?

54 SOME NON-PARAMETRIC PROCEDURES

proach to inference is covered in many statistical texts. See, for example,
Altman (1991) and Armitage et al. (2001) for non-technical presentations of
the ideas in a medical context.

The log-rank test results from the work of Mantel and Haenszel (1959),
Mantel (1966) and Peto and Peto (1972). See Lawless (2002) for details of the
rank test formulation. A thorough review of the hypergeometric distribution,
used in the derivation of the log-rank test in Section 2.6.2, is included in
Johnson and Kotz (1969).

The log-rank test for trend is derived from the test for trend in a 2 x k&
contingency table, given in Armitage et al. (2001). The test is also described
by Altman (1991). Peto et al. (1976, 1977) give a non-mathematical account
of the log-rank test and its extensions.

CHAPTER 3

Modelling survival data

The non-parametric methods described in Chapter 2 can be useful in the
analysis of a single sample of survival data, or in the comparison of two or
more groups of survival times. However, in most medical studies that give
rise to survival data, supplementary information will also be recorded on each
individual. A typical example would be a clinical trial to compare the survival
times of patients who receive one or other of two treatments. In such a study,
demographic variables such as the age and sex of the patient, the values of
physiological variables such as serum haemoglobin level and heart rate, and
factors that are associated with the lifestyle of the patient, such as smoking
history and dietary habits, may all have an impact on the time that the
patient survives. Accordingly, the values of these variables, which are referred
to as explanatory variables, would be recorded at the outset of the study.
The resulting data set would then be more complex than those considered
in Chapter 2, and the methods described in that chapter would generaily be
unsuitable.

In order to explore the relationship between the survival experience of a
patient and explanatory variables, an approach based on statistical modelling
can be used. Indeed, the particular model that is developed in this chapter
both unifies and extends the non-parametric procedures of Chapter 2.

3.1 Modelling the hazard function

Through a modelling approach to the analysis of survival data, we can explore
how the survival experience of a group of patients depends on the values of
one or more explanatory variables, whose values have been recorded for each
patient at the time origin. For example. in the study on multiple myeloma,
given as Example 1.3, the aim is to determine which of seven explanatory
variables have an impact on the survival time of the patients. In Example 1.4
on the survival times of patients in a clinical trial involving two treatments
for prostatic cancer, the primary aim is to identify whether patients in the
two treatment groups have a different survival experience. Because additional
variables such as the age of the patient and the size of their tumour are likely to
influence survival time, it will be important to take account of these variables
when assessing the extent of any treatment difference.

In the analysis of survival data, interest centres on the risk or hazard of
death at any time after the time origin of the study. As a consequence, the
hazard function is modelled directly in survival analysis. The resulting models
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are somewhat different in form from linear models encountered in regression
analysis and in the analysis of data from designed experiments, where the de-
pendence of the mean response, or some function of it, on certain explanatory
variables is modelled. However, many of the principles and procedures used
in linear modelling carry over to the modelling of survival data.

There are two broad reasons for modelling survival data. One objective of
the modelling process is to determine which combination of potential explana-
tory variables affect the form of the hazard function. In particular, the effect
that the treatment has on the hazard of death can be studied, as can the ex-
tent to which other explanatory variables affect the hazard function. Another
reason for modelling the hazard function is to obtain an estimate of the haz-
ard function itself for an individual. This may be of interest in its own right,
but in addition, from the relationship between the survivor function and haz-
ard function described by equation (1.5), an estimate of the survivor function
can be found. This will in turn lead to an estimate of quantities such as the
median survival time, which will be a function of the explanatory variables in
the model. The median survival time could then be estimated for current or
future patients with particular values of these explanatory variables. The re-
sulting estimate could be particularly useful in devising a treatment regimen,
or in counselling the patient about their prognosis.

The basic model for survival data to be considered in this chapter is the
proportional hazards model. This model was proposed by Cox (1972) and has
also come to be known as the Coz regression model. Although the model is
based on the assumption of proportional hazards, introduced in Section 2.6.4,
no particular form of probability distribution is assumed for the survival times.
The model is therefore referred to as a semi-parametric model. We now go on
to develop the model for the comparison of the hazard functions for individuals
in two groups.

3.1.1 A model for the comparison of two groups

Suppose that patients are randomised to receive either a standard treatment
or a new treatment. and let hg(t) and hn(t) be the hazards of death at time
t for patients on the standard treatment and new treatment, respectively. Ac-
cording to a simple model for the survival times of the two groups of patients,
the hazard at time ¢ for a patient on the new treatment is proportional to
the hazard at that same time for a patient on the standard treatment. This
proportional hazards model can be expressed in the form

hi(t) = Phs(t), (3.1)

for any non-negative value of ¢, where ¥ is a constant. An implication of this
assumption is that the corresponding true survivor functions for individuals
on the new and standard treatments do not cross, as previously shown in
Section 2.6.4.

The value of 9 is the ratio of the hazards of death at any time for an
individual on the new treatment relative to an individual on the standard
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treatment, and so 1 is known as the relative hazard or hazard ratio. If ¥ < 1,
the hazard of death at ¢ is smaller for an individual on the new drug, relative
to an individual on the standard. The new treatment is then an improvement
on the standard. On the other hand, if ¥ > 1, the hazard of death at ¢ is
greater for an individual on the new drug, and the standard treatment is
superior.

An alternative way of expressing the model in equation (3.1) leads to a
model that can more easily be generalised. Suppose that survival data are
available on n individuals and denote the hazard function for the ith of these
by hi(t), i = 1,2,...,n. Also, write ho(t) for the hazard function for an
individual on the standard treatment. The hazard function for an individual
on the new treatment is then y¥hg(t). The relative hazard 1 cannot be negative,
and so it is convenient to set ¥ = exp(B3). The parameter § is then the
logarithm of the hazard ratio, that is, 8 = log, and any value of 8 in the
range (—00, 00) will lead to a positive value of ¥. Note that positive values of
[ are obtained when the hazard ratio, ¥, is greater than unity, that is, when
the new treatment is inferior to the standard.

Now let X be an indicator variable, which takes the value zero if an indi-
vidual is on the standard drug, and unity if an individual is on the new drug.
If z; is the value of X for the ith individual in the study, i = 1,2,...,n, the
hazard function for this individual can be written as

hi(t) = eﬁz" ho(t), (32)

where z; = 1 if the ith individual is on the new treatment and z; = 0 oth-
erwise. This is the proportional hazards model for the comparison of two
treatment groups.

8.1.2 The general proportional hazards model

The model of the previous section is now generalised to the situation where
the hazard of death at a particular time depends on the values z1.z2,...,zp of
p explanatory variables, X;, X2, ..., X,. The values of these variables will be
assumed to have been recorded at the time origin of the study. An extension
of the model to cover the situation where the values of one or more of the
explanatory variables change over time will be considered in Chapter 8.

The set of values of the explanatory variables in the proportional hazards
model will be represented by the vector x, so that = = (z1,Z2,...,2p)". Let
ho(t) be the hazard function for an individual for whom the values of all the
explanatory variables that make up the vector  are zero. The function hg(t) is
called the baseline hazard function. The hazard function for the ith individual
can then be written as

hi(t) = Y(zi)ho(t),
where 1(z,) is a function of the values of the vector of explanatory variables
for the ith individual. The function 1)(-) can be interpreted as the hazard at
time ¢ for an individual whose vector of explanatory variables is x;, relative
to the hazard for an individual for whom & = 0.
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Again, since the relative hazard, ¥(x,), cannot be negative, it is convenient
to write this as exp(7;), where 7, is a linear combination of the p explanatory
variables in x,. Therefore,

n; = P11 + Boza; + -+ + BpTpi,

so that n; = Z§=1ﬂjzﬁ- In matrix notation, 7; = B'z;, where 8 is the
vector of coefficients of the explanatory variables 1, z3,...,7; in the model.
The quantity 7; is called the linear component of the model, but it is also
known as the risk score or prognostic indez for the ith individual. The general
proportional hazards model then becomes

hi(t) = exp(B1z1i + PaZai + - - + BpTpi)ho(t)- (3.3)

Since this model can be re-expressed in the form

0g {hl—(t)} = [1Z1; + PaZai + -+ + BpTpi,
ho(t)

the proportional hazards model may also be regarded as a linear model for

the logarithm of the hazard ratio. There are other possible forms for ¥(x;),

but the choice ¥(x;) = exp(8'z;) leads to the most commonly used model for

survival data.

Notice that there is no constant term in the linear component of the propor-
tional hazards model. If a constant term [y, say, were included, the baseline
hazard function could simply be rescaled by dividing ho(¢) by exp(fo), and
the constant term would cancel out. Moreover, we have made no assumptions
concerning the actual form of the baseline hazard function hg(t). Indeed, we
will see later that the f-coefficients in this proportional hazards model can be
estimated without making any such assumptions. Of course, we will often need
to estimate ho(t) itself, and we will see how this can be done in Section 3.8.

3.2 The linear component of the proportional hazards model

There are two types of variable on which a hazard function may depend,
namely variates and factors. A variate is a variable that takes numerical val-
ues that are often on a continuous scale of measurement, such as age or systolic
blood pressure. A factor is a variable that takes a limited set of values, which
are known as the levels of the factor. For example, sex is a factor with two lev-
els, and type of tumour might be a factor whose levels correspond to different
histologies, such as squamous, adeno or small cell.

We now consider how variates, factors, and terms that combine factors
and variates, can be incorporated in the linear component of a proportional
hazards model.

3.2.1 Including a variate

Variates, either alone or in combination, are readily incorporated in a propor-
tional hazards model. Each variate appears in the model with a corresponding
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B-coefficient. As an illustration, consider a situation in which the hazard func-
tion depends on two variates X; and Xs. The value of these variates for the
ith individual will be z1; and zo;, respectively, and the proportional hazards
model for the ith of n individuals is written as

hi(t) = exp(B121: + Baz2.)ho(t)-

In models such as this, the baseline hazard function, hg(t), is the hazard
function for an individual for whom all the variates included in the model
take the value zero.

3.2.2 Including a factor

Suppose that the dependence of the hazard function on a single factor, 4, is to
be modelled, where A has a levels. The model for an individual for whom the
level of A is j will then need to incorporate the term a; which represents the
effect due to the jth level of the factor. The terms a1, ag, ..., a, are known as
the main effects of the factor A. According to the proportional hazards model,
the hazard function for an individual with factor A at level j is exp(a;)ho(t).
Now, the baseline hazard function hg(t) has been defined to be the hazard
for an individual with values of all explanatory variables equal to zero. To be
consistent with this definition, one of the a; must be taken to be zero. One
possibility is to adopt the constraint ey = 0, which corresponds to taking the
baseline hazard to be the hazard for an individual for whom A is at the first
level. This is the constraint that will be used in the sequel.

Models that contain terms corresponding to factors can be expressed as
linear combinations of explanatory variables by defining indicator or dummy
variables for each factor. This procedure will be required when using computer
software for survival analysis that does not allow factors to be fitted directly.
If the constraint oy = 0 is adopted, the term a; can be included in the model
by defining a — 1 indicator variables, X2, X3,...,Xa, that take the values
shown in the table below.

Levelof A X2 X3 L. Xa
1 0 0 L 0
2 1 0 R 0
3 0 1 0
a 0 0 1

The term a; can then be incorporated in the linear part of the proportional
hazards model by including the @ — 1 explanatory variables X2, X3,...,Xq
with coefficients az,as,...,aq. In other words, the term a; in the model is
replaced by asTy + @aTs + + -+ + QuTq, where z; is the value of X; for an
individual for whom A is at level j, § = 2,3,...,a. There are then a — 1
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parameters associated with the main effect of the factor A, and A is said to
have a — 1 degrees of freedom.

3.2.8 Including an interaction

When terms corresponding to more than one factor are to be included in the
model, sets of indicator variables can be defined for each factor in a manner
similar to that shown above. In this situation, it may also be appropriate to
include a term in the model that corresponds to individual effects for each
combination of levels of two or more factors. Such effects are known as inter-
actions.

For example, suppose that the two factors are the sex of a patient and grade
of tumour. If the effect of grade of tumour on the hazard of death is different
in patients of each sex, we would say that there is an interaction between these
two factors. The hazard function would then depend on the combination of
levels of these two factors.

In general, if A and B are two factors, and the hazard of death depends
on the combination of levels of A and B, then A and B are said to interact.
If A and B have a and b levels, respectively, the term that represents an
interaction between these two factors is denoted by (af)x, for j=1,2,...,a
and k=1,2,...,b.

In statistical modelling, the effect of an interaction can only be investigated
by adding the interaction term to a model that already contains the corre-
sponding main effects. If either a; or [ are excluded from the model, the
term (af); represents the effect of one factor nested within the other. For
example, if o is included in the model, but not [, then (af);x is the ef-
fect of B nested within A. If both o; and By are excluded, the term (af);x
represents the effect of the combination of level i of A and level j of B on
the response variable. This means that (af3) i can only be interpreted as an
interaction effect when inciuded in a model that contains both aj and By,
which correspond to the main effects of A and B. We will return to this point
when we consider model-building strategy in Section 3.5.

In order to include the term (afB);x in the model, products of indicator
variables associated with the main effects are calculated. For example, if A
and B have 2 and 3 levels respectively, indicator variables Uz and Vs, V3 are
defined as in the following tables.

Level of A Uz Levelof B Vo V3

1 0 1 0 0
2 1 2 1 0
3 0 1

Let u; and v; be the values of U; and Vi for a given individual, for j = 2,
k =2,3. The term (@) is then fitted by including variates formed from the
products of U; and Vj in the model. The corresponding value of the product
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for a given individual is u;vx. The coefficient of this product is denoted ()4,
and so the term (af);x is fitted as

(@B)22ugvz + (af)23uavs.

There are therefore two parameters associated with the interaction between A
and B. In general, if A and B have a and b levels, respectively, the two-factor
interaction AB has (a—1)(b—1) parameters associated with it, in other words
AB has (a — 1)(b — 1) degrees of freedom. Furthermore, the term (af)jx is
equal to zero whenever either A or B are at the first level, that is, when either
j=lork=1

9.2.4 Including a mized term

Another type of term that might be needed in a model is a mixed term formed
from a factor and a variate. Terms of this type would be used when the
coefficient of a variate in a model was likely to be different for each level
of a factor. For example, consider a contraceptive trial in which the time to
the onset of a period of amenorrhoea, the prolonged absence of menstrual
bleeding, is being modelled. The hazard of an amenorrhoea may be related to
the weight of a woman, but the coefficient of this variate may differ according
to the level of a factor associated with the number of previous pregnancies
that the woman has experienced.

The dependence of the coefficient of a variate, X, on the level of a factor, A,
would be depicted by including the term ajz in the linear component of the
proportional hazards model, where z is the value of X for a given individual
for whom the factor A is at the jth level, j = 1,2,...,a. To include such a
term, indicator variables Uj;, say, are defined for the factor A, and each of
these is multiplied by the value of X for each individual. The resuiting values
of the products U;X are u;z, and the coefficient of u;z in the model is aj,
where j indexes the level of the factor A.

If the same definition of indicator variables in the previous discussion were
used, a1, the coefficient of X for individuals at the first level of A, would be
zero. It is then essential to include the variate X in the model as well as the
products, for otherwise the dependence on X for individuals at the first level
of A would not be modelled. An illustration should make this clearer.

Suppose that there are nine individuals in a study, on each of whom the
value of a variate, X, and the level of a factor, A, have been recorded. We
will take A to have three levels, where A is at the first level for the first three
individuals, at the second level for the next three, and at the third level for the
final three. In order to model the dependence of the coefficient of the variate
X on the level of A, two indicator variables, Uy and Us are defined as in the
following table.
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Individual Levelof A X Uz Us U X UszX
1 1 Fo 0 0 0 0
2 1 T2 0 0 0 0
3 1 T3 0 0 0 0
4 2 T4 1 0 T4 0
5 2 T5 1 0 Ts 0
6 2 T 1 0 Te 0
7 3 7 0 1 0 b
8 3 s 0 1 0 Ts
9 3 Ty 0 1 0 T9

Explanatory variables formed as the products U X and U3 X, given in the last
two columns of this table, would then be included in the linear component of
the model, together with the variate X. Let the coefficients of the values of
the products U X and Us X be o and af, respectively, and let the coefficient
of the value of the variate X in the model be . Then, the model contains the
terms Az + o (uaz) + af(usz). From the above table, uz = 0 and uz = 0 for
individuals at level 1 of A, and so the coefficient of z for these individuals is
just B. For those at level 2 of A, us = 1 and u3 = 0, and the coefficient of =
is 3 + ab. Similarly, at level 3 of A, u2 =0 and u3 = 1, and the coefficient of
z is f+ of.

Notice that if the term Gz is omitted from the model, the coefficient of
for individuals 1,2 and 3 would be zero. There would then be no information
about the relationship between the hazard function and the variate X for
individuals at the first level of the factor A.

The manipulation described in the preceding paragraphs can be avoided by
defining the indicator variables in a different way. If a factor A has a levels, and
it is desired to include the term a;z in a model, without necessarily including
the term Bz, a indicator variables Z;, Zo, ..., Z, can be defined for A, where
Z; =1 at level j of A and zero otherwise. The corresponding values of these
products for an individual, 21z, 22, . . ., 2.z, are included in the model with
coefficients o, aa, ..., a,. These are the coefficients of = for each level of A.

Now, if the variate X is included in the model, along with the a products
of the form Z;X, there will be a + 1 terms corresponding to the a coeffi-
cients. It will not then be possible to obtain unique estimates of each of these
a-coefficients, and the model is said to be overparameterised. This overpa-
rameterisation can be dealt with by forcing one of the a + 1 coefficients to be
zero. In particular, taking ; = 0 would be equivalent to a redefinition of the
indicator variables, in which Z; is taken to be zero. This then leads to the
same formulation of the model that has already been discussed.

The application of these ideas in the analysis of actual data sets will be
illustrated in Section 3.4, after we have seen how the proportional hazards
model can be fitted.

3.3 Fitting the proportional hazards model

Fitting the proportional hazards model given in equation (3.3) to an observed
set of survival data entails estimating the unknown coefficients of the ex-
planatory variables, Xi,Xo,..., X}, in the linear component of the model,
B1,B2, ..., Bp. The baseline hazard function, hg(t), may also need to be esti-
mated. It turns out that these two components of the model can be estimated
separately. The (’s are estimated first and these estimates are then used to
construct an estimate of the baseline hazard function. This is an important
result, since it means that in order to make inferences about the effects of p
explanatory variables, X, Xa,...,X,, on the relative hazard, h;(t)/ho(t), we
do not need an estimate of hg(t). Methods for estimating hg(t) will therefore
be deferred until Section 3.8.

The [-coefficients in the proportional hazards model, which are the un-
known parameters in the model, can be estimated using the method of mazi-
mum likelihood. To operate this method, we first obtain the likelihood of the
sample data. This is the joint probability of the observed data, regarded as a
function of the unknown parameters in the assumed model. For the propor-
tional hazards model, this is a function of the observed survival times and the
unknown [-parameters in the linear component of the model. Estimates of
the @’s are then those values that are the most likely on the basis of the ob-
served data. These mazimum likelihood estimates are therefore the values that
maximise the likelihood function. From a computational viewpoint, it is more
convenient to maximise the logarithm of the likelihood function. Furthermore,
approximations to the variance of maximum likelihood estimates can be ob-
tained from the second derivatives of the log-likelihood function. Details will
not be given here, but Appendix A contains a summary of relevant results
from the theory of maximum likelihood estimation.

Suppose that data are available for n individuals, among whom there are r
distinct death times and n — r right-censored survival times. We will for the
moment assume that only one individual dies at each death time, so that there
are no ties in the data. The treatment of ties will be discussed in Section 3.3.2.
The r ordered death times will be denoted by #(1) < t(2) < -+ < (), 50 that
t¢;) is the jth ordered death time. The set of individuals who are at risk at
time t(;) will be denoted by R(t(;)), so that R(t(;)} is the group of individuals
who are alive and uncensored at a time just prior to t(;). The quantity R((;))
is called the risk set.

Cox (1972) showed that the relevant likelihood function for the proportional
hazards model in equation (3.3) is given by

28) = ] 2B )

= , (3.4)
j=1 ZleR(t(J)) exp(B'z;)

in which z;) is the vector of covariates for the individual who dies at the jth
ordered death time, ¢(;y. The summation in the denominator of this likelihood
function is the sum of the values of exp(@'z) over all individuals who are at
risk at time ;). Notice that the product is taken over the individuals for whom
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