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WEIBULL REGRESSION

Special case of log-location-scale-survival-regression models.

Recall: If T ~ Weibull(6, «), then by definition

R(t) = e (°
a—1
2(t) = “’;a — afoo

InT

1
In§ + &W, where W ~ Gumbel(0, 1)

Weibull regression model for a lifetime T and corresponding covariate
vector Xx:

1 / 1
InT =00+ bix1+ -+ Bxx+—W=06+08x+—W
«a —— «
Iné@ In@

Thus § = ePotBixat+Bixi = 6504_[3')(
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PROPORTIONAL HAZARDS PROPERTY

Thus for Weibull regression for (T, x),
T ~ Weibull(efotPrat-+8ixc ),

and hence the hazard rate function is
Z(t, X) = a(eﬁ0+/81X1+"'+Bka)—ata_]_
= Oée_aﬁo ta_l .e_aﬂlxl—aﬂQXQM—aﬁka
S——r
zo(t)
7(t) - e

= Zo(t) B X
= zo(t) - g(x)

Thus: The hazard rate is a product of one factor, zy(t), which is a

function of t (and not of x), and one which is function of x (and not of t).
This property is called the Proportional Hazards Property. Why?

(See next slide).
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PROPORTIONAL HAZARDS PROPERTY (CONT.)

Recall that z(t; x) = zp(t) - g(x). Consider two individuals with covariate
vectors x() and x(?):
z(t:xM)  g(xM)
2(6:x) ~ g(x®)

(%)

Thus )
Ly 8(xY) e
Z(t,x( )) = mZ(t, X( ))

so the hazard rate functions are proportional as functions of t, with
proportionality factor equal to g(x(1))/g(x().

Thus: The Weibull regression model has the proportional hazards property.
BUT it can be shown that no other log-location-scale-survival-regression
model has the property.

(%) is called the relative risk for a “person” with covariate x(1) relative to
a “person” with covariate x(®.
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COX REGRESSION MODEL

Sir David Cox, in his famous paper from 1972 suggested to use the model

z(t; x) _ Zo(t)eﬁ1X1+52X2+'"+ﬂka

Here zp(t) can be any positive function of t (i.e. any nonparametric
hazard rate function). Because the (i, ... 3k are ordinary parameters, the
model is said to be semi-parametric.

Interest is mainly in 81, -, k.

How to interpret (3;7 Suppose an item has covariate vector

x = (x1,---,xk), s0 z(t; x) = zo(t)ePrathret-+Bx  Syppose then that
x; (e.g. temperature) is increased by 1 unit, so
Xnew = (X1, -+ ,xi +1,--+ ,x). Then

z(t; Xnew) = z(t;x) - ebi

Thus: e is the factor with which the hazard is multiplied if we increase x;
by 1 unit.
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EXAMPLE - SMOKING OR NOT SMOKING

Suppose that the first component, xi, of x is either 0 or 1:

@ x3 = 0 if person is not smoking.

@ x; = 1 if person is smoking.

Then e’ is the multiplicative effect on hazard rate caused by going from
non-smoking to smoking, called the relative risk for a smoker.

In general: e is called the relative risk of covariate #i.
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ESTIMATION IN COX MODEL

Data: (y,-, i, X,'), i=1,...,n
Model: z(t;x) = zo(t)efB X
Let T(1) < T(2) < -+ < T(;) be the observed failure times.

| ] IR } 5
0 Ty Ty T
Atrisk R, Atrisk: Ry Atrisk: Ry
Failing: No.(; Failing: No. ¢, Failing No. &
Need to know
@ who are at risk at time T(;)? Denote these R; C {1,2,...,n}

e who fails at T(j? Say, this is individual /; € R;.
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COX' PARTIAL LIKELIHOOD FOR 3

I { } csses } S
0 Ty To) To)
Atrisk: R, Atrisk: R, Atrisk: R
Failing: No. ¢, Failing: No. ¢, Failing No. &

Cox noted that since zy(t) is completely unknown, the lengths of times
between failures are not relevant for estimation of 3.

Cox’ partial likelihood is essentially the likelihood of the observed
ORI %
L(B)=P(Li=t1,Lo =100, -, L = ¥k)

where L; is the number of the individual that fails at time T;).

Cox computed this as a product of the relevant probabilities at each failure

time.
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DERIVATION OF COX" PARTIAL LIKELIHOOD

At Ty there is a competition between all individuals in R;, so we need to
find, for each failure time T(j),

P(¢; fails at T | a unit in R; fails at TU))
P(EJ fails at T(J)) - P(KJ fails in (T(_])? T(_]) + h))
P(a unit in R; fails at T;) - P(a unit in R; fails in (T(;), Ty + h))
20(T)e” ¥ - b A,

Z,ER ZO( ) ﬁ Xi - ZieRj e'glxi

Q

SO

which is Cox' partial likelihood.

Bo Lindqvist Slides 12 TMAA4275 LIFETIME ANALYSIS 10 / 48



ESTIMATION OF B

The log partial likelihood is ¢(3) = In L(3). The maximum partial
likelihood estimate of 3 is found by solving

ol(B) .
=0;i=1,---,k
B
giving B = (Bl,ﬁg, e ,Bk), and in the same way as for parametric
regression models,
VarBAl

17Y(3) = COV(/B:ﬁAz) Var s

VarﬁAk

Bo Lindqvist Slides 12 TMAA4275 LIFETIME ANALYSIS 11 /48



TIES? USE THE PETO-BRESLOW PARTIAL LIKELIHOOD

Assume d; units fail at T;). Peto-Breslow’s partial likelihood:

L(B) = ;
J'l_[l (ZieRj e'B Xi)(#

where s; is sum of x; for the units that fail at T;).

Essentially, we use Cox’ partial likelihood by making an ordinary product
for each failed unit, but we let all units that fail at the same time have the
same risk set.
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A SIMPLE EXAMPLE

Model: z(t;x) = zo(t)e®* (a single covariate, x).
Data: n=7,r=3

iy xi| 9
1 5112 | 0
2| 10]10] 1 i [ Ty R |
3| 40| 3|0 1| 10 {2,3,4,5,6,7} | 2
4| 80| 5|0 2 | 120 (56,7} | 5
50120 3] 1 3 | 400 6,7} | 6
6 | 400 411
7 | 600 110
10 3 4
1(s) = o S

el08 | €38 1 58 1 €38 1 40 1 e 38 t 4P 1 e e4F  ef
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SIMPLE EXAMPLE: COX" PARTIAL LIKELIHOOD

Bo Lindqvist

0251 _{/ﬁ \

021 / N
0.15
I
o1 |
|

nos/

0

=

Maximum likelihood estimate: 3 = 0.765.
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SIMPLE EXAMPLE: COX"' LOG PARTIAL LIKELIHOOD

s TN
/ N
-2
-254
]
-3/
II
)
|
II
i
-35
0 0's 1 15 2 2’5 K] 35
b

Maximum likelihood estimate: 3 = 0.765.
95% likelihood confidence interval: (0.1, 3.2).

Bo Lindqvist Slides 12 TMAA4275 LIFETIME ANALYSIS 15 / 48



LIKELIHOOD CONFIDENCE INTERVALS AND TESTING

Likelihood theory holds for the partial likelihood
W(3) = 2@(3) —U(B)) ~ X% if 3 is true value.

Thus we can construct the “1.92-Confidence Interval”, i.e. finde the set

~

{B:4(B)) > ¢(B) — 1.92}. (See previous slide, where the cut-off level is
—1.35-1.92 =-3.27))

We can also test, e.g., Hy : 5 = 0 versus H; : 8 # 0 by using that
W =2(¢(B) — £(0)) ~ x3

under the null hypothesis, and reject Hp if this becomes too big (larger
than 3.84 for 5% significance level).

In example: W =2(—1.35 — (—3.45)) = 2-2.10 = 4.2, so we reject Hp at
5% level. We could also conclude this from the confidence interval, since 0
is not in the confidence interval (0.1, 3.2).
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WEIBULL REGRESSION WITH SIMPLE EXAMPLE

Distribution: Weibull

Relationship with accelerating variable(s): Linear

Regression Table

Standard 55,0% Normal CI
Predictor Coef Erroxr zZ P Lowexr Upper
Intercept 7,58636 0,548225 13,84 0,000 &,51185 8,66087
x -0,468235 0,0842830 -5,56 0,000 -0,633427 -0,303044
Shape 2,05563 0,8721e° 0,894543 4,721e7

Log-Likelihood = -17,450

4 c1 Cc2 c3 c4 C5 Cé Cc7 cs
Y X d
1 5 12 0
2 10 10 1
3 40 3 0
4 80 5 0
5 120 3 1
6 400 4 1
7 600 1 0
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COMPARISON COX VS.WEIBULL

Estimated model, Weibull: In T = 7.586 — 0.468x + (1/2.056) W
Estimated model, Cox: z(t; x) = Zo(t)eo‘765x

Recall from earlier slide:

Beox = —Clweib * Bueib
In the example we estimate the right hand side by
—2.056 - (—0.468) = 0.96 while the left hand side is estimated by 0.765.

This seems to be OK, given that there are very few failures, and given the
following fact:

The Cox-estimate for 3 does not use the observed times, while the Weibull
estimates use them (a lot).
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USE OF COX REGRESSION TO COMPARE TWO GROUPS
Example from book by Ansell and Phillips

Table 3.2. Lifetimes (in cycles) of sodium sulphur batteries

Batch 1 164 164 218 230 263 467 538 6389 669
917 1148 16781678+ 1678416784

Batch 2 76 82 210 315 385 412 491 504 522
6464+ 678 770 884 1131 1446 1824 1827 2248
2385 3077

Note: Lifetimes with + are right censored observations, not failures.
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BATTERY DATA

There are altogether n = 15 + 20 = 35 observations.
Let x = 0 for Batch 1, x = 1 for Batch 2.

Now x is a discrete covariate (categorical). The Cox model is
z(t; x) = zo(t)e?, so:

e for Batch 1: z(t;0) = z(t)
o for Batch 2 : z(t;1) = zy(t)e”

Cox’ partial likelihood is easy to write down here (but note tied failures at
time 164, so Peto-Breslow should be used at that time). For the other
times, the contribution at T(j) is

e’8 Xt _ 1 if failure in Batch 1, € if failure in Batch 2
Z.GR oB'xi  Fat risk in Batch 1+ e - #at risk in Batch 2
ieR;

and Cox’ likelihood is the product of these!
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RESULTS - BATTERY DATA

Maximum partial likelihood estimate: B = —0.0888

(solve 82(5) =0, where ¢ is Cox' log partial likelihood)

Further, computation of Var(ﬂA) (—=¢"(3))~1, and taking the square root
3) = 0.4034.

gives the standard error SD(

So the standard 95% confidence interval for 3 is —0.0888 = 1.96 - 0.4034
= (—0.879,0.702).

To test Hy : B = O versus Hy : 8 #0
use W(0) = 2(¢(3) — £(0)) ~ x2 under Hy

2(—81.238 — (—81.262)) = 0.048 so do not reject at any reasonable
significance level!

Note that we could also use the logrank test to test these hypotheses, or
look at KM-plots (next slide).
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BATTERY DATA: WEIBULL REGRESSION IN MINITAB

Regression with Life Data: T versus Batch

Response Variable: T

Censoring Information Count
Uncensored value 30

Right censored value 5
Censoring value: D = 0

Estimation Method: Maximum Likelihood

Distribution: Weibull

Relationship with accelerating variable(s): Linear

Regression Table

Standard 5,0% Normal CI
Predictor Coef Error Z P Lower Upper
Intercept 7,00376 0,267€74 26,17 0,000 6,47913 7,52840
Batch -0,0139151 0,339130 -0,04 0,967 -0,67859%8 0,650768
Shape 1,12643 0,165415 0,844709 1,50211
Log-Likelihood = -238,8983
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COMPARISON OF BATCHES BY KAPLAN-MEIER PLOT

Nonparametric Survival Plot for C1
Kaplan-Meier Method - 85,0% CI
Censoring Column in C2

Probability

0 1000 2000 3000
Time to Failure
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

e Hazard: z(t;x;) = zo(t)eﬂ Xi

o Cumulative hazard: Z(t;x;) = Zo(t)elB Xi
(do the integration!)
@ Survival/reliability function:

/

P(T; > t) = R(t; x;) = e 2(txi) = e_ZO(t)e’B a

Of practical interest: "Estimate the survival probability for a patient or
machine”.

To estimate this: Substitute 3 for B3, but still we need to estimate Zo(t).
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

Recall: Z(Tj;x;) ~ expon(1), i.e. Zo(T,-)eIB Xi ~ expon(1)
Then recall that T ~ expon(A\) = aT ~ expon(A/a). But then
Zo(T;) ~ expon(eﬁ Xi)

: { RN —
0 Ty Ty T
| : e —
0 Zo(Try) Zo(Ty) 7T,
¢4 R, 6 R, €& R

Thus,
Zo(T(1)) = minimum of Zo(T;) for i € Ry ~ expon(_icp, P Xi), and

Zo(T(2)) — Zo(T(1)) ~ expon(Y_icr, eB X, etc., and so...
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

0 Tery Ty To
0 Zo(Tiy) ATHS I (T
6 Ry 6 Ry & R;
1
E(Zo(Tw))) = - A
ZI'ERle '
1 1
E(Zo(T2)) = — + )
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THE BRESLOW ESTIMATOR

20(t): Z ;

N
TH<St Xicr, e Xi

This is similar to the Nelson-Aalen estimator, but takes into account the
difference between the observations that are due to the covariate values.

Indeed, if there are no covariates, then 8 = 0 and we get ZTU)<t #,

= g
which is the Nelson-Aalen estimator. Here #R; is the number of elements
in R;, which is the same as the number at risk.
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A KM-TYPE ESTIMATOR FOR Ry(t)

We can of course use the Breslow estimator to estimate Ry(t) = e=2(1).
An alternative estimator, which can be viewed as the generalized
KM-estimator, is

Note that for 3 = 0 we get the ordinary KM estimator:

Ro(t) = ]] (1—%)

j:T(j)St
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BATTERY DATA: ESTIMATED BASELINE

04 06 08 10

Estimate of baseline reliability
0.2

0.0

0 500 1000 1500 2000 2500 3000 3500
Lifetime (in cycles)

Fig. 3.3. Plot of the baseline reliability function for the proportional hazards
model for the sodium sulphur battery data with 95% confidence limits
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MODEL CHECKING IN COX REGRESSION:
COX-SNELL RESIDUALS

Cox-Snell Residuals (called “Generalized residuals” by Ansell & Phillips):

’

Vi = Zo(vp)eP %,

which should behave like a censored set from expon(1) if the model is
correct.

Note: Sometimes is added 1 to the censored residuals in order to include
them as “uncensored”. The reason for this is that if V ~ expon(1), then

E[VIV>yl=y+EV)=y+1

by the memoryless property of the exponential distribution.
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BATTERY DATA: COX-SNELL RESIDUALS

1 is added to the censored residuals

3

!

-log(Reliability of residual)
2

0 1 2 3 4
Generalized residual

Fig. 3.5. Plot of the generalized residuals of the proportional hazards model
for the sodium sulphur battery data
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MODEL CHECKING IN COX REGRESSION: SCHOENFELD
RESIDUALS

Recall the Cox-model: z(t;x) = zo(t)e'B X

As we have seen, the effect of increasing, e.g., covariate number 1 by 1
unit, is to multiply the likelihood by e, independently of time t.

In practice one might imagine, however, that 51 could depend on t, like
B1(t); for example the risk of smoking could depend on the age, t, of a
person, with 31(t) approaching 0 for high ages t.

The Schoenfeld residual (see 3.5.2 p. 77 in the book chapter on
regression) compares, for each failure time T ;), the values of the
covariates of the unit that fails, with what would be expected if the
Cox-model with constant 3 is correct.
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SCHOENFELD RESIDUALS FOR THE CASE OF
A SINGLE COVARIATE

“...compares, for each failure time T ;), the values of the covariates of the
unit that fails, with what would be expected if the Cox-model with
constant 3 is correct.”

For each failure time T;), with unit /; failing and risk set R;, we compute

Sj = Xg— ZX,'P(unit i fails at T(J))

i€R;
eBXI
e
i€R; Z ER; eﬁxv
Xi
ZieRineﬁ
S
EiGRje '

If the model is correct, the s; are supposed to vary around 0.
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SCHOENFELD RESIDUALS FOR THE BATTERY DATA

0.6

0.4

0.2

0.0

Schoenfeld residuals
'0;2

..[}‘_4

........ Lowess smooth
- ) .. — Zeroline

] % . N
0 500 1000 1500 2000 2500 3000 3500
Lifetime (in cycles)

Fig. 3.7. Plot of the Schoenfeld residuals for batch of the proportional hazards
model for the sodium sulphur battery data
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MODEL CHECKING IN COX REGRESSION: LOG MINUS LOG PLOT

See book chapter on regression, p. 63.
Model used in Battery example:

Batchl : z(t]0) = zo(t)
Batch2 : z(t|1) = zo(t)e”

Thus:
Batchl: Ry(t) = e (1) = In(—In Ry(t)) = In Zo(t)
Batch2: Ry(t) = e=2(1¢” = In(—In Ry(t)) = In Zo(t) + A

@ Thus if we compute KM-estimates :QKM,l and 'QKM,z for each of the
two batches, and plot (¢, In(— In Rkp.1(t))) and
(t,In(— In Rkar2(t))), then the two “curves” will be in constant
distance (theoretically equal to ) from each other.

o Often one plots instead (In t, In(— In Rkpr.1(t))) and

(Int,In(—In Rk 2(t))), in which case straight lines will indicate
Weibull distributions.
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LOG MINUS LOG PLOT FOR THE BATTERY DATA

1 — +
] } d
0 — T
G
el
o %
T 1 — +
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+
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T T T
o 1000 2000 3000
STIM1
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LOG MINUS LOG PLOT FOR THE BATTERY DATA, VS. LOG t

1 3
0 —
OI
04.
S I
&) - "
20
-3 — +t
| T T T T T III
100 1000
STIM1
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CASE-STUDY IN COX-REGRESSION: PBC-DATA
FROM MAYO CLINIC

424 patients with PBC (primary biliary cirrhosis (rare disease))

A randomized clinical trial with drug DPCA versus Placebo: 312 patients
chosen

Patients included in trial: January 1974 - May 1984

Follow-up until July 1986

First: Compared DPCA group and Placebo group by Kaplan Meier.
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KAPLAN-MEIER PLOTS FOR DPCS vs. PLACEBO

1.0
0.8
=
=
B o8
2
o
A
c
=1
o 02 -
0.0 T T T T T T T T T 1
] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Observation Time (days)
Time Interval
Group 0-1000 1000-2000 2000-3000 3000-4000 4000-5000
DPCA 23/158 22128 13/74 531 210
e Placebo 31154 12120 7170 10/32 oM
(# avanis/# ai risk)

Figure 4.4.1 Estimated survival curves in DPCA and placebo groups, PBC data,
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COX REGRESSION MODEL FOR DPCS vs. PLACEBO

Use the same model as for the Battery Data:

x=0 for DCPA  Xo(t)

x=1 for Placebo \o(t)e”

B = —0.0571, W = 2(£(8) — £(0)) = 0.102 (not significant)
A 1

SD(B) = — s = 01792 A

95% confidence interval for 5 : 3+ 1.96-0.1792

(-0.408, 0.294)

so Cl for relative risk e®: (0.66, 1.34)

Conclusion: In the best case the new drug leads to 1.34 relative risk for
not using it (would need at least 1.50 to do further investigations).
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NATURAL HISTORY MODEL FOR PBC

The data on the 312 PBC randomized patients can be used to build a
statistical model for the influence of covariates on disease outcome.

The data contains 14 clinical, biochemical and histological variables.

Their model is (now A(-) is used instead of z(+) for hazard rate):

)\(t; x) _ )\O(t)eﬁ1X1+52X2+"-+5ka

In the beginning k=14
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COVARIATES

Table 4.4.1  Prognostic Factors: Summary of Univariate Statistics
(312 Patients in the PBC Clinical Trial of DPCA)

Demographic min 1stQ med 3rdQ max Missing Rao y*(1 d.f.)

Age (years) 263 42.1 49.8 56.7 T84 0 20.86
Sex male: 36 fermale: 276 0 4.27
Clinical Absent Present Missing Rao x*(1 d.f)
Asciles 288 24 0 104.02
Hepatomegaly 152 160 0 40.18
Spiders 222 20 0 30,31
Edema’ 0: 263 1/2: 29 1: 20 0 97.89
Biochemical min 15tQ med 3rdQ max Missing Rao x*(1 df)
Bilirubin 0.3 0.8 1.35 345 28.0 1] 190.62
Albumin 1.96 331 3.55 3.80 4.64 U] T0.83
Urine Copper 4 41 73 123 588 2 84,35

Pro Time 9.0 10.0 10.6 11.1 17.1 0 51.76
Platelet Count 62 200 257 323 563 4 12.15
Alkaline Phos 289 867 1259 1985 13862 (1} 258
SGOT 26 81 115 152 457 0 29.59
Histwologic 1 2 3 4 Missing Rao x"(l d.f.)
Stage 16 67 120 109 0 46.49
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WHICH COVARIATES TO KEEP IN THE MODEL?

— Bilirubin most significant

— Take out expensive/complicated covariates:
Stage, Urine Copper, SGOT

Remains 11 variables; then a step-down procedure is used to eliminate one
(non-significant) variable at a time, arriving at lower table on next slide.
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VARIABLE SELECTION: TABLE

Table 4.4.2  Results of variable selection procedure
in 312 randomized cases with PBC.

(a) First Swep, log likelihood —550.603

Coef. Sud. Err. Z stal.
Age 2819 e2 9538 -3 2.96
Albumin ~9.713 e-1  2.681 e-1 —3.62
Alk. Phos 1.445 e-5  3.544 e-5 041
Ascites 2813el 3093 el 0.91
Bilirubin 1057 e-1  1.667 e-2 6.34
Edema 6915 el  3.226 e-1 2.14
Hepatomegaly 4853 e-1 2913 e-1 221
Platelets —6.063 e-d 1025 e-3 -0.5%
Prothrombin Time 2428 e-1  R.420 e-2 2.88
Sex —4.769 e-1  2.643 e-1 —1.80
Spiders 2889 el 2093 e-1 1.38

(b) Last Step, log likelihood —554.237

Coel. Std. Err. Z stat,
Age 0.0338 0.00925 3.65
Albumin ~1.0752 0.24103 —4.46
Bilirubin 0.1070 0.01528 7.00
Edema 0.8072 0.30775 2.62
Hepatomegaly 0.5903 0.21179 279
Prothrombin Time 0.2603 0.07786 334
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VARIABLE SELECTION: EXPLANATION

Table 4.4.2: Cox with 11 variable.

Recall: Z stat means Coef/Std.Err.

Step-down procedure: From (a) to (b): 5 variables taken out;
Log-likelihood statistic:

2 - difference in log likelihood = 7.268

should be compared to x2 : P(x2 > 7.268) = 0.201, so we do not reject
the null hypothesis that all these 5 variables have coefficients equal to 0.
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LOG-TRANSFORMATIONS

Then is considered log-transformations of continuous variables - four

variables using logs are added to model, and this leads to increased
likelihood!

Finally: Arrives at model 4.4.3(c)

Bo Lindqvist Slides 12 TMAA4275 LIFETIME ANALYSIS 46 / 48



FINAL MODEL

Table 443  Regression models with log transformations
of continuous variables, 312 randomized cases with PBC.

(a) Log likelihood —538.274

Coef. S5ud. Emr.  Z stat.
Age —0.028% 007141 -041
log(age) 32248  3.71828 0.87
Albumin 1.0068 1.73450 0.58
log(Albumin) —5.8629 542315 108
Bilirubin —0.0461 0.03547 -1.30
log(Bilirubin) L0774 0.21127 5.10
Edema 0.8238 0.30386 27
Prothrombin Time ~0.6175 1.14523 —0.54
log(Pro Time) 10.1928 1336131 0.76
Hepatomegaly 0.1964 0.22628 0.87

(b) Log likelihood —541.064
Coef. Sid. Err. 7 stat.

Age 0.0337  0.00864 3.89
Albumin —0.9473 023713 —3.99%
log(Bilirubin) 0.8845  0.09854 898
Edema 0.8006  0.29914 2.68

Prothrombin Time 0.2463  0.08426 292
(¢) Log likelihood —540.412
Coef. Sid. Err. 7 star.

Age 0.0333  0.00866 3.84
log(Albumin) —3.0553 0.72408 —4.22
log(Bilirubin) 08792 0.09873 890
Edema 0.7847 029913 2.62

log(Prothrombin Time) 3.0157 1.02380 295
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ESTIMATION OF SURVIVAL PROBABILITIES

Recall: )

S(t;x) = P(T > t;x) = So(t)eﬁ = e Mo(t)e”
where R = [B1x1 + Boxo + -+« + Bixkx = B'x is called Risk Score.

Estimated value: 5(t;x) = e~ho(DeF

In the data we have the median value: R = 5.24, and for this value we get
the one- and five-year survival estimates:

5(1) = 0.982
5(5) = 0.845

A low-risk example:

Bilirubin 0.5; Albumin 4.5; Age 52; Prothrombin 10.1; edema 0; gives

A

R =0.879-1n0.5—-3.0553-In4.5—-.-=3.49
so = 5(5) = 0.97
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