Exercise

Consider a type of machine for which failures occur according to an HPP with basic ROCOF λ. Suppose that due to different environments, m machines of this kind will have ROCOF, respectively, $a_{1} \lambda, a_{2} \lambda, \ldots, a_{m} \lambda$, where the a_{j} are unobserved quantities nodeled as independent variables from a gammadistribution with expected value 1 and variance δ.

Derive the likelihood function for λ when the machines are, respectively, observed during given lengths of time, $\tau_{j}(j=1, \ldots, m)$.

Finally, show how you can estimate the values of the aj by a Bayes argument.

SOLUTION:
For a single machine we have ROCOF $=a \lambda$.
Thus, with obsenation trine τ, the likelihood is (gwen a)

$$
\begin{aligned}
L(a) & =\left(\prod_{i=1}^{N(c)} a \lambda\right) e^{-a \lambda \tau} \\
& =a^{N(\tau)} \lambda^{N(\tau)} e^{-a \lambda \tau}
\end{aligned}
$$

Now a has density,

$$
f(a ; \delta)=\frac{a^{\frac{1}{\delta}-1} e^{-\frac{a}{\delta}}}{\prod\left(\frac{1}{\delta}\right) \delta^{\frac{1}{\delta}}} \quad ; a>0
$$

[gamm-distr. with expected value 1 and variance $\delta]$
Thus the unconditional likelihood is

$$
\begin{aligned}
& L=\int_{0}^{\infty} L(a) f(a ; \delta) d a
\end{aligned}
$$

$$
\begin{aligned}
& \text { density if t was } \\
& \text { multiped by } \\
& \frac{\left(\lambda \tau+\frac{1}{\delta}\right)^{N(\tau)+\frac{1}{\delta}-1}}{T(N(\tau)+\delta)}
\end{aligned}
$$

Thus

$$
L=\frac{\lambda^{N(\varepsilon)}}{\Gamma\left(\frac{1}{\delta}\right) \delta^{\frac{1}{\delta}}} \frac{\Gamma(N(\tilde{\varepsilon})+\delta)}{\left(\lambda \tilde{\varepsilon}+\frac{1}{\delta}\right)^{N(\varepsilon)+\delta}}
$$

Since we have m systems with this likelihood, the total likelihood would be m

$$
\prod_{j=1}^{m} L_{j}
$$

where

$$
L_{j}=\frac{\lambda^{N_{j}\left(\tau_{j}\right)}}{\Gamma\left(\frac{1}{\delta}\right) \delta^{\frac{1}{\delta}}} \frac{\Gamma\left(N_{j}\left(\tau_{j}\right)+\delta\right)}{\left(\lambda \tau_{j}+\frac{1}{\delta}\right)^{N_{j}(\tau)+\delta}}
$$

Thus all we need from the data is

$$
N_{j}\left(\tau_{j}\right) ; j=1, \cdots, m
$$

We can also "estimate" the value of a; for each system.

Then we consider, a as a parameter, with prion distribution

$$
\pi(a)=\frac{a^{\frac{1}{\delta}-1} e^{-\frac{a}{\delta}}}{\prod\left(\frac{1}{\delta}\right) \delta^{\frac{1}{\delta}}} \quad \operatorname{far} a>0
$$

The data are the process of failues, with likelihood

$$
L(\operatorname{data} \mid a)=a^{N(\varepsilon)} \lambda^{N(\tau)} e^{-a \lambda \tau}
$$

The posterior distribution of a is hence

$$
\begin{aligned}
\pi(a \mid d a t a) & \propto \pi(a) L(d a t a \mid a) \\
& \sim \operatorname{gamux}\left(\frac{1}{\delta}+N(\varepsilon), \frac{1}{\delta}+\lambda \tau\right)
\end{aligned}
$$

which has expected value

$$
\hat{a}=\frac{\frac{1}{\delta}+N(\tau)}{\frac{1}{\delta}+\lambda \tau}=\frac{1+\delta N(\tau)}{1+\delta \lambda \tau}
$$

Thus: we estimate a_{j} by

$$
\hat{a}_{j}=\frac{1+\hat{\delta} N\left(\tau_{j}\right)}{1+\hat{\delta} \hat{\lambda} \tau_{j}}
$$

