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WEIBULL REGRESSION

Special case of log-location-scale-survival-regression models.

Recall : If T ∼Weibull(θ, α), then by definition

R(t) = e−( t
θ

)α

z(t) =
αtα−1

θα
= αθ−αtα−1

lnT = ln θ +
1

α
W , where W ∼ Gumbel(0, 1)

Weibull regression model for a lifetime T and corresponding covariate
vector x:

lnT = β0 + β1x1 + · · ·+ βkxk︸ ︷︷ ︸
ln θ

+
1

α
W = β0 + β

′
x︸ ︷︷ ︸

ln θ

+
1

α
W

Thus θ = eβ0+β1x1+···+βkxk ≡ eβ0+β
′
X
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PROPORTIONAL HAZARDS PROPERTY

Thus for Weibull regression for (T , x),

T ∼Weibull(eβ0+β1x1+···+βkxk , α),

and hence the hazard rate function is

z(t; x) = α(eβ0+β1x1+···+βkxk )−αtα−1

= αe−αβ0tα−1︸ ︷︷ ︸
z0(t)

·e−αβ1x1−αβ2x2···−αβkxk

= z0(t) · e β̃1x1+β̃2x2+···+β̃kxk ; where β̃j = −αβj

= z0(t) · e
˜β
′
x

= z0(t) · g(x)

Thus: The hazard rate is a product of one factor, z0(t), which is a
function of t (and not of x), and one which is function of x (and not of t).
This property is called the Proportional Hazards Property. Why?
(See next slide).
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PROPORTIONAL HAZARDS PROPERTY (CONT.)

Recall that z(t; x) = z0(t) · g(x). Consider two individuals with covariate
vectors x(1) and x(2):

z(t; x(1))

z(t; x(2))
=

g(x(1))

g(x(2))
(?)

Thus

z(t; x(1)) =
g(x(1))

g(x(2))
z(t; x(2))

so the hazard rate functions are proportional as functions of t, with
proportionality factor equal to g(x(1))/g(x(2)).

Thus: The Weibull regression model has the proportional hazards property.
BUT it can be shown that no other log-location-scale-survival-regression
model has the property.

(?) is called the relative risk for a “person” with covariate x(1) relative to
a “person” with covariate x(2).
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COX REGRESSION MODEL

Sir David Cox, in his famous paper from 1972 suggested to use the model

z(t; x) = z0(t)eβ1x1+β2x2+···+βkxk

Here z0(t) can be any positive function of t (i.e. any nonparametric
hazard rate function). Because the β1, . . . βk are ordinary parameters, the
model is said to be semi-parametric.

Interest is mainly in β1, · · · , βk .

How to interpret βi? Suppose an item has covariate vector
x = (x1, · · · , xk), so z(t; x) = z0(t)eβ1x1+β2x2+···+βkxk . Suppose then that
xi (e.g. temperature) is increased by 1 unit, so
xnew = (x1, · · · , xi + 1, · · · , xk). Then

z(t; xnew) = z(t; x) · eβi

Thus: eβi is the factor with which the hazard is multiplied if we increase xi
by 1 unit.
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EXAMPLE - SMOKING OR NOT SMOKING

Suppose that the first component, x1, of x is either 0 or 1:

x1 = 0 if person is not smoking.

x1 = 1 if person is smoking.

Then eβ1 is the multiplicative effect on hazard rate caused by going from
non-smoking to smoking, called the relative risk for a smoker.

In general: eβi is called the relative risk of covariate #i .
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ESTIMATION IN COX MODEL

Data: (yi , δi , xi ), i = 1, . . . , n

Model: z(t; x) = z0(t)eβ
′
X

Let T(1) < T(2) < · · · < T(r) be the observed failure times.

Need to know

who are at risk at time T(i)? Denote these Ri ⊆ {1, 2, . . . , n}
who fails at T(i)? Say, this is individual `i ∈ Ri .
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COX’ PARTIAL LIKELIHOOD FOR β

Cox noted that since z0(t) is completely unknown, the lengths of times
between failures are not relevant for estimation of β.

Cox’ partial likelihood is essentially the likelihood of the observed
`1, · · · , `k :

L(β) = P(L1 = `1, L2 = `2, · · · , Lk = `k)

where Li is the number of the individual that fails at time T(i).

Cox computed this as a product of the relevant probabilities at each failure
time.
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DERIVATION OF COX’ PARTIAL LIKELIHOOD

At T(j) there is a competition between all individuals in Rj , so we need to
find, for each failure time T(j),

P(`j fails at T(j) | a unit in Rj fails at T(j))

=
P(`j fails at T(j))

P(a unit in Rj fails at T(j))
≈

P(`j fails in (T(j),T(j) + h))

P(a unit in Rj fails in (T(j),T(j) + h))

≈
z0(T(j))e

β′x`j · h∑
i∈Rj

z0(T(j))eβ
′
xi · h

=
e
β′x`j∑

i∈Rj
eβ
′
xi

so

L(β) =
r∏

j=1

e
β
′
x`j∑

i∈Rj
eβ
′
xi

which is Cox’ partial likelihood.
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ESTIMATION OF β

The log partial likelihood is `(β) = ln L(β). The maximum partial
likelihood estimate of β is found by solving

∂`(β)

∂βi
= 0; i = 1, · · · , k

giving β̂ = (β̂1, β̂2, . . . , β̂k), and in the same way as for parametric
regression models,

I−1(β̂) =


V̂ar β̂1 · ·
̂cov(β̂1, β̂2) V̂ar β̂2 ·
· · ·
· · V̂ar β̂k


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TIES? USE THE PETO-BRESLOW PARTIAL LIKELIHOOD

Assume dj units fail at T(j). Peto-Breslow’s partial likelihood:

L(β) =
r∏

j=1

eβ
′
sj(∑

i∈Rj
eβ
′
xi
)dj

where sj is sum of x` for the units that fail at T(j).

Essentially, we use Cox’ partial likelihood by making an ordinary product
for each failed unit, but we let all units that fail at the same time have the
same risk set.

Bo Lindqvist Slides 12 TMA4275 LIFETIME ANALYSIS 12 / 48



A SIMPLE EXAMPLE

Model : z(t; x) = z0(t)eβx (a single covariate, x).
Data: n = 7, r = 3

i yi xi δi
1 5 12 0
2 10 10 1
3 40 3 0
4 80 5 0
5 120 3 1
6 400 4 1
7 600 1 0

j T(j) Rj `j
1 10 {2, 3, 4, 5, 6, 7} 2
2 120 {5, 6, 7} 5
3 400 {6, 7} 6

L(β) =
e10β

e10β + e3β + e5β + e3β + e4β + eβ
· e3β

e3β + e4β + eβ
· e4β

e4β + eβ
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SIMPLE EXAMPLE: COX’ PARTIAL LIKELIHOOD

Maximum likelihood estimate: β̂ = 0.765.
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SIMPLE EXAMPLE: COX’ LOG PARTIAL LIKELIHOOD

Maximum likelihood estimate: β̂ = 0.765.
95% likelihood confidence interval: (0.1, 3.2).
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LIKELIHOOD CONFIDENCE INTERVALS AND TESTING

Likelihood theory holds for the partial likelihood

W (β) = 2(`(β̂)− `(β)) ≈ χ2
1 if β is true value.

Thus we can construct the “1.92-Confidence Interval”, i.e. finde the set
{β : `(β)) ≥ `(β̂)− 1.92}. (See previous slide, where the cut-off level is
−1.35− 1.92 = −3.27.)

We can also test, e.g., H0 : β = 0 versus H1 : β 6= 0 by using that

W = 2(`(β̂)− `(0)) ∼ χ2
1

under the null hypothesis, and reject H0 if this becomes too big (larger
than 3.84 for 5% significance level).

In example: W = 2(−1.35− (−3.45)) = 2 · 2.10 = 4.2, so we reject H0 at
5% level. We could also conclude this from the confidence interval, since 0
is not in the confidence interval (0.1, 3.2).
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WEIBULL REGRESSION WITH SIMPLE EXAMPLE
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COMPARISON COX VS.WEIBULL

Estimated model, Weibull: lnT = 7.586− 0.468x + (1/2.056)W

Estimated model, Cox: z(t; x) = z0(t)e0.765x

Recall from earlier slide:

βcox = −αweib · βweib

In the example we estimate the right hand side by
−2.056 · (−0.468) = 0.96 while the left hand side is estimated by 0.765.

This seems to be OK, given that there are very few failures, and given the
following fact:

The Cox-estimate for β does not use the observed times, while the Weibull
estimates use them (a lot).
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USE OF COX REGRESSION TO COMPARE TWO GROUPS

Example from book by Ansell and Phillips

Bo Lindqvist Slides 12 TMA4275 LIFETIME ANALYSIS 19 / 48



BATTERY DATA

There are altogether n = 15 + 20 = 35 observations.

Let x = 0 for Batch 1, x = 1 for Batch 2.

Now x is a discrete covariate (categorical). The Cox model is
z(t; x) = z0(t)eβx , so:

for Batch 1: z(t; 0) = z0(t)

for Batch 2 : z(t; 1) = z0(t)eβ

Cox’ partial likelihood is easy to write down here (but note tied failures at
time 164, so Peto-Breslow should be used at that time). For the other
times, the contribution at T (j) is

e
β
′
x`j∑

i∈Rj
eβ
′xi

=
1 if failure in Batch 1, eβ if failure in Batch 2

#at risk in Batch 1 + eβ ·#at risk in Batch 2

and Cox’ likelihood is the product of these!
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RESULTS - BATTERY DATA

Maximum partial likelihood estimate: β̂ = −0.0888
(solve ∂`(β)

∂β = 0, where ` is Cox’ log partial likelihood)

Further, computation of V̂ar(β̂) = (−`′′(β̂))−1, and taking the square root

gives the standard error ŜD(β̂) = 0.4034.

So the standard 95% confidence interval for β is −0.0888± 1.96 · 0.4034
= (−0.879, 0.702).

To test H0 : β = 0 versus H1 : β 6= 0
use W (0) = 2(`(β̂)− `(0)) ≈ χ2

1 under H0

= 2(−81.238− (−81.262)) = 0.048 so do not reject at any reasonable
significance level!

Note that we could also use the logrank test to test these hypotheses, or
look at KM-plots (next slide).
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BATTERY DATA: WEIBULL REGRESSION IN MINITAB
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COMPARISON OF BATCHES BY KAPLAN-MEIER PLOT
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

Hazard: z(t; xi ) = z0(t)eβ
′
xi

Cumulative hazard: Z (t; xi ) = Z0(t)eβ
′
xi

(do the integration!)

Survival/reliability function:

P(Ti > t) = R(t; xi ) = e−Z(t;xi ) = e−Z0(t)eβ
′
xi

Of practical interest: “Estimate the survival probability for a patient or
machine”.

To estimate this: Substitute β̂ for β, but still we need to estimate Z0(t).
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

Recall: Z (Ti ; xi ) ∼ expon(1), i.e. Z0(Ti )e
β
′
xi ∼ expon(1)

Then recall that T ∼ expon(λ) =⇒ aT ∼ expon(λ/a). But then

Z0(Ti ) ∼ expon(eβ
′
Xi )

Thus,

Z0(T(1)) = minimum of Z0(Ti ) for i ∈ R1 ∼ expon(
∑

i∈R1
eβ
′
Xi ), and

Z0(T(2))− Z0(T(1)) ∼ expon(
∑

i∈R2
eβ
′
Xi ), etc., and so...
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ESTIMATION OF THE CUMULATIVE BASELINE HAZARD

E (Z0(T(1))) =
1∑

i∈R1
eβ
′
xi

E (Z0(T(2))) =
1∑

i∈R1
eβ
′
xi

+
1∑

i∈R2
eβ
′
xi

and so on, so that in general

E (Z0(T(m))) =
m∑
j=1

1∑
i∈Rj

eβ
′
xi
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THE BRESLOW ESTIMATOR

Ẑ0(t) =
∑
T(j)≤t

1∑
i∈Rj

e
ˆβ
′
Xi

This is similar to the Nelson-Aalen estimator, but takes into account the
difference between the observations that are due to the covariate values.

Indeed, if there are no covariates, then β = 0 and we get
∑

T(j)≤t
1

#Rj
,

which is the Nelson-Aalen estimator. Here #Rj is the number of elements
in Rj , which is the same as the number at risk.
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A KM-TYPE ESTIMATOR FOR R0(t)

We can of course use the Breslow estimator to estimate R̂0(t) = e−Ẑ0(t).
An alternative estimator, which can be viewed as the generalized
KM-estimator, is

R̂0(t) =
∏

j :T(j)≤t

(
1− e

ˆβ
′
xlj∑

i∈Rj
e

ˆβ
′
xi

)e− ˆβ
′
xlj

Note that for β = 0 we get the ordinary KM estimator:

R̂0(t) =
∏

j :T(j)≤t

(
1− 1

#Rj

)
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BATTERY DATA: ESTIMATED BASELINE
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MODEL CHECKING IN COX REGRESSION:

COX-SNELL RESIDUALS

Cox-Snell Residuals (called “Generalized residuals” by Ansell & Phillips):

V̂i ≡ Ẑ0(Yi )e
ˆβ
′
xi ,

which should behave like a censored set from expon(1) if the model is
correct.

Note: Sometimes is added 1 to the censored residuals in order to include
them as “uncensored”. The reason for this is that if V ∼ expon(1), then

E [V |V > y ] = y + E (V ) = y + 1

by the memoryless property of the exponential distribution.
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BATTERY DATA: COX-SNELL RESIDUALS

1 is added to the censored residuals
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MODEL CHECKING IN COX REGRESSION: SCHOENFELD

RESIDUALS

Recall the Cox-model: z(t; x) = z0(t)eβ
′
X

As we have seen, the effect of increasing, e.g., covariate number 1 by 1
unit, is to multiply the likelihood by eβ1 , independently of time t.

In practice one might imagine, however, that β1 could depend on t, like
β1(t); for example the risk of smoking could depend on the age, t, of a
person, with β1(t) approaching 0 for high ages t.

The Schoenfeld residual (see 3.5.2 p. 77 in the book chapter on
regression) compares, for each failure time T(j), the values of the
covariates of the unit that fails, with what would be expected if the
Cox-model with constant β is correct.
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SCHOENFELD RESIDUALS FOR THE CASE OF

A SINGLE COVARIATE

“...compares, for each failure time T(j), the values of the covariates of the
unit that fails, with what would be expected if the Cox-model with
constant β is correct.”

For each failure time T(j), with unit `j failing and risk set Rj , we compute

sj = x`j −
∑
i∈Rj

xiP(unit i fails at T(j))

= x`j −
∑
i∈Rj

xi
e β̂xi∑

v∈Rj
e β̂xv

= x`j −
∑

i∈Rj
xie

β̂xi∑
i∈Rj

e β̂xi

If the model is correct, the sj are supposed to vary around 0.
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SCHOENFELD RESIDUALS FOR THE BATTERY DATA
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MODEL CHECKING IN COX REGRESSION: LOG MINUS LOG PLOT

See book chapter on regression, p. 63.

Model used in Battery example:

Batch1 : z(t|0) = z0(t)
Batch2 : z(t|1) = z0(t)eβ

Thus:
Batch1: R1(t) = e−Z0(t) ⇒ ln(− lnR1(t)) = lnZ0(t)

Batch2: R2(t) = e−Z0(t)eβ ⇒ ln(− lnR2(t)) = lnZ0(t) + β

Thus if we compute KM-estimates R̂KM,1 and R̂KM,2 for each of the

two batches, and plot (t, ln(− ln R̂KM,1(t))) and

(t, ln(− ln R̂KM,2(t))), then the two “curves” will be in constant
distance (theoretically equal to β) from each other.

Often one plots instead (ln t, ln(− ln R̂KM,1(t))) and

(ln t, ln(− ln R̂KM,2(t))), in which case straight lines will indicate
Weibull distributions.
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LOG MINUS LOG PLOT FOR THE BATTERY DATA
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LOG MINUS LOG PLOT FOR THE BATTERY DATA, VS. LOG t
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CASE-STUDY IN COX-REGRESSION: PBC-DATA

FROM MAYO CLINIC

424 patients with PBC (primary biliary cirrhosis (rare disease))

A randomized clinical trial with drug DPCA versus Placebo: 312 patients
chosen

Patients included in trial: January 1974 - May 1984

Follow-up until July 1986

First: Compared DPCA group and Placebo group by Kaplan Meier.
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KAPLAN-MEIER PLOTS FOR DPCS vs. PLACEBO
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COX REGRESSION MODEL FOR DPCS vs. PLACEBO

Use the same model as for the Battery Data:

x=0 for DCPA λ0(t)
x=1 for Placebo λ0(t)eβ

β̂ = −0.0571, W = 2(`(β̂)− `(0)) = 0.102 (not significant)

ŜD(β̂) = 1

−
√
`′′ (β̂)

= 0.1792

95% confidence interval for β : β̂ ± 1.96 · 0.1792
(-0.408, 0.294)

so CI for relative risk eβ: (0.66, 1.34)

Conclusion: In the best case the new drug leads to 1.34 relative risk for
not using it (would need at least 1.50 to do further investigations).
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NATURAL HISTORY MODEL FOR PBC

The data on the 312 PBC randomized patients can be used to build a
statistical model for the influence of covariates on disease outcome.

The data contains 14 clinical, biochemical and histological variables.

Their model is (now λ(·) is used instead of z(·) for hazard rate):

λ(t; x) = λ0(t)eβ1x1+β2x2+···+βkxk

In the beginning k=14

Bo Lindqvist Slides 12 TMA4275 LIFETIME ANALYSIS 41 / 48



COVARIATES
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WHICH COVARIATES TO KEEP IN THE MODEL?

→ Bilirubin most significant

→ Take out expensive/complicated covariates:
Stage, Urine Copper, SGOT

Remains 11 variables; then a step-down procedure is used to eliminate one
(non-significant) variable at a time, arriving at lower table on next slide.
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VARIABLE SELECTION: TABLE

Bo Lindqvist Slides 12 TMA4275 LIFETIME ANALYSIS 44 / 48



VARIABLE SELECTION: EXPLANATION

Table 4.4.2: Cox with 11 variable.

Recall: Z stat means Coef/Std.Err.

Step-down procedure: From (a) to (b): 5 variables taken out;

Log-likelihood statistic:

2 · difference in log likelihood = 7.268

should be compared to χ2
5 : P(χ2

5 > 7.268) = 0.201, so we do not reject
the null hypothesis that all these 5 variables have coefficients equal to 0.
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LOG-TRANSFORMATIONS

Then is considered log-transformations of continuous variables - four
variables using logs are added to model, and this leads to increased
likelihood!

Finally: Arrives at model 4.4.3(c)
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FINAL MODEL (c)
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ESTIMATION OF SURVIVAL PROBABILITIES

Recall:

S(t; x) = P(T > t; x) = S0(t)e
β
′
x

= e−Λ0(t)eR

where R = β1x1 + β2x2 + · · ·+ βkxk = β
′
x is called Risk Score.

Estimated value: Ŝ(t; x) = e−Λ̂0(t)eR̂

In the data we have the median value: R̂ = 5.24, and for this value we get
the one- and five-year survival estimates:

Ŝ(1) = 0.982
Ŝ(5) = 0.845

A low-risk example:

Bilirubin 0.5; Albumin 4.5; Age 52; Prothrombin 10.1; edema 0; gives

R̂ = 0.879 · ln 0.5− 3.0553 · ln 4.5− · · · = 3.49

so ⇒ Ŝ(5) = 0.97
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