfleisch and Lawless, 1989)
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ANALYSIS OF LIFETIMES WITH COVARIATES

- SURVIVAL REGRESSION

Until now: Typically, n units observed, potential lifetimes

T1, . . . ,Tn i.i.d. ∼ R(t)

and we have right censored data:

(yi , δi ); i = 1, · · · , n

where yi is observation time and δi is censoring status for ith unit.

Often there exist more information which may help explain the lifetime -
called covariates or explanatory variables.

This means that data are (yi , δi , xi ), where xi gives the values of one or
more covariates/explanatory variables.
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EXAMPLE: COMPUTER PROGRAM

- EXECUTION TIME vs SYSTEM LOAD

Computer data: 17 observations of the pair (T , x) (no censorings), where
T is time to complete a computationally intensive task, x is information
on load from the Unix uptime command.

Goal: Make predictions needed for scheduling subsequent steps in a
multi-step computational process.

Seconds (T) Load (x) Seconds (T) Load (x)

123 2,74 110 ,60
704 5,47 213 2,10
184 2,13 284 3,10
113 1,00 317 5,86

94 ,32 142 1,18
76 ,31 127 ,57
78 ,51 96 1,10
98 ,29 111 1,89

240 ,96
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COVARIATES/EXPLANATORY VARIABLES IN RELIABILITY

Useful covariates explain/predict why some units fail quickly and some
units survive a long time:

Continuous variables like stress, temperature, voltage, and pressure.

Discrete variables like number of hardening treatments or number of
simultaneous users of a system.

Categorical variables like manufacturer, design, and location.

Regression model relates failure time distribution to covariates
x = (x1, . . . , xk):

P(T ≤ t) = F (t) = F (t; x)
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WHY REGRESSION MODELS IN RELIABILITY?

Want to find factors which explain the reliability of an item

Want to exclude factors which do not influence the reliability

Obtain new knowledge about failure mechanisms

Make better predictions for reliability of an item
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EXPLANATORY VARIABLES IN MEDICAL RESEARCH

A typical medical example would include explanatory variables, often called
prognostic factors or covariates, such as

treatment assignment (e.g., control (placebo) or treatment by new
medicine)

patient characteristics such as

age at start of study
gender
presence of other diseases at start of study
blood measurements
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PLOT OF COMPUTER DATA - (xi ,Ti)
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PLOT OF COMPUTER DATA - (xi , lnTi)
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COMPUTER DATA - MINITAB
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REGRESSION MODELING - COMPUTER DATA

First analysis of computer data:

Simple linear regression - well known from basic statistics courses:

T = β0 + β1x + E , where E ∼ N(0, σ) (error)

i.e. T ∼ N(β0 + β1x , σ)
Plots suggest that it’s better to take log of the data as response:

ln T = β0 + β1x + E , E ∼ N(0, σ)

and we can, after taking log of all the lifetimes, use ordinary simple
regression “as in basic course”. Now

ln T ∼ N(β0 + β1x , σ)

which means that
T ∼ lognormal(β0 + β1x , σ)
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MINITAB ANALYSIS - LOGNORMAL

MINITAB does this for us in Relibility -> Survival -> Regression.

Can choose lognormal, Weibull, log-logistic etc.
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ESTIMATED MODEL - LOGNORMAL

ln T = 4.4936 + 0.29075 x + 0.31247 Z , Z ∼ N(0, 1)

β̂0 = 4.4936: ”Intercept”
β̂1 = 0.29075: ”x”
σ̂ = 0.3147: ”Scale”
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MINITAB SURVIVAL REGRESSION

We could have done the above analysis by ordinary linear regression using
ln T as response, since there was no censoring.

But MINITAB survival regression does more:

can have other distributions than the normal

can have censored observations
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PARAMETRIC SURVIVAL REGRESSION: MODEL

Model : For an observation unit with covariate value x (which we for
simplicity first assumes is one-dimensional), the lifetime T can be
represented as

ln T = β0 + β1x + σU

where U ∼ N(0, 1) for lognormal, or has another standard distribution for
other families.

Recall for log-logation-scale families:

ln T = µ+ σU

The new feature is hence that µ depends on x . Thus the data are no
longer identically distributed.
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PARAMETRIC SURVIVAL REGRESSION: RIGHT CENSORED DATA

Data:
(y1, δ1, x1), (y2, δ2, x2), . . . , (yn, δn, xn)

Here (yi , δi ) are, as before, the observed time and censoring status for
unit i . Now in addition we have information on a covariate value xi for
each unit.

Model:

ln Ti = β0 + β1xi + σUi ; i = 1, · · · , n, where x1, · · · , xn are the
covariates, and U1, · · · ,Un are i.i.d., e.g., N(0, 1), Gumbel(0, 1),
Logistic(0, 1), etc.

There may also be right censoring, so we observe only
Yi = min(Ti ,Ci ), where Ci is a censoring time.

The extension from earlier implies estimation of β0, β1,σ instead of earlier
µ, σ.
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LIKELIHOOD FUNCTION FOR REGRESSION DATA

We need the density and survival function of an observation (T , x):

f (t;β0, β1, σ) = ψ(
ln t −

µ before︷ ︸︸ ︷
(β0 + β1x)

σ
)

1

σt

R(t;β0, β1, σ) = 1−Ψ(
ln t −

µ before︷ ︸︸ ︷
(β0 + β1x)

σ
)

So likelihood is

L(β0, β1, σ) =
∏

i :δi=1

ψ
( log yi − β0 − β1xi

σ

) 1

σyi
·
∏

i :δi=0

(
1−Ψ

( log yi − β0 − β1xi
σ

))

This is maximized w.r.t parameters, β0, β1, σ (MINITAB does it!)
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OBSERVED INFORMATION AND STANDARD ERRORS

I (β̂0, β̂1, σ̂) =


−∂2`(β0,β1,σ)

∂β2
0

−∂2`(β0,β1,σ)
∂β0∂β1

−∂2`(β0,β1,σ)
∂β0∂σ

· −∂2`(β0,β1,σ)
∂β2

1
−∂2`(β0,β1,σ)

∂β1∂σ

· · −∂2`(β0,β1,σ)
∂σ2


inserted the estimated parameters. Further,

I (β̂0, β̂1, σ̂)−1 =

V̂ar β̂0 · ·
· V̂ar β̂1 ·
· · V̂ar σ̂


where as usual the entries outside the diagonal are estimated covariances.
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ESTIMATES FOR LOGNORMAL MODEL FOR COMPUTER DATA

Recall from MINITAB output that maximum likelihood estimates for
lognormal model are:

(β̂0, β̂1, σ̂) = (4.49, 0.290, 0.312)

The inverse observed information matrix turns out to be 0.012 −0.0037 0
−0.0037 0.0021 0

0 0 0.0029


Thus SE for β̂1 is

ŜD(β̂1) =
√

0.0021 = 0.046

and a standard confidence interval for β1 is hence

0.29± 1.96 · 0.046 = [0.20, 0.38]

in accordance with the MINITAB output from earlier slide.
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PARMETRIC MULTIPLE SURVIVAL REGRESSION

In general we may have more than one covariate.

ln T =

µ︷ ︸︸ ︷
β0 + β1x1 + · · ·+ βkxk +σU

= β0 + β
′
x + σU

where β =


β1
β2
...
βk

 ; x =


x1
x2
...

xk


With data from n units:
(yi , δi , x1i , · · · , xki ) or (yi , δi , xi ) for i = 1, 2, . . . , n. Lifetimes satisfy:

ln Ti = β0 + β1x1i + · · ·+ βkxki + σUi

= β0 + β
′
xi + σUi

where U1,U2, . . . ,Un are i.i.d ∼ Ψ. We can extend the observed
information matrix to (β0, · · · , βk , σ)
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MODEL CHECKING WITH PROBABILTY PLOTS

Recall model :
ln Ti = β0 + β

′
xi + σUi

which implies

Ui =
ln Ti − β0 − β

′
xi

σ

Recall also that U1,U2, ·,Un are i.i.d ∼ Ψ, and define standardized
residuals (S-Residuals in MINITAB) by

Ûi =
ln Yi − β̂0 − β̂

′
xi

σ̂

where Yi are the observed times, either Ti or Ci .

Now the Ûi should behave like a right censored set from the standard
distribution, N(0, 1), Gumbel(0,1), Logistic(0,1) etc.

MINITAB plots the Ûi in the ordinary probability plot for these
distributions (“Probability Plot for SResids”)
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STANDARD RESIDUALS: LOGNORMAL MODEL FOR

COMPUTER DATA
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COX-SNELL RESIDUALS

Recall: If T has survival function R(t) and cumulative hazard Z (t), then
Z (T ) = − ln R(T ) ∼ expon(1)

Application here: Since ln Ti = β0 + β
′
xi + σUi , we have

RTi
(t) = 1−Ψ

( ln t − β0 − β
′
xi

σ

)
and hence

Vi ≡ − ln RTi
(Ti ) = − ln

[
1−Ψ

( ln Ti − β0 − β
′
xi

σ

)]
∼ expon(1)

Cox-Snell residuals are now defined as

V̂i = − ln
[
1−Ψ

( ln Yi − β̂0 − β̂
′
xi

σ̂

)]
= − ln

[
1−Ψ

(
standardized residuals

)]
which should behave as a set of right-censored observations from expon(1)
if the model is correctly specified.
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COX-SNELL RESIDUALS IN MINITAB

Recall definition:

V̂i = − ln
[
1−Ψ

( ln Yi − β̂0 − β̂
′
xi

σ̂

)]
= − ln

[
1−Ψ

(
standardized residuals

)]

MINITAB puts the Cox-Snell residuals V̂i into the usual exponential
probability plot.(“CSResids”).

Cox-Snell residuals are always exponentially distributed, while
standardized residuals are distributed as the corresponding Ψ of the
log-location-scale family.
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COX-SNELL RESIDUALS: LOGNORMAL MODEL FOR

COMPUTER DATA
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SPECIAL CASE: WEIBULL REGRESSION

Recall:

V̂i = − ln
[
1−Ψ(

ln Yi − β̂0 − β̂
′
xi

σ̂
)
]

= − ln
[
1−Ψ(Ûi )

]
where the Ûi are the standardized residuals.

For the Weibull-distribution we have Ψ(u) = G (u) = 1− e−eu , so

− ln(1− G (u)) = ln(e−eu) = eu

Thus Cox-Snell residuals are

V̂i = eÛi = eStandardized residual

(Not so nice connection between SResid og CSResid for lognormal, e.g.)
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EXAMPLE: SUPERALLOY DATA (Nelson, 1990)
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SUPERALLOY DATA, PLOT (s,Y )
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SUPERALLOY DATA, PLOT (ln s, lnY )
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SUPERALLOY DATA, MODEL 1

T = thousands of cycles to failure
s = pseudo-stress
x = ln s = log pseudo-stress.

Model 1: ln T = β0 + β1x + σW , where W is standard Gumbel.
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SUPERALLOY DATA, MODEL 1 - MINITAB

Model 1: ln T = β0 + β1x + σW ,
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SUPERALLOY DATA, MODEL 2 - MINITAB

Model 2: ln T = β0 + β1x + β2x2 + σW ,
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SUPERALLOY DATA, ANALYSIS

Model 2 is an example of polynomial survival regression:

ln T = β0 + β1

x1︷︸︸︷
x +β2

x2︷︸︸︷
x2 +σW

Recall values of log likelihoods:

Model with x only:
-97.155

Model with x and x2:
-93.382

Thus 2(difference of log-likelihoods) = 7.546 (significant at α = 0.006)

Model 1: ln T = 31.432− 5.96 ln s + 1
2.2105W

Model 2: ln T = 217.61− 85.52 ln s + 8.483(ln s)2 + 1
2.6685W

W ∼ Gumbel(0, 1)
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PERCENTILES IN SURVIVAL REGRESSION

Recall that for log-location-scale families:

ln tp = µ+ σΨ−1(p)

Thus, for an individual with covariate vector x,

ln tp(x) = β0 + β
′
x + σΨ−1(p)

so for Weibull regression:

ln tp(x) = β0 + β
′
x +

1

α
ln(− ln(1− p))

MINITAB computes these for given values of p and x
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SUPERALLOY DATA, PERCENTILES
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SUPERALLOY DATA, COMPUTATION OF PERCENTILES

Example: p = 0.90, s = 80, x = ln s = 4.3820, x2 =
4.38202, ln(− ln(1− 0.90)) = 0.8340

Then

t̂p(x) = e217.61−85.52·4.3820+8.483·4.38202+ 1
2.6685

·0.8340

= e6.0638

= 430.02

(MINITAB gives 423.6933, probably rounding errors?)
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SUPERALLOY DATA, PLOT OF PERCENTILES

(From Meeker and Escobar)
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SUPERALLOY DATA, STANDARDIZED RESIDUALS
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SUPERALLOY DATA, COX-SNELL RESIDUALS
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SUPERALLOY DATA, COX-SNELL VS. MEDIAN RESPONSE

The CS residuals should ideally be equally distributed for varying values of
median response. Perhaps OK?
Bo Lindqvist Slides 11 ()TMA4275 LIFETIME ANALYSIS 43 / 43


