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a b s t r a c t

A study of possible consequences of heterogeneity in the failure intensity of repairable systems is
presented. The basic model studied is the nonhomogeneous Poisson process with power law intensity
function. When several similar systems are under observation, the assumption that the corresponding
processes are independent and identically distributed is often questionable. In practice there may be an
unobserved heterogeneity among the systems. The heterogeneity is modeled by introduction of
unobserved gamma distributed frailties. The relevant likelihood function is derived, and maximum
likelihood estimation is illustrated. In a simulation study we then compare results when using a power
law model without taking into account heterogeneity, with the corresponding results obtained when the
heterogeneity is accounted for. A motivating data example is also given.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the reliability literature, systems are generally classified as
either non-repairable or repairable (see, e.g., Ascher and Feingold
[1]). Non-repairable systems are those that do not get repaired
when they fail. Thus, non-repairable system can fail only once, and
a lifetime model such as the Weibull distribution provides the
distribution of the time to failure of such systems.

On the other hand, repairable systems are those systems
(machines, industrial plants, software, etc.) which, in the event
of a failure, can be restored to satisfactory operation by any action,
including part replacements or changes to adjustable settings. But,
to what extent can the system perform after being returned back
to its regular operation? We may have that the system's perfor-
mance is in the same state that the system had at the start of the
operation, which means an “as good as new” condition. Or, its
performance may be returned to the same state as before the
failure, which means an “as bad as old” condition.

The latter case is usually referred to as a “minimal repair”,
modeled by a nonhomogeneous Poisson process (NHPP). Minimal
repair thus means that a failed system is restored just back to a
functioning state, and after repair the system continues as “if
nothing had happened”. This implies that the likelihood of system
failure, right after a failure and subsequent repair, is the same as it

was immediately before the failure. Note that repair times in this
kind of modeling are assumed to be negligible.

NHPP models, which are the main concern of this paper, are
useful due to their flexible assumption that events are occurring
randomly in time, with rates which may vary with time. This is in
contrast to the more established homogeneous Poisson process
(HPP), where the rate of events is constant in time.

The present paper is concerned with the problem of predicting
the behavior of a system based on failure data from several similar
systems. There is a well established theory for analysis of data for
NHPPs. But as discussed for example in Lindqvist [9], there may be
unobserved heterogeneity between the monitored systems which,
if overlooked, may lead to non-optimal or possibly completely
wrong decisions. An intuitive way of interpreting heterogeneity is
to imagine an unknown covariate, with values that may vary
between systems, and leading to an unexpected variation in the
failure intensity of the different processes (see, e.g., Slimacek and
Lindqvist [14]). Still it is believed that heterogeneity has been
neglected in many reliability applications, and it is the purpose of
the present paper, through a simulation study and analysis of a
real data set, to point to some of the consequences that may result
from not including heterogeneity in a model for repairable
systems.

A striking example of heterogeneity is given by some data
presented by Bhattacharjee et al. [2], presenting failure data for
motor operated closing valves in safety systems at two boiling
water reactor plants in Finland. Failures of the type “External
Leakage” were considered for 104 valves with a follow-up time
of 9 years. The data show an apparently unnormal variation in
the number of failures per valve, suggesting a heterogeneity
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between valves. In their analysis, Bhattacharjee et al. [2] stressed
the importance of taking heterogeneity into consideration and
concluded that even very simple models may describe the hetero-
geneous behavior successfully. For illustration, their data are given
in Section 5 together with a statistical analysis using the approach
of the present paper.

The study of heterogeneity in reliability analyses of repairable
systems is not new. An early reference is Engelhardt and Bain [5],
and a detailed treatment is given in the monograph by Rigdon
and Basu [13]. In the case of lifetime modelling, there is a rich
literature on heterogeneity under the name of frailty models,
a basic reference being Vaupel, Manton and Stallard [15]. In the
reliability context, recent references are Cha and Finkelstein [3]
and the monograph Finkelstein [6].

The present paper is structured as follows. In Section 2 we give
the formal definition of the NHPP and derive the likelihood
function for the case of a power law intensity model, which will
be the basic model considered in the paper. Section 3 introduces
heterogeneity between systems, in the form of individual unob-
served multiplicative frailties defined for each system, assumed
independent and, for simplicity of exposition, gamma distributed
with unit expectation. The likelihood function of data from several
systems under heterogeneity is developed, leading to explicit
expressions for the power law parameter estimates in the case
where each process is observed on the same time frame. Section 4
is devoted to a simulation study; first giving an algorithm for
simulation of data, and then performing a comprehensive simula-
tion study with the aim of illustrating the main messages of the
paper. The data from Bhattacharjee et al. [2] are analysed in
Section 5, while some concluding remarks are given in the final
Section 6.

2. The classical power law process

2.1. Characteristics of an NHPP model

An NHPP model is fully characterized by the intensity function,
w(t), commonly denoted ROCOF (Rate of occurrence of failures),
see e.g. Rausand and Høyland [12]. It is furthermore convenient to
introduce the cumulative rate function WðtÞ ¼ R t

0 wðsÞ ds, later
called the CROCOF (cumulative ROCOF).

As is well known, the number of failures experienced in a time
interval from 0 to t, N(t), is Poisson-distributed with parameter
W(t), for any t, so that in particular E½NðtÞ� ¼WðtÞ and Var½NðtÞ� ¼
WðtÞ.

2.2. The power law NHPP

For illustration, we shall in this paper concentrate on the most
commonly used parameterization of the NHPP, namely the power
law model. One reason for its popularity is that the ROCOF as a
function of t is of the same form as the hazard rate of a Weibull
distribution. Hence the time to first failure of the power law NHPP
is Weibull distributed. Because of this, the power law model is
sometimes denoted the Weibull process.

The CROCOF of the power law is given by (see, e.g., Rausand
and Høyland [12])

WðtÞ ¼ λtβ for λ40; β40: ð1Þ
Thus, by differentiation, the ROCOF of the power law process is

wðtÞ ¼W 0ðtÞ ¼ λβtβ�1:

This intensity function was introduced in Crow [4] as a stochastic
model for the Duane reliability growth postulate. The parameter β
in the power law model gives information about the system as

follows; if 0oβo1, then the system is improving (happy); if β41,
then the system is deteriorating (sad); and if β¼ 1 the model
reduces to an HPP.

2.3. Maximum likelihood estimation in the power law NHPP

Suppose that data are available from m independent systems
governed by NHPPs with the same intensity function w(t), where
system j is observed in the time interval ½Sj; Tj�, j¼ 1;2;…;m, with
events observed at times t1j; t2j;…; tnjj.

The likelihood function of these data is given by (see, e.g.,
Meeker and Escobar [10])

L¼ ∏
m

j ¼ 1
∏
nj

i ¼ 1
wðtijÞ

( )
e�½WðTjÞ�WðSjÞ�; ð2Þ

which is the product of the individual likelihoods of each of the m
systems. The log-likelihood function, which is usually easier to
work with, is hence

l¼ log L¼
Xm
j ¼ 1

Xnj

i ¼ 1

log w tij
� �( )

� W Tj
� ��W Sj

� �� �" #
:

For the power law model, with the parameterization given in (1),
the log-likelihood function is given by

l¼ n log λþn log βþðβ�1Þ ∑
m

j ¼ 1
∑
nj

i ¼ 1
log tij�λ ∑

m

j ¼ 1
Tβj �Sβj
h i

ð3Þ

where n¼∑m
j ¼ 1nj.

For simplicity we shall in the following assume that Sj¼0 and
Tj ¼ τ for j¼1,…,m. Thus all the m processes are observed on the
time interval from 0 to a fixed time τ. As we shall see, this
simplifies several results, while the main ideas prevail. Using the
standard method of finding the maximum likelihood estimators
(MLEs) of λ̂ of λ and β̂ of β by setting the partial derivatives of the
log-likelihood function with respect to each parameter equal to
zero, we get from (3),

∂l
∂λ

¼ n
λ
�mτβ ¼ 0;

which implies

λ̂ ¼ n

mτβ̂
ð4Þ

Similarly we get the equation

∂l
∂β

¼ n
β
þ ∑

m

j ¼ 1
∑
nj

i ¼ 1
log tij�λmτβ log τ¼ 0;

which by using (4) leads to

β̂ ¼ n

n log τ�∑m
j ¼ 1∑

nj

i ¼ 1log tij
:

This gives an explicit solution for β̂ , which can afterwards be
substituted in the expression (4) for λ̂.

We now consider the Fisher information matrix for the com-
putation of variances and covariances of the MLEs. The Fisher
information matrix is used to measure the amount of information
that the observed data carries about the unknown parameters. It is
defined as

Iðλ;βÞ ¼ E
� ∂2lðλ;βÞ

∂λ2
� ∂2lðλ;βÞ

∂λ∂β

� ∂2lðλ;βÞ
∂λ∂β � ∂2lðλ;βÞ

∂β2

2
64

3
75;
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and a straightforward computation in our case implies that

Iðλ;βÞ ¼ E

n
λ2

mτβ log τ

mτβ log τ n
β2þλmτβðlog τÞ2

2
64

3
75: ð5Þ

The only random element in the above matrix is n, so we need to
substitute EðnÞ ¼mλτβ to get the final expression

Iðλ;βÞ ¼mτβ
1
λ log τ

log τ λð 1
β2þðlog τÞ2Þ

2
4

3
5:

Standard theory for maximum likelihood tells us that the max-
imum likelihood estimates for λ and β are, for large samples,
approximately normally distributed centered at the true para-
meter values and with variances given as the diagonal elements,
respectively, of the inverse of the Fisher information matrix.
It is hence possible to estimate those variances by inverting the
estimated matrix I λ̂; β̂

� �
.

Alternatively, one may invert the so called observed Fisher
information matrix, which is the matrix (5) where one does not
take the expectation, but instead uses the observed value of n, and
substitute maximum likelihood estimates for the parameters.

3. Heterogeneity in the power law model

3.1. Heterogeneous NHPPs

Consider an NHPP with intensity function w(t). With the
inclusion of heterogeneity, this model is modified to assuming
that the intensity is given by

waðtÞ ¼ awðtÞ;
where w(t) is the basic (“baseline”) intensity function, and a is an
unobserved positive constant, which may vary from system to
system. More precisely, a is assumed to be a positive random
variable with mean 1 and variance δZ0. The idea is that in the
case of m systems, each system has its own value of a, i.e.,
a1; a2;…; am, which are assumed to be independent draws from
this distribution. Following the survival analysis literature, the aj
will in the following be denoted as frailties.

Although there are several potential distributions for the
frailties aj, we shall here apply the most commonly used one,
namely the gamma distribution. The popularity of this distribution
as a frailty distribution is due to both mathematical convenience
and often good fit to actual data. There is, however, no physical
justification to prefer gamma frailties instead of other models.

The density of the two-parameter gamma distribution is
generally given as

f ðaÞ ¼ ak�1e�a=θ

θkΓðkÞ
for a40, where k40 is the shape parameter and θ40 is the scale
parameter. The corresponding expected value and variance are,
respectively, kθ and kθ2. Since we require EðaÞ ¼ 1 and VarðaÞ ¼ δ,
we use k¼ 1=δ and θ¼ δ. The density of a hence becomes

hðaÞ ¼ a1=δ�1e�a=δ

Γ
1
δ

� 	
δ1=δ

ð6Þ

Fig. 1 shows several densities of gamma distributions with
expected value 1.

The likelihood function for data from m systems modeled by
NHPPs was given in (2). We now study the changes needed when
including a frailty a. We use a similar argument as before, but now
with VarðaÞ ¼ δ as an additional parameter.

Now the likelihood function for system j, for given value of the
frailty, aj, is

LjðajÞ ¼ ∏
nj

i ¼ 1
wðtijÞ

( )
aje

�aj ½WðTjÞ�WðSjÞ�:

Since aj is an unobservable random variable, the contribution to
the full likelihood from this system is obtained by unconditioning
with respect to aj, which in practice will mean to compute the
expected value of LjðajÞ with respect to the distribution of aj. Since,
furthermore, aj is gamma distributed with expected value 1, and
hence has probability density function (6), the expected value of
LjðajÞ is
Lj ¼ E½LjðajÞ�

¼
Z

LjðajÞhðajÞ daj

¼
Z

∏
nj

i ¼ 1
wðtijÞ

( )
aje

�aj WðTjÞ�WðSjÞ½ �a
1=δ�1
j e�aj=δ

Γ
1
δ

� 	
δ1=δ

daj

¼
∏
nj

i ¼ 1
wðtijÞ

Γð1δÞδ
1=δ

Z 1

0
arj �1
j e�ajsj daj

where rj ¼ njþ1
δ and sj ¼WðTjÞ�WðSjÞþ1

δ.
Now it is easy to show that

R1
0 ar�1e� sa da¼ΓðrÞ=sr for all

r; s40, so we get

Lj ¼
∏nj

i ¼ 1wðtijÞ
Γ 1

δ

� �
δ1=δ

Γ njþ
1
δ

� 	

WðTjÞ�WðSjÞþ
1
δ


 �nj þ1=δ
:

3.2. Maximum likelihood estimation for the heterogeneous
power law NHPP

Specializing the above to the power law (1), we get

Lj ¼
λnjbnj ∏nj

i ¼ 1tij
� �b�1

Γ njþ
1
δ

� 	

Γ
1
δ

� 	
δ1=δ λTb

j � λSbj þ
1
δ


 �nj þ1=δ:

Fig. 1. Graphs of gamma densities with expected value 1.

Z.G. Asfaw, B.H. Lindqvist / Reliability Engineering and System Safety 134 (2015) 59–65 61



Further, assuming Sj ¼ 0, Tj ¼ τ for all j, and then taking log and
summing over all the m systems, we obtain the full log-likelihood

lðλ;β; δÞ ¼ n log λþn log βþðβ�1Þ ∑
m

j ¼ 1
∑
nj

i ¼ 1
log tij

þ ∑
m

j ¼ 1
log Γ njþ

1
δ

� 	

� m log Γ
1
δ

� 	
þm

1
δ
log δþ nþm

δ

h i
log λτβþ1

δ


 �
 �

In order to find the maximum likelihood estimators for λ;β; δ we
first compute

∂lðλ;β; δÞ
∂λ

¼ n
λ
� τβ

λτβþ1
δ

2
64

3
75 nþm

δ

h i
;

which when set to 0 implies

λ̂ ¼ n

mτβ̂
: ð7Þ

Next we compute

∂l λ; b; δ
� �
∂b

¼ n
b
þ ∑

m

j ¼ 1
∑
nj

i ¼ 1
log tij �

λτb log τ

λτbþ1
δ

2
64

3
75 nþm

δ

h i
;

which when set to 0, using (7), leads to

β̂ ¼ n

n log τ�∑m
j ¼ 1∑

nj

i ¼ 1log tij
: ð8Þ

Thus, λ̂ and β̂ are exactly the same functions of the data as for the
power law case without frailities. (Note that this would not be the
case if the observation time intervals were not all equal for all the
m processes.)

The partial derivative of the log likelihood with respect to δ
involves the digamma function ψ defined by

ψ ðxÞ ¼ d
dx

log ΓðxÞ ¼Γ0ðxÞ
ΓðxÞ ;

and we get

∂lðλ;β; δÞ
∂δ

¼ �1
δ

2

∑
m

j ¼ 1
ψ njþ

1
δ

� 	
þm

δ2
ψ

1
δ

� 	
�m � 1

δ2
log δþ 1

δ2


 �

� �m

δ2
log λτβþ1

δ


 �
� 1

δ2
nþm

δ

λτβþ1
δ

2
64

3
75

2
64

3
75

¼ � 1

δ2
∑
m

j ¼ 1
ψ njþ

1
δ

� 	
þm

δ2
ψ

1
δ

� 	
þm

δ2
log δ

�m

δ2
þm

δ2
log λτβþ1

δ


 �
þ 1

δ2
nþm

δ

λτβþ1
δ

2
64

3
75

¼ � 1

δ2
∑
m

j ¼ 1
ψ njþ

1
δ

� 	
�mψ

1
δ

� 	
�m log δþm

( )

þ 1

δ2
m log λτβþ1

δ


 �
�

nþm
δ

λτβþ1
δ

8><
>:

9>=
>;

The likelihood equation given by equating this to 0 is simplified by
substituting the estimators for λ and β, which gives an equation of
δ alone. No explicit expression for the maximum likelihood
estimator δ̂ is available, however, so a numerical method like
Newton–Raphson's method needs to be used.

4. Simulations

4.1. Simulate systems from the power law process with
heterogeneity

The following probabilistic property of the NHPP can help us to
simulate event times of an NHPP from that of an HPP. Namely, if
U1;U2;… are the event times of an HPP with intensity 1, then it
can be shown that W �1ðU1Þ, W �1ðU2Þ;… are the event times of an
NHPP with CROCOF W(t). Here the inverse function W �1ðuÞ is
uniquely determined from W(t) if wðtÞ40 for all t.

We now apply this property to the power law NHPP with
CROCOF defined by (1). Then it is seen that

W �1ðuÞ ¼ ðu=λÞ1=β :

Thus if U1;U2;… are the event times of an HPP with intensity 1, we
obtain a simulated realization of the power law NHPP with given
parameters λ and β as ðU1=λÞ1=β , ðU2=λÞ1=β;…. Note here that the
HPP, U1;U2;…; can be simulated by first drawing U1 from an
exponential distribution with parameter 1; then letting U2 ¼ U1

þV2 where V2 is an independent draw from the exponential
distribution with parameter 1; and so on by adding new indepen-
dent Vi from the exponential distribution with parameter 1, until
the boundary time τ is reached for the transformed variables
ðUi=λÞ1=β .

In order to simulate from a power law process with gamma
distributed frailty, we first draw the value of a for each process,
and then for the jth process replace λ by ajλ in the above
simulation strategy.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

t

N(t
)

Fig. 2. Cumulative number of failures, N(t), versus time for a power law process with λ¼ 2 and β¼ 1:5.
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4.2. Simulated single processes

Throughout the simulation study we assume that there are
m¼20 systems, each observed on the fixed time interval from 0 to
τ¼ 10. The failure processes will be power law NHPPs with basic
ROCOF λβtβ�1, for varying values of λ and β, but possibly with
heterogeneity obtained by multiplying the system intensities by
independent random variables a from the gamma distribution
with expected value 1 and variance δ.

Fig. 2 shows a simulation of a single power law process
observed on the time interval [0,10], where parameter values are
λ¼ 2 and β¼ 1:5. Fig. 3 shows similarly a single process from a
power law process with the same λ and β, but with a frailty
parameter δ ð ¼ VarðaÞÞ ¼ 0:2.

We also illustrate, for the data in Fig. 2, the estimated para-
meters, and the inverse of the observed Fisher information matrix.
The ML estimates are λ̂¼1.9926 and β̂¼1.4999, while the inverse
of the observed information matrix is

I�1 λ̂; b̂
� �

¼ 0:0407 �0:0082
�0:0082 0:0018


 �
:

By taking the square roots of the diagonal elements of this matrix
we obtain the estimated standard errors of λ̂ and β̂ , respectively,
0.2018 and 0.0423.

4.3. Simulation study

For each setup of parameters we consider 10,000 simulations,
each consisting of m¼20 systems. The results are shown in
Table 1. For each simulation we estimate parameters and their
standard errors by maximum likelihood, and report averages of
these numbers based on the 10,000 simulations. These numbers
can hence be viewed as approximations of expected values of the
parameters, which enables consideration of possible bias in the
estimators. Further, the columns named by “St.D” give empirical
standard errors of the corresponding 10,000 computed estimates,
obtained as the square roots of empirical variances.

The table also gives the averages (approximation of expected
values) of number of failures in the time interval ½0;10� for each
parameter combination, as well as the corresponding standard
deviations, computed as square roots of the empirical variances.

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

t

N(t
)

Fig. 3. Cumulative number of failures, N(t), versus time for a single power law process with λ¼ 2, β¼ 1:5 and δ¼0.2.

Table 1
Data simulated from the heterogeneity model with varying δ, and estimation done as discussed in Section 3.2.

Data m True value n Estimates

10 000 20 λ β δ Ave. St.D λ̂ β̂ δ̂

Ave. St.D Ave. St.D Ave. St.D

2 1.5 0 63.1451 8.0541 2.0059 0.2057 1.5008 0.0430 0.0021 0.0036
0.1 63.0648 21.4421 2.0075 0.2456 1.5005 0.0421 0.0942 0.0352
0.2 63.2006 29.6606 2.0042 0.2853 1.5013 0.0425 0.1897 0.0651
0.4 63.0469 40.1756 2.0033 0.3450 1.5009 0.0426 0.3795 0.1208
0.6 63.3880 49.3983 2.0063 0.4033 1.5014 0.0431 0.5718 0.1750
0.8 63.0149 56.1749 2.0050 0.4452 1.5013 0.0430 0.7511 0.2223
1 63.4131 64.1655 2.0033 0.5023 1.5021 0.0432 0.9309 0.2610

1 0 20.0288 4.4658 2.0051 0.2526 1.0019 0.0509 0.0064 0.0119
0.2 19.9885 9.9238 1.9987 0.3231 1.0023 0.0509 0.1879 0.0774
0.4 20.2335 13.4745 2.0052 0.3802 1.0026 0.0508 0.3742 0.1305
0.6 19.8679 15.8587 1.9968 0.4285 1.0043 0.0514 0.5520 0.1769
0.8 20.1814 18.2127 1.9923 0.4691 1.0051 0.0518 0.7158 0.2107
1 20.4585 20.8251 1.9843 0.5149 1.0083 0.0524 0.8679 0.2421

0.75 0 11.2920 3.3512 1.9992 0.2653 0.7535 0.0507 0.0116 0.0215
0.2 11.8200 6.8717 2.0535 0.3142 0.7502 0.0493 0.1888 0.0924
0.4 11.2779 7.8143 1.9923 0.3934 0.7557 0.0519 0.3620 0.1381
0.6 11.1454 9.2048 1.9846 0.4330 0.7572 0.0522 0.5234 0.1763
0.8 11.1906 10.4320 1.9702 0.4873 0.7624 0.0539 0.6685 0.2054
1 11.1918 11.4700 1.9590 0.5285 0.7663 0.0552 0.7917 0.2274
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Note that each such number is based on m� 10;000 simulated
processes, i.e. 200,000 simulations.

In the discussion below we use the property that the maximum
likelihood estimators λ̂ and β̂ are given by the same function of
the data whatever be the value of δ (see Section 3.2). Thus, the
estimates are the same whether we assume the power law model
without frailty or the power law model with frailty. (It should be
noted that this would not be the case if the observation intervals of
the m systems differed). Here it enables us to reach at many
interesting conclusions regarding heterogeneity.

The main conclusions to be drawn from the simulation study
are given below.

4.3.1. An ordinary power law is anticipated, while there may be an
unrecognized heterogeneity

Consider first the situation where one thinks that the ordinary
power law model is the true model, but that in reality there is
heterogeneity between the m¼20 systems.

For each combination of λ and β is seen that, as δ increases, the
average number of failures per system is approximately constant,
which is in fact exactly true by a theoretical computation of
expected values. However, the standard deviations (St.D) of the
number of failures per system increase with δ. This is caused by
the heterogeneity, which in practice means that some system will
have a higher failure intensity, while others will have a lower
intensity than for the base case. (On average, the intensity will be
the same as for the no heterogeneity case, however, since the
variables ai have expected value 1.)

Now let us consider the estimated parameters. It is remarkable
that neither the expected value nor the standard error of β̂ are
much influenced by the heterogeneity. As regards λ̂, this is close to
the true value, 2, but is increasingly biased downwards as δ
increases. This is most clearly seen when βa1. Its standard error,
on the other hand, clearly increases with δ for all cases. Practical
implications of these results are: (i) For predictions of number of
failures of new systems, by an erroneous assumption of no
heterogeneity, one gets too short predicted intervals for the
number of failures in a given time period. In fact, the expected
value is correctly estimated, but the variation could be much
bigger than expected if heterogeneity is not accounted for. For
example, suppose the true values are λ¼2 and β¼0.75. In a model
not taking heterogeneity into account, the number of failures will
be predicted to be in the interval (expected value72 standard
deviations) approximately from 4.5 to 18. If the true heterogeneity
variance is, e.g., δ¼0.4, this interval would be much wider, namely

from 0 to 27. (ii) A similar problem is seen for the estimation of λ.
Here one would get a too optimistic estimate for the standard
error by assuming no heterogeneity, and also a downward bias will
be present in the estimate.

4.3.2. The correct model, a power law model with heterogeneity, is
used for statistical inference

In this case, the table contains information on all the maximum
likelihood estimators of the model, λ̂; β̂ ; δ̂ .

It is seen that the maximum likelihood estimator δ̂ slightly
underestimates the true value of δ. Further, its standard error
increases with δ as should be expected. The conclusion is that the
estimator δ̂ seems to behave quite satisfactorily. The properties of
the estimators λ̂ and β̂ are in fact already discussed, since the
formulas for their maximum likelihood estimators are the same
with and without including δ in the model.

5. The data example from Bhattacharjee et al. (2003)

Recall the closing valve failure example (Bhattacharjee et al.
[2]), which was considered in the introduction. There are m¼104
systems, each observed on the time interval [0,3286] (h).
The failure times are given in Table 2.

Let the model be as given in Section 3.2. Using the approach in
that subsection we get λ̂ ¼ 4:594� 10�4, β̂ ¼ 0:8215, δ̂¼ 8:340.
The estimate of δ thus reveals a considerable heterogeneity
between the systems. This heterogeneity is also clearly visible
from computation of the standard deviation of the number of
failures per system. In fact, the empirical standard deviation of
number of observed failures per system is 1.206. On the other
hand, using the estimates for λ and β and assuming an ordinary
power law model without heterogeneity, the standard deviation
would be estimated to 0.3558. The latter number is obtained as
the square root of the estimated cumulative intensity of the
process at time 3286, using the fact that expected value equals
variance for a Poisson distributed random variable.

6. Discussion and concluding remarks

The motivation for the present paper is the fact that an
unobserved heterogeneity between observed systems of the same
kind may, if ignored, lead to wrong conclusions or bad predictions
of system behavior.

We show, in a partly tutorial manner, how a possible hetero-
geneity between systems may be included in a statistical investi-
gation of repairable systems. In order to simplify the exposition we
consider the fairly standard case of a power law nonhomogeneous
Poisson process with heterogeneity of the gamma type. The
advantage of the approach is that it leads to relatively simple
formulas and procedures, while main ideas, pitfalls and possible
remedies are clearly demonstrated.

The model that we consider can be viewed as a hierarchical
model where the failure process for each system is conditional on
the value of the gamma-distributed frailty a. While our approach
can be viewed as an empirical Bayes approach, a fully Bayesian
approach is of course also feasible. One example of such a study is
George et al. [8], who did a fully Bayesian approach for the
corresponding HPP model with heterogeneity.

As already noted, the main reason for assuming gamma-
distributed frailties is mathematical tractability. In certain cases,
however, the assumption may be questioned, and there are
examples where the use of other distributions would lead to
different conclusions, see, e.g., the note by Nelder et al. [11]. This
problem is, however, beyond the scope of this paper.

Table 2
Failure times for 104 closing valves, with follow-up time of 3286 h, at two boiling
water reactor plants in Finland. Failure type is “External Leakage”.

System # Failure times

1 610 614 943 2024 2087 2104 2399 2525
2 126 323 943 1132 2087 2399 2426
3 860 915 1606 3181
4 10 19 104 2352
5 293 2567
6 2434 2676
7 1963
8 1262
9 2501
10 1963
11 132
12 1623
13 3127
14 3211
15 1225
16 1222
17–104 –
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We have, further, assumed the observation lengths, τ, for each
system to be equal. This had the nice effect of giving simple
explicit expressions (7) and (8) for the parameter estimates of λ
and β, which are not influenced by the assumption of hetero-
geneity. It is in principle straightforward to generalize the like-
lihood functions to the case of different observation lengths, which
however would destroy the simple computation of estimates.
Thus, in order to simplify the presentation, we decided to keep
the observation lengths equal. For some applications, this assump-
tion would even be natural (see, e.g., the example of Section 5).

As a final remark on our assumptions, while we have assumed
the heterogeneity of the systems to be connected to the scale-
parameter λ, it might in applications be natural to expect that also
the trend parameter β varies between systems. In principle we can
derive the likelihood function and do the analyses also for this
case, but of course the analyses would be more involved.

An apparently different extension of the power law process has
recently been considered by Le Gat [7], essentially assuming that
the rate of occurrence of failures of a system at any time depends
on the perviously experienced number of failures. In a forthcoming
paper we will explore the relation between this dynamic exten-
sion of the power law process and the heterogeneity extension
considered in the present paper.
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